
AnnouncementsClass is  170.

Matlab Grader homework, 
1 and 2 (of less than 9) homeworks Due 22 April tonight, Binary graded.
167, 165,164 has done the homework. (If you have not done HW talk to me/TA!)
Homework 3 due 5 May
Homework 4 (SVM +DL) due ~24 May

Jupiter “GPU” home work released Wednesday. Due 10 May

Projects: 41 Groups formed. Look at Piazza for help.
Guidelines is on Piazza
May 5 proposal due. TAs and Peter can approve. 
Email or use dropbox
https://www.dropbox.com/request/XGqCV0qXm9LBYz7J1msS
Format “Proposal”+groupNumber
May 20 presentation

Today: 
• Stanford CNN 11, SVM, (Bishop 7)
• Play with Tensorflow playground before class http://playground.tensorflow.org

Solve the spiral problem 

Monday 
• Stanford CNN 12, K-means, EM (Bishop 9), 

http://playground.tensorflow.org/


Projects
• 3-4 person groups preferred

• Deliverables: Poster, Report & main code (plus proposal, midterm slide)
• Topics your own or chose form suggested topics. Some 

physics inspired.
• April 26 groups due to TA. 

• 41 Groups formed. Look at Piazza for help.
• Guidelines is on Piazza
• May 5 proposal due. TAs and Peter can approve. 
Email or use dropbox Format “Proposal”+groupNumber
https://www.dropbox.com/request/XGqCV0qXm9LBYz7J1msS

• May 20 Midterm slide presentation. Presented to a subgroup of 
class.

• June 5 final poster. Upload June ~3
• Report and code due Saturday 15 June.



Confusion matrix/Wikipedia
If a classification system has been trained to distinguish between cats, dogs and rabbits, 
a confusion matrix will summarize the test results. Assuming a sample of 27 animals —
8 cats, 6 dogs, and 13 rabbits, the  confusion matrix could look like the table below:



Let us define an experiment from P positive instances and N negative instances for 
some condition. The four outcomes can be formulated in a 2×2 confusion matrix, as 
follows:

Recall



ROC curve (receiver operating charateristic)



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201717

Other Computer Vision Tasks
Classification 
+ Localization

Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CATGRASS, CAT, 
TREE, SKY

DOG, DOG, CAT DOG, DOG, CAT

Single Object Multiple ObjectNo objects, just pixels This image is CC0 public domain



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201744

Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W Predictions:

H x W

Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Downsampling:
Pooling, strided 
convolution

Upsampling:
Unpooling or strided 
transpose convolution



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201727

In-Network upsampling: “Max Unpooling”

Input: 4 x 4

1 2 6 3

3 5 2 1

1 2 2 1

7 3 4 8

1 2

3 4

Input: 2 x 2 Output: 4 x 4

0 0 2 0

0 1 0 0

0 0 0 0

3 0 0 4

Max Unpooling
Use positions from 
pooling layer

5 6

7 8

Max Pooling
Remember which element was max!

… 
Rest of the network

Output: 2 x 2

Corresponding pairs of 
downsampling and 
upsampling layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201726

In-Network upsampling: “Unpooling”

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

Nearest Neighbor

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 0 2 0

0 0 0 0

3 0 4 0

0 0 0 0

“Bed of Nails”



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201733

Learnable Upsampling: Transpose Convolution

Input: 4 x 4 Output: 2 x 2

Dot product 
between filter 
and input

Filter moves 2 pixels in 
the input for every one 
pixel in the output

Stride gives ratio between 
movement in input and 
output

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201738

Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

Sum where 
output overlaps

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Filter moves 2 pixels in 
the output for every one 
pixel in the input

Stride gives ratio between 
movement in output and 
input

Other names:
-Deconvolution (bad)
-Upconvolution
-Fractionally strided 
convolution
-Backward strided 
convolution



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201739

Transpose Convolution: 1D Example

a

b

x

y

z

 ax

 ay

az + bx

 by 

bz

Input Filter
Output

Output contains 
copies of the filter 
weighted by the 
input, summing at 
where at overlaps in 
the output

Need to crop one 
pixel from output to 
make output exactly 
2x input



5/1/2019 comparison convolution correlation

https://upload.wikimedia.org/wikipedia/commons/2/21/Comparison_convolution_correlation.svg 1/1

Convolution
f

g

f∗g

g∗f

Cross-correlation
f

g

g⋆f

f⋆g

Autocorrelation
f

g

f⋆f

g⋆g

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201741

Convolution as Matrix Multiplication (1D Example)
We can express convolution in 
terms of a matrix multiplication 

Example: 1D conv, kernel 
size=3, stride=1, padding=1

Convolution transpose multiplies by the 
transpose of the same matrix: 

When stride=1, convolution transpose is 
just a regular convolution (with different 
padding rules)



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201743

Convolution as Matrix Multiplication (1D Example)
We can express convolution in 
terms of a matrix multiplication 

Example: 1D conv, kernel 
size=3, stride=2, padding=1

Convolution transpose multiplies by the 
transpose of the same matrix: 

When stride>1, convolution transpose is 
no longer a normal convolution!



