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To provide constraints on the inversion of ocean sound speed profiles (SSPs), SSPs are often mod-
eled using empirical orthogonal functions (EOFs). However, this regularization, which uses the lead-
ing order EOFs with a minimum-energy constraint on the coefficients, often yields low resolution
SSP estimates. In this paper, it is shown that dictionary learning, a form of unsupervised machine
learning, can improve SSP resolution by generating a dictionary of shape functions for sparse proc-
essing (e.g., compressive sensing) that optimally compress SSPs; both minimizing the reconstruction
error and the number of coefficients. These learned dictionaries (LDs) are not constrained to be
orthogonal and thus, fit the given signals such that each signal example is approximated using few
LD entries. Here, LDs describing SSP observations from the HF-97 experiment and the South China
Sea are generated using the K-SVD algorithm. These LDs better explain SSP variability and require
fewer coefficients than EOFs, describing much of the variability with one coefficient. Thus, LDs
improve the resolution of SSP estimates with negligible computational burden.
VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4977926]
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I. INTRODUCTION

Inversion for ocean sound speed profiles (SSPs) using
acoustic data is a non-linear and highly underdetermined
problem.1 To ensure physically realistic solutions while
moderating the size of the parameter search, SSP inversion
has often been regularized by modeling SSP as the sum of
leading order empirical orthogonal functions (EOFs).2–7

However, regularization using EOFs often yields low resolu-
tion estimates of ocean SSPs, which can be highly variable
with fine scale fluctuations. In this paper, it is shown that the
resolution of SSP estimates are improved using dictionary
learning,8–13 a form of unsupervised machine learning, to
generate a dictionary of regularizing shape functions from
SSP data for parsimonious representation of SSPs.

Many signals, including natural images,14,15 audio,16

and seismic profiles17 are well approximated using sparse
(few) coefficients, provided a dictionary of shape functions
exist under which their representation is sparse. Given a
K-dimensional signal, a dictionary is defined as a set of N,
‘2-normalized vectors which describe the signal using few
coefficients. The sparse processor is then an ‘2-norm cost
function with an ‘0-norm penalty on the number of non-
zero coefficients. Signal sparsity is exploited for a number
of purposes including signal compression and denoising.9

Applications of compressive sensing,18 one approximation
to the ‘0-norm sparse processor, have in ocean acoustics
shown improvements in beamforming,19–22 geoacoustic
inversion,23 and estimation of ocean SSPs.24

Dictionaries that approximate a given class of signals
using few coefficients can be designed using dictionary learn-
ing.9 Dictionaries can be generated ad hoc from common

shape functions such as wavelets or curvelets, however exten-
sive analysis is required to find an optimal set of prescribed
shape functions. Dictionary learning proposes a more direct
approach: given enough signal examples for a given signal
class, learn a dictionary of shape functions that approximate
signals within the class using few coefficients. These learned
dictionaries (LDs) have improved compression and denoising
results for image and video data over ad hoc dictionaries.9,11

Dictionary learning has been applied to denoising problems
in seismics25 and ocean acoustics,26,27 as well as to structural
acoustic health monitoring.28

The K-SVD algorithm,12 a popular dictionary learning
method, finds a dictionary of vectors that optimally partition
the data from the training set such that the few dictionary vec-
tors describe each data example. Relative to EOFs which are
derived using principal component analysis (PCA),29,30 these
LDs are not constrained to be orthogonal. Thus, LD’s provide
potentially better signal compression because the vectors are
on average, nearer to the signal examples (see Fig. 1).13

In this paper, LDs describing one dimensional (1D)
ocean SSP data from the HF-97 experiment,31,32 and from
the South China Sea (SCS)33 are generated using the K-SVD
algorithm and the reconstruction performance is evaluated
against EOF methods. In Sec. II, EOFs, sparse reconstruction
methods, and compression are introduced. In Sec. III, the
K-SVD dictionary learning algorithm is explained. In Sec.
IV, SSP reconstruction results are given for LDs and EOFs. It
is shown that each shape function within the resulting LDs
explain more SSP variability than the leading order EOFs
trained on the same data. Further, it is demonstrated that
SSPs can be reconstructed up to acceptable error using as few
as one non-zero coefficient. This compression can improve
the resolution of ocean SSP estimates with negligible compu-
tational burden.a)Electronic mail: mbianco@ucsd.edu
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Notation: In the following, vectors are represented by
bold lower-case letters and matrices by bold uppercase

letters. The ‘p-norm of the vector x 2 RN is defined

as kxkp ¼ ð
PN

n¼1 jxnjpÞ1=p. Using similar notation, the

‘0-norm is defined as kxk0 ¼
PN

n¼1 jxnj0 ¼
PN

n¼1 1jxnj>0. The

‘p-norm of the matrix A 2 RK$M is defined as kAkp

¼ ð
PM

m¼1

PK
k¼1 jam

k j
pÞ1=p. The Frobenius norm (‘2-norm) of

the matrix A is written as kAkF . The hat symbol ^ appearing

above vectors and matrices indicates approximations to the
true signals or coefficients.

II. EOFS AND COMPRESSION

A. EOFs and PCA

Empirical orthogonal function (EOF) analysis seeks to
reduce the dimension of continuously sampled space-time
fields by finding spatial patterns which explain much of the
variance of the process. These spatial patterns or EOFs cor-
respond to the principal components, from principal compo-
nent analysis (PCA), of the temporally varying field.29 Here,
the field is a collection of zero-mean ocean SSP anomaly
vectors Y ¼ ½y1;…; yM& 2 RK$M, which are sampled over K
discrete points in depth and M instants in time. The mean

value of the M original observations is subtracted to obtain
Y. The variance of the SSP anomaly at each depth sample k,
r2

k , is defined as

r2
k ¼

1

M

XM

m¼1

yk
m

! "2
; (1)

where ½yk
1;…; yk

M& are the SSP anomaly values at depth sam-
ple k for M time samples.