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201762

Region Proposals
● Find “blobby” image regions that are likely to contain objects
● Relatively fast to run; e.g. Selective Search gives 1000 region 

proposals in a few seconds on CPU

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012
Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013
Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014
Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201761

Object Detection as Classification: Sliding Window

Dog? NO
Cat? YES
Background? NO

Apply a CNN to many different crops of the 
image, CNN classifies each crop as object 
or background

Problem: Need to apply CNN to huge 
number of locations and scales, very 
computationally expensive!



Kernels

Information unchanged, but now we 
have a linear classifier on the 
transformed points.

With the kernel trick, we just need kernel
𝑘 𝒂, 𝒃 = 𝜱(𝒂)) 𝜱(𝒃)

Say I want to predict whether a house on the real-estate market will sell today
or not:

x =

2

4 x
(1)

|{z}
house’s list price

, x
(2)

|{z}
estimated worth

, x
(3)

|{z}
length of time on market

, x
(4)

|{z}
in a good area

, ...

3

5 .

We might want to consider something more complicated than a linear model:

Example 1: [x(1), x(2)] ! �
�
[x(1), x(2)]

�
=

⇥
x
(1)2

, x
(2)2

, x
(1)
x
(2)
⇤

The 2d space gets mapped to a 3d space. We could have the inner product in
the 3d space:

�(x)T�(z) = x
(1)2

z
(1)2 + x

(2)2
z
(2)2 + x

(1)
x
(2)
z
(1)
z
(2)
.

Example 2:

[x(1), x(2), x(3)] ! �

⇣
[x(1), x(2), x(3)]

⌘

= [x(1)2, x(1)x(2), x(1)x(3), x(2)x(1), x(2)2, x(2)x(3), x(3)x(1), x(3)x(2), x(3)2]

and we can take inner products in the 9d space, similarly to the last example.

2

Input Space Feature Space

Image by MIT OpenCourseWare.

Say I want to predict whether a house on the real-estate market will sell today
or not:

x =

2

4 x
(1)

|{z}
house’s list price

, x
(2)

|{z}
estimated worth

, x
(3)

|{z}
length of time on market

, x
(4)

|{z}
in a good area

, ...

3

5 .

We might want to consider something more complicated than a linear model:

Example 1: [x(1), x(2)] ! �
�
[x(1), x(2)]

�
=

⇥
x
(1)2

, x
(2)2

, x
(1)
x
(2)
⇤

The 2d space gets mapped to a 3d space. We could have the inner product in
the 3d space:

�(x)T�(z) = x
(1)2

z
(1)2 + x

(2)2
z
(2)2 + x

(1)
x
(2)
z
(1)
z
(2)
.

Example 2:

[x(1), x(2), x(3)] ! �

⇣
[x(1), x(2), x(3)]

⌘

= [x(1)2, x(1)x(2), x(1)x(3), x(2)x(1), x(2)2, x(2)x(3), x(3)x(1), x(3)x(2), x(3)2]

and we can take inner products in the 9d space, similarly to the last example.

2

Input Space Feature Space

Image by MIT OpenCourseWare.



Dual representation, Sec 6.2
Primal	problem: min

𝒘
𝐸(𝒘)

𝐸 = 9
:
∑<= 𝒘)𝒙< − 𝑡< 2+ B

:
𝒘 2 = 𝑿𝒘− 𝒕 :

:+ B
:
𝒘 2

Solution      𝒘 = 𝑿E𝒕 = (𝑿)𝑿 + 𝜆𝑰𝑴)J𝟏𝑿)𝒕
= 𝑿)(𝑿𝑿𝑻 + 𝜆𝑰𝑵 )J9𝒕 = 𝑿)(𝑲 + 𝜆𝑰𝑵 )J9𝒕 = 𝑿)𝒂

The kernel is 𝐊 = 𝑿𝑿𝑻

Dual representation is : min
𝒂

𝐸(𝒂)

𝐸 = 9
:
∑<= 𝒘)𝒙< − 𝑡< 2+ B

:
𝒘 2 = 𝑲𝒂− 𝒕 :

:+ B
:
𝒂)𝑲𝒂

Prediction
𝑦 = 𝒘)𝒙 = 𝒂)𝑿𝒙 = ∑<= 𝑎<𝒙<)𝒙 = ∑<= 𝑎<𝑘(𝒙< , 𝒙)



Dual representation, Sec 6.2

• Often a is sparse (… Support vector machines)
• We don’t need to know x or 𝝋 𝒙 . 𝑱𝒖𝒔𝒕 𝒕𝒉𝒆 𝑲𝒆𝒓𝒏𝒆𝒍

𝐸 𝒂 = 𝑲𝒂− 𝒕 :
:+
𝜆
2𝒂

)𝑲𝒂

Prediction
𝑦 = 𝒘)𝒙 = 𝒂)𝑿𝒙 = ∑<= 𝑎<𝒙<)𝒙 = ∑<= 𝑎<𝑘(𝒙< , 𝒙)



Lecture 10
Support Vector Machines

Non Bayesian!

Features:
• Kernel
• Sparse representations
• Large margins



Regularize for plausibility
• Which one is best?
• We maximize the margin

Regularize for Plausibility (Generalizability)

Stephen Wright () Big Data Perspective January 2016 11 / 29

Regularize for Plausibility (Generalizability)

Stephen Wright () Big Data Perspective January 2016 11 / 29

500 Chapter 14. Kernels

Figure 14.11 Illustration of the large margin principle. Left: a separating hyper-plane with large margin.
Right: a separating hyper-plane with small margin.

R1

R0

y = 0

y > 0

y < 0

w

x

r = f(x)
∥w∥

x⊥

− w0
∥w∥

(a)

y = 0

y = 1

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

(b)

Figure 14.12 (a) Illustration of the geometry of a linear decision boundary in 2d. A point x is classified
as belonging in decision region R1 if f(x) > 0 , otherwise it belongs in decision region R2; here f(x)
is known as a discriminant function. The decision boundary is the set of points such that f(x) = 0 .
w is a vector which is perpendicular to the decision boundary. The term w0 controls the distance of
the decision boundary from the origin. The signed distance of x from its orthogonal projection onto the
decision boundary, x⊥, is given by f(x)/||w||. Based on Figure 4.1 of (Bishop 2006a). (b) Illustration of
the soft margin principle. Points with circles around them are support vectors. We also indicate the value
of the corresponding slack variables. Based on Figure 7.3 of (Bishop 2006a).



Regularize for plausibilityRegularize for Plausibility (Generalizability)

Stephen Wright () Big Data Perspective January 2016 11 / 29



Support Vector Machines
• The line that maximizes the minimum 

margin is a good bet.
– The model class of “hyper-planes with a margin m” 

has a low VC dimension if m is big.

• This maximum-margin separator is 
determined by a subset of the datapoints.
– Datapoints in this subset  are called 

“support vectors”.
– It is useful computationally if only few 

datapoints are support vectors, because 
the support vectors decide which side of 
the separator a test case is on.

The support vectors are 
indicated by the circles around 
them.



Lagrange multiplier (Bishop App E)
max 𝑓 𝑥 subject to 𝑔 𝑥 = 0

Taylor	expansion
𝑔 𝒙 + 𝜺 = 𝑔 𝒙 + 𝝐)∇ 𝑔 𝒙

𝐿 𝑥, 𝜆 = 𝑓 𝑥 + 𝜆𝑔(𝑥)



Lagrange multiplier (Bishop App E)
max 𝑓 𝒙 subject to 𝑔 𝒙 > 0

𝐿 𝒙, 𝜆 = 𝑓 𝒙 + 𝜆𝑔(𝒙)

Either ∇ f 𝒙 = 𝟎
Then 𝑔 𝒙 is	inactive,	𝜆=0

Or 𝑔 𝒙 = 0 but	𝜆 >0

Thus optimizing 𝐿 𝒙, 𝜆 with the 
Karesh-Kuhn-Trucker (KKT) 
equations

𝑔 𝒙 ≥ 0
𝜆 ≥ 0

𝜆𝑔 𝒙 = 0



Testing a linear SVM
• The separator is defined as the set of points for which:

casenegativeaitssaybifand

casepositiveaitssaybifso

b

c

c

0.

0.

0.

<+

>+

=+

xw

xw

xw





Large margin

500 Chapter 14. Kernels

Figure 14.11 Illustration of the large margin principle. Left: a separating hyper-plane with large margin.
Right: a separating hyper-plane with small margin.

R1

R0

y = 0

y > 0

y < 0

w

x

r = f(x)
∥w∥

x⊥

− w0
∥w∥

(a)

y = 0

y = 1

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

(b)

Figure 14.12 (a) Illustration of the geometry of a linear decision boundary in 2d. A point x is classified
as belonging in decision region R1 if f(x) > 0 , otherwise it belongs in decision region R2; here f(x)
is known as a discriminant function. The decision boundary is the set of points such that f(x) = 0 .
w is a vector which is perpendicular to the decision boundary. The term w0 controls the distance of
the decision boundary from the origin. The signed distance of x from its orthogonal projection onto the
decision boundary, x⊥, is given by f(x)/||w||. Based on Figure 4.1 of (Bishop 2006a). (b) Illustration of
the soft margin principle. Points with circles around them are support vectors. We also indicate the value
of the corresponding slack variables. Based on Figure 7.3 of (Bishop 2006a).

x on plane => y=0 =>  𝑏 = −𝒘)𝒙

𝑟< =
𝒘)𝒙𝒏 + 𝑏

𝒘 =
𝑦<
𝒘

𝑦 = 𝒘)𝒙 + 𝑏

𝑡<𝑦< ≥ 1

max
𝒘

1
𝒘

min
<
𝑡<𝑦<

𝒙< = 𝒙v + 𝑟<
𝒘
𝒘



Maximum margin (Bishop 7.1)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w ∥,
is unchanged. We can use this freedom to set

tn
(
w Tφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
w Tφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w ∥−1, which is
equivalent to minimizing ∥w ∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w ∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w ∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w , b,a) =
1
2
∥w ∥2 −

N∑

n=1

an

{
tn(w Tφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN )T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w , b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

Lagrange function

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w ∥,
is unchanged. We can use this freedom to set

tn
(
w Tφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
w Tφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w ∥−1, which is
equivalent to minimizing ∥w ∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w ∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w ∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w , b,a) =
1
2
∥w ∥2 −

N∑

n=1

an

{
tn(w Tφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN )T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w , b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w ∥,
is unchanged. We can use this freedom to set

tn
(
w Tφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
w Tφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w ∥−1, which is
equivalent to minimizing ∥w ∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w ∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w ∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w , b,a) =
1
2
∥w ∥2 −

N∑

n=1

an

{
tn(w Tφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN )T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w , b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

Subject to

Differentiation

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w ∥,
is unchanged. We can use this freedom to set

tn
(
w Tφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
w Tφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w ∥−1, which is
equivalent to minimizing ∥w ∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w ∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w ∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w , b,a) =
1
2
∥w ∥2 −

N∑

n=1

an

{
tn(w Tφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN )T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w , b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

7.1. Maximum Margin Classifiers 329

Eliminating w and b from L(w , b,a) using these conditions then gives the dual
representation of the maximum margin problem in which we maximize

L̃(a) =
N∑

n=1

an − 1
2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (7.10)

with respect to a subject to the constraints

an ! 0, n = 1, . . . , N, (7.11)
N∑

n=1

antn = 0. (7.12)

Here the kernel function is defined by k(x,x′) = φ(x)Tφ(x′). Again, this takes the
form of a quadratic programming problem in which we optimize a quadratic function
of a subject to a set of inequality constraints. We shall discuss techniques for solving
such quadratic programming problems in Section 7.1.1.

The solution to a quadratic programming problem in M variables in general has
computational complexity that is O(M3). In going to the dual formulation we have
turned the original optimization problem, which involved minimizing (7.6) over M
variables, into the dual problem (7.10), which has N variables. For a fixed set of
basis functions whose number M is smaller than the number N of data points, the
move to the dual problem appears disadvantageous. However, it allows the model to
be reformulated using kernels, and so the maximum margin classifier can be applied
efficiently to feature spaces whose dimensionality exceeds the number of data points,
including infinite feature spaces. The kernel formulation also makes clear the role
of the constraint that the kernel function k(x,x′) be positive definite, because this
ensures that the Lagrangian function L̃(a) is bounded below, giving rise to a well-
defined optimization problem.

In order to classify new data points using the trained model, we evaluate the sign
of y(x) defined by (7.1). This can be expressed in terms of the parameters {an} and
the kernel function by substituting for w using (7.8) to give

y(x) =
N∑

n=1

antnk(x,xn) + b. (7.13)

Joseph-Louis Lagrange
1736–1813

Although widely considered to be
a French mathematician, Lagrange
was born in Turin in Italy. By the age
of nineteen, he had already made
important contributions mathemat-
ics and had been appointed as Pro-

fessor at the Royal Artillery School in Turin. For many

years, Euler worked hard to persuade Lagrange to
move to Berlin, which he eventually did in 1766 where
he succeeded Euler as Director of Mathematics at
the Berlin Academy. Later he moved to Paris, nar-
rowly escaping with his life during the French revo-
lution thanks to the personal intervention of Lavoisier
(the French chemist who discovered oxygen) who him-
self was later executed at the guillotine. Lagrange
made key contributions to the calculus of variations
and the foundations of dynamics.

Dual representation

This can be solved with quadratic programming



Maximum margin (Bishop 7.1)
• KKT conditions

• Solving for an

• Prediction

330 7. SPARSE KERNEL MACHINES

In Appendix E, we show that a constrained optimization of this form satisfies the
Karush-Kuhn-Tucker (KKT) conditions, which in this case require that the following
three properties hold

an ! 0 (7.14)
tny(xn) − 1 ! 0 (7.15)

an {tny(xn) − 1} = 0. (7.16)

Thus for every data point, either an = 0or tny(xn) = 1. Any data point for
which an = 0will not appear in the sum in (7.13) and hence plays no role in making
predictions for new data points. The remaining data points are called support vectors,
and because they satisfy tny(xn) = 1, they correspond to points that lie on the
maximum margin hyperplanes in feature space, as illustrated in Figure 7.1. This
property is central to the practical applicability of support vector machines. Once
the model is trained, a significant proportion of the data points can be discarded and
only the support vectors retained.

Having solved the quadratic programming problem and found a value for a, we
can then determine the value of the threshold parameter b by noting that any support
vector xn satisfies tny(xn) = 1. Using (7.13) this gives

tn

(
∑

m∈S

amtmk(xn,xm) + b

)
= 1 (7.17)

where S denotes the set of indices of the support vectors. Although we can solve
this equation for b using an arbitrarily chosen support vector xn, a numerically more
stable solution is obtained by first multiplying through by tn, making use of t2n = 1,
and then averaging these equations over all support vectors and solving for b to give

b =
1

NS

∑

n∈S

(
tn −

∑

m∈S

amtmk(xn,xm)

)
(7.18)

where NS is the total number of support vectors.
For later comparison with alternative models, we can express the maximum-

margin classifier in terms of the minimization of an error function, with a simple
quadratic regularizer, in the form

N∑

n=1

E∞(y(xn)tn − 1) + λ∥w ∥2 (7.19)

where E∞(z) is a function that is zero if z ! 0and ∞ otherwise and ensures that
the constraints (7.5) are satisfied. Note that as long as the regularization parameter
satisfies λ > 0, its precise value plays no role.

Figure 7.2 shows an example of the classification resulting from training a sup-
port vector machine on a simple synthetic data set using a Gaussian kernel of the

330 7. SPARSE KERNEL MACHINES

In Appendix E, we show that a constrained optimization of this form satisfies the
Karush-Kuhn-Tucker (KKT) conditions, which in this case require that the following
three properties hold

an ! 0 (7.14)
tny(xn) − 1 ! 0 (7.15)

an {tny(xn) − 1} = 0. (7.16)

Thus for every data point, either an = 0or tny(xn) = 1. Any data point for
which an = 0will not appear in the sum in (7.13) and hence plays no role in making
predictions for new data points. The remaining data points are called support vectors,
and because they satisfy tny(xn) = 1, they correspond to points that lie on the
maximum margin hyperplanes in feature space, as illustrated in Figure 7.1. This
property is central to the practical applicability of support vector machines. Once
the model is trained, a significant proportion of the data points can be discarded and
only the support vectors retained.

Having solved the quadratic programming problem and found a value for a, we
can then determine the value of the threshold parameter b by noting that any support
vector xn satisfies tny(xn) = 1. Using (7.13) this gives

tn

(
∑

m∈S

amtmk(xn,xm) + b

)
= 1 (7.17)

where S denotes the set of indices of the support vectors. Although we can solve
this equation for b using an arbitrarily chosen support vector xn, a numerically more
stable solution is obtained by first multiplying through by tn, making use of t2n = 1,
and then averaging these equations over all support vectors and solving for b to give

b =
1

NS

∑

n∈S

(
tn −

∑

m∈S

amtmk(xn,xm)

)
(7.18)

where NS is the total number of support vectors.
For later comparison with alternative models, we can express the maximum-

margin classifier in terms of the minimization of an error function, with a simple
quadratic regularizer, in the form

N∑

n=1

E∞(y(xn)tn − 1) + λ∥w ∥2 (7.19)

where E∞(z) is a function that is zero if z ! 0and ∞ otherwise and ensures that
the constraints (7.5) are satisfied. Note that as long as the regularization parameter
satisfies λ > 0, its precise value plays no role.

Figure 7.2 shows an example of the classification resulting from training a sup-
port vector machine on a simple synthetic data set using a Gaussian kernel of the

328 7. SPARSE KERNEL MACHINES

does not depend on n. Direct solution of this optimization problem would be very
complex, and so we shall convert it into an equivalent problem that is much easier
to solve. To do this we note that if we make the rescaling w → κw and b → κb,
then the distance from any point xn to the decision surface, given by tny(xn)/∥w ∥,
is unchanged. We can use this freedom to set

tn
(
w Tφ(xn) + b

)
= 1 (7.4)

for the point that is closest to the surface. In this case, all data points will satisfy the
constraints

tn
(
w Tφ(xn) + b

)
! 1, n = 1, . . . , N. (7.5)

This is known as the canonical representation of the decision hyperplane. In the
case of data points for which the equality holds, the constraints are said to be active,
whereas for the remainder they are said to be inactive. By definition, there will
always be at least one active constraint, because there will always be a closest point,
and once the margin has been maximized there will be at least two active constraints.
The optimization problem then simply requires that we maximize ∥w ∥−1, which is
equivalent to minimizing ∥w ∥2, and so we have to solve the optimization problem

arg min
w,b

1
2
∥w ∥2 (7.6)

subject to the constraints given by (7.5). The factor of 1/2in (7.6) is included for
later convenience. This is an example of a quadratic programming problem in which
we are trying to minimize a quadratic function subject to a set of linear inequality
constraints. It appears that the bias parameter b has disappeared from the optimiza-
tion. However, it is determined implicitly via the constraints, because these require
that changes to ∥w ∥ be compensated by changes to b. We shall see how this works
shortly.

In order to solve this constrained optimization problem, we introduce Lagrange
multipliers an ! 0, with one multiplier an for each of the constraints in (7.5), givingAppendix E
the Lagrangian function

L(w , b,a) =
1
2
∥w ∥2 −

N∑

n=1

an

{
tn(w Tφ(xn) + b) − 1

}
(7.7)

where a = (a1, . . . , aN )T. Note the minus sign in front of the Lagrange multiplier
term, because we are minimizing with respect to w and b, and maximizing with
respect to a. Setting the derivatives of L(w , b,a) with respect to w and b equal to
zero, we obtain the following two conditions

w =
N∑

n=1

antnφ(xn) (7.8)

0 =
N∑

n=1

antn. (7.9)

7.1. Maximum Margin Classifiers 329

Eliminating w and b from L(w , b,a) using these conditions then gives the dual
representation of the maximum margin problem in which we maximize

L̃(a) =
N∑

n=1

an − 1
2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (7.10)

with respect to a subject to the constraints

an ! 0, n = 1, . . . , N, (7.11)
N∑

n=1

antn = 0. (7.12)

Here the kernel function is defined by k(x,x′) = φ(x)Tφ(x′). Again, this takes the
form of a quadratic programming problem in which we optimize a quadratic function
of a subject to a set of inequality constraints. We shall discuss techniques for solving
such quadratic programming problems in Section 7.1.1.

The solution to a quadratic programming problem in M variables in general has
computational complexity that is O(M3). In going to the dual formulation we have
turned the original optimization problem, which involved minimizing (7.6) over M
variables, into the dual problem (7.10), which has N variables. For a fixed set of
basis functions whose number M is smaller than the number N of data points, the
move to the dual problem appears disadvantageous. However, it allows the model to
be reformulated using kernels, and so the maximum margin classifier can be applied
efficiently to feature spaces whose dimensionality exceeds the number of data points,
including infinite feature spaces. The kernel formulation also makes clear the role
of the constraint that the kernel function k(x,x′) be positive definite, because this
ensures that the Lagrangian function L̃(a) is bounded below, giving rise to a well-
defined optimization problem.

In order to classify new data points using the trained model, we evaluate the sign
of y(x) defined by (7.1). This can be expressed in terms of the parameters {an} and
the kernel function by substituting for w using (7.8) to give

y(x) =
N∑

n=1

antnk(x,xn) + b. (7.13)

Joseph-Louis Lagrange
1736–1813

Although widely considered to be
a French mathematician, Lagrange
was born in Turin in Italy. By the age
of nineteen, he had already made
important contributions mathemat-
ics and had been appointed as Pro-

fessor at the Royal Artillery School in Turin. For many

years, Euler worked hard to persuade Lagrange to
move to Berlin, which he eventually did in 1766 where
he succeeded Euler as Director of Mathematics at
the Berlin Academy. Later he moved to Paris, nar-
rowly escaping with his life during the French revo-
lution thanks to the personal intervention of Lavoisier
(the French chemist who discovered oxygen) who him-
self was later executed at the guillotine. Lagrange
made key contributions to the calculus of variations
and the foundations of dynamics.



If there is no separating plane…
• Use a bigger set of features.

– Makes the computation slow? “Kernel” trick 
makes the computation fast with many features.

• Extend definition of maximum margin to 
allow non-separating planes.
– Use “slack” variables

500 Chapter 14. Kernels

Figure 14.11 Illustration of the large margin principle. Left: a separating hyper-plane with large margin.
Right: a separating hyper-plane with small margin.

R1

R0

y = 0

y > 0

y < 0

w

x

r = f(x)
∥w∥

x⊥

− w0
∥w∥

(a)

y = 0

y = 1

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

(b)

Figure 14.12 (a) Illustration of the geometry of a linear decision boundary in 2d. A point x is classified
as belonging in decision region R1 if f(x) > 0 , otherwise it belongs in decision region R2; here f(x)
is known as a discriminant function. The decision boundary is the set of points such that f(x) = 0 .
w is a vector which is perpendicular to the decision boundary. The term w0 controls the distance of
the decision boundary from the origin. The signed distance of x from its orthogonal projection onto the
decision boundary, x⊥, is given by f(x)/||w||. Based on Figure 4.1 of (Bishop 2006a). (b) Illustration of
the soft margin principle. Points with circles around them are support vectors. We also indicate the value
of the corresponding slack variables. Based on Figure 7.3 of (Bishop 2006a).

𝜉 = 𝑡< − 𝑦 𝒙<

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0< ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w ∥2 (7.21)

where the parameter C > 0controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w , b,a) =
1
2
∥w ∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

332 7. SPARSE KERNEL MACHINES

Figure 7.3 Illustration of the slack variables ξn ! 0.
Data points with circles around them are
support vectors.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

with ξn > 1 will be misclassified. The exact classification constraints (7.5) are then
replaced with

tny(xn) ! 1 − ξn, n = 1, . . . , N (7.20)

in which the slack variables are constrained to satisfy ξn ! 0. Data points for which
ξn = 0are correctly classified and are either on the margin or on the correct side
of the margin. Points for which 0< ξn " 1 lie inside the margin, but on the cor-
rect side of the decision boundary, and those data points for which ξn > 1 lie on
the wrong side of the decision boundary and are misclassified, as illustrated in Fig-
ure 7.3. This is sometimes described as relaxing the hard margin constraint to give a
soft margin and allows some of the training set data points to be misclassified. Note
that while slack variables allow for overlapping class distributions, this framework is
still sensitive to outliers because the penalty for misclassification increases linearly
with ξ.

Our goal is now to maximize the margin while softly penalizing points that lie
on the wrong side of the margin boundary. We therefore minimize

C
N∑

n=1

ξn +
1
2
∥w ∥2 (7.21)

where the parameter C > 0controls the trade-off between the slack variable penalty
and the margin. Because any point that is misclassified has ξn > 1, it follows that∑

n ξn is an upper bound on the number of misclassified points. The parameter C is
therefore analogous to (the inverse of) a regularization coefficient because it controls
the trade-off between minimizing training errors and controlling model complexity.
In the limit C → ∞, we will recover the earlier support vector machine for separable
data.

We now wish to minimize (7.21) subject to the constraints (7.20) together with
ξn ! 0. The corresponding Lagrangian is given by

L(w , b,a) =
1
2
∥w ∥2 +C

N∑

n=1

ξn−
N∑

n=1

an {tny(xn) − 1 + ξn}−
N∑

n=1

µnξn (7.22)

Objective function



SVM classification summarized--- Only kernels
• Minimize with respect to 𝒘,w0

𝐶 ∑<= 𝜁𝑛 +
9
:
𝒘 2 (Bishop 7.21)

• Solution found in dual domain with Lagrange multipliers
– 𝑎𝑛 , 𝑛 = 1⋯𝑁 and 

• This gives the support vectors S
~𝒘 = ∑<∈� 𝑎𝑛 𝑡𝑛𝝋(𝑥𝑛) (Bishop 7.8)

• Used for predictions

�𝑦 = w0 +𝒘�𝝋 𝑥 = w0 +�
<∈�

𝑎𝑛 𝑡𝑛𝝋 𝑥𝑛 T𝝋 𝑥

= w0 +�
<∈�

𝑎𝑛 𝑡𝑛𝑘 𝑥𝑛, 𝑥 (Bishop 7.13)



How to make a plane curved
• Fitting hyperplanes as separators is 

mathematically easy.
– The mathematics is linear.

• Replacing the raw input variables 
with a much larger set of features we 
get a nice property:
– A planar separator in high-D 

feature space is a curved 
separator in the low-D input 
space. A planar separator in a 20-D 

feature space projected back 
to the original 2-D space



SVMs are Perceptrons!
• SVM’s use each training case, x, to define a feature K(x, .) 

where K is user chosen. 
– So the user designs the features.

• SVM do “feature selection” by picking support vectors, and 
learn feature weighting from a big optimization problem.

• =>SVM is a clever way to train a standard perceptron.
– What a perceptron cannot do, SVM cannot do. 

• SVM DOES:
– Margin maximization
– Kernel trick
– Sparse



SVM  Code for classification (libsvm)
Part of ocean acoustic data set http://noiselab.ucsd.edu/ECE285/SIO209Final.zip

case 'Classify'
% train

model = svmtrain(Y, X,['-c 7.46 -g ' gamma ' -q ' kernel]);
% predict

[predict_label,~, ~] = svmpredict(rand([length(Y),1]), X, model,'-q'); 

>> modelmodel =   struct with fields:   
Parameters: [5×1 double]     
nr_class: 2       
totalSV: 36           
rho: 8.3220         
Label: [2×1 double]    
sv_indices: [36×1 double]         
ProbA: []         ProbB: []           
nSV: [2×1 double]       
sv_coef: [36×1 double]           
SVs: [36×2 double]



libsvm
Basic concepts

Finding the Decision Function

w: maybe infinite variables
The dual problem

min
α

1

2
αTQα − e

Tα

subject to 0 ≤ αi ≤ C , i = 1, . . . , l

y
Tα = 0,

where Qij = yiyjφ(xi)Tφ(xj) and e = [1, . . . , 1]T

At optimum

w =
∑l

i=1 αiyiφ(xi)

A finite problem: #variables = #training data
Chih-Jen Lin (National Taiwan Univ.) MLSS 2006, Taipei 10 / 98

Corresponds to 
(Bishop 7.32)
With y=t

7.1. Maximum Margin Classifiers 333

where {an ! 0} and {µn ! 0} are Lagrange multipliers. The corresponding set of
KKT conditions are given byAppendix E

an ! 0 (7.23)
tny(xn) − 1 + ξn ! 0 (7.24)

an (tny(xn) − 1 + ξn) = 0 (7.25)
µn ! 0 (7.26)
ξn ! 0 (7.27)

µnξn = 0 (7.28)

where n = 1, . . . , N .
We now optimize out w , b, and {ξn} making use of the definition (7.1) of y(x)

to give

∂L

∂w
= 0 ⇒ w =

N∑

n=1

antnφ(xn) (7.29)

∂L

∂b
= 0 ⇒

N∑

n=1

antn = 0 (7.30)

∂L

∂ξn
= 0 ⇒ an = C − µn. (7.31)

Using these results to eliminate w , b, and {ξn} from the Lagrangian, we obtain the
dual Lagrangian in the form

L̃(a) =
N∑

n=1

an − 1
2

N∑

n=1

N∑

m=1

anamtntmk(xn,xm) (7.32)

which is identical to the separable case, except that the constraints are somewhat
different. To see what these constraints are, we note that an ! 0is required because
these are Lagrange multipliers. Furthermore, (7.31) together with µn ! 0implies
an " C. We therefore have to minimize (7.32) with respect to the dual variables
{an} subject to

0" an " C (7.33)
N∑

n=1

antn = 0 (7.34)

for n = 1, . . . , N , where (7.33) are known as box constraints. This again represents
a quadratic programming problem. If we substitute (7.29) into (7.1), we see that
predictions for new data points are again made by using (7.13).

We can now interpret the resulting solution. As before, a subset of the data
points may have an = 0, in which case they do not contribute to the predictive



-2 0 2
-2

-1

0

1

2
x2

Linear Kernel

-2 0 2
-2

-1

0

1

2
Sigmoid Function Kernel

-2 0 2
x1

-2

-1

0

1

2

x2

Polynomial Kernel

-2 0 2
x1

-2

-1

0

1

2
Radial Basis Function Kernel



Gaussian Kernels



Basic concepts

Can be inner product in infinite dimensional space
Assume x ∈ R1 and γ > 0.

e−γ∥xi−xj∥2

= e−γ(xi−xj)2 = e−γx2
i +2γxixj−γx2

j

=e−γx2
i −γx2

j
(

1 +
2γxixj

1!
+

(2γxixj)2

2!
+

(2γxixj)3

3!
+ · · ·

)

=e−γx2
i −γx2

j
(

1 · 1+

√

2γ

1!
xi ·
√

2γ

1!
xj +

√

(2γ)2

2!
x2
i ·
√

(2γ)2

2!
x2
j

+

√

(2γ)3

3!
x3
i ·
√

(2γ)3

3!
x3
j + · · ·

)

= φ(xi)
Tφ(xj),

where

φ(x) = e−γx2

[

1,

√

2γ

1!
x ,

√

(2γ)2

2!
x2,

√

(2γ)3

3!
x3, · · ·

]T

.

Chih-Jen Lin (National Taiwan Univ.) MLSS 2006, Taipei 12 / 98



Tensorflow Playground
1. Fitting the spiral with default settings fail due to the small training set. The 

NN will fit to the training data which is not representative of the true pattern 
and the network will generalize poorly. Increasing the ratio of training to test 
data to 90% the NN finds the correct shape (1st image). 



Tensorflow Playground

You can fix the generalization problem by adding noise to the data. This allows 
the small training set to generalize better as it reduce overfitting of the training 
data (2nd image).



Tensorflow Playground

Adding an additional hidden layer the NN fails to classify the shape properly. 
Overfitting once again becomes a problem even after you've added noise. This 
can be fixed by adding appropriate L2 regularization (third image).



•NOT USED