The singular value decomposition (SVD)34 finds the
EOFs as the eigenvectors of YYT by

YYT ¼ PK2PT; (2)

where P ¼ ½p1;…; pL& 2 RK$L are EOFs (eigenvectors) and
K2 ¼ diagð½k2

1;…; k2
L&Þ 2 RL$L are the total variances of the

data along the principal directions defined by the EOFs pl with

XK

k¼1

r2
k ¼

1

M
tr K2ð Þ: (3)

The EOFs pl with k2
1 ' ( ( ( ' k2

L are spatial features of the
SSPs which explain the greatest variance of Y. If the number
of training vectors M'K, L¼K and [p1,…,pL] form a basis
in RK .

B. SSP reconstruction using EOFs

Since the leading-order EOFs often explain much of the
variance in Y, the representation of anomalies ym can be
compressed by retaining only the leading order EOFs P< L,

ŷm ¼ QPx̂P;m; (4)

where QP 2 RK$P is here the dictionary containing the P
leading-order EOFs and x̂P;m 2 RP is the coefficient vector.
Since the entries in QP are orthonormal, the coefficients are
solved by

x̂P;m ¼ QT
Pym: (5)

For ocean SSPs, usually no more than P¼ 5 EOF coeffi-
cients have been used to reconstruct ocean SSPs.4,7

C. Sparse reconstruction

A signal ym, whose model is sparse in the dictionary
QN ¼ ½q1;…; qN& 2 RK$N (N-entry sparsifying dictionary
for Y), is reconstructed to acceptable error using T)K vec-
tors qn.9 The problem of estimating few coefficients in xm

for reconstruction of ym can be phrased using the canonical
sparse processor

x̂m ¼ arg min
xm2RN

kym *Qxmk2 subject to kxmk0 + T: (6)

The ‘0-norm penalizes the number of non-zero coefficients
in the solution to a typical ‘2-norm cost function. The ‘0-
norm constraint is non-convex and imposes combinatorial
search for the exact solution to Eq. (6). Since exhaustive

FIG. 1. (Color online) (a) EOF vectors [u1, u2] and (b) overcomplete LD
vectors [q1,…,qN] for arbitrary 2D Gaussian distribution relative to arbitrary
2D data observation ym.
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search generally requires a prohibitive number of computa-
tions, approximate solution methods such as matching pursuit
(MP) and basis pursuit (BP) are preferred.9 In this paper,
orthogonal matching pursuit (OMP)35 is used as the sparse
solver. For small T, OMP achieves similar reconstruction accu-
racy relative to BP methods, but with much greater speed.9

It has been shown that non-orthogonal, overcomplete
dictionaries QN with N>K (complete, N¼K) can be
designed to minimize both error and number of non-zero
coefficients T, and thus provide greater compression over
orthogonal dictionaries.9,13,16 While overcomplete dictionar-
ies can be designed by concatenating ortho-bases of wavelets
or Fourier shape functions, better compression is often
achieved by adapting the dictionary to the data under analysis
using dictionary learning techniques.12,13 Since Eq. (6) pro-
motes sparse solutions, it provides criteria for the design of
dictionary Q for adequate reconstruction of ym with a mini-
mum number of non-zero coefficients. Rewriting Eq. (7) with

min
Q

min
X
kY*QXk2

F subject to 8m; kxmk0 + T
n o

; (7)

where X¼ [x1,…,xM] is the matrix of coefficient vectors cor-
responding to examples Y¼ [y1,…,yM], reconstruction error
is minimized relative to the dictionary Q as well as relative
to the sparse coefficients.

In this paper, the K-SVD algorithm, a clustering based
dictionary learning method, is used to solve Eq. (7). The K-
SVD is an adaptation of the K-means algorithm for vector
quantization (VQ) codebook design (a.k.a. the generalized
Lloyd algorithm).16 The LD vectors qn from this technique
partition the feature space of the data rather than RK , increas-
ing the likelihood that ym is as a linear combination of few
vectors qn in the solution to Eq. (6) (see Fig. 1). By increasing
the number of vectors N'K for overcomplete dictionaries,
and thus the number of partitions in feature space, the sparsity
of the solutions can be increased further.13

D. Vector quantization

VQ (Ref. 16) compresses a class of K-dimensional signals
Y ¼ ½y1;…; yM& 2 RK$M by optimally mapping ym to a set of
code vectors C ¼ ½c1;…; cN& 2 RK$N for N<M, called a
codebook. The signals ym are then quantized or replaced by
the best code vector choice from C.16 The mapping that mini-
mizes mean squared error (MSE) in reconstruction

MSE Y; Ŷ
! "

¼ 1

N
kY* Ŷk2

F ; (8)

where Ŷ ¼ ½ŷ1;…; ŷM& is the vector quantized Y, is the
assignment of each vector ym to the code vectors cn based on
minimum ‘2-distance (nearest neighbor metric). Thus the ‘2-
distances from the code vectors cn define a set of partitions
ðR1;…;RNÞ 2 RK (called Voronoi cells)

Rn ¼ fij8l 6¼n; kyi * cnk2 < kyi * clk2g; (9)

where if yi falls within the cell Rn, ŷi is cn. These cells are
shown in Fig. 2(a). This is stated formally by defining a
selector function Sn as

SnðymÞ ¼
1 if ym 2 Rn

0 otherwise:

(

(10)

The vector quantization step is then

ŷm ¼
XN

n¼1

SnðymÞcn: (11)

The operations in Eqs. (9) and (10) are analogous to
solving the sparse minimization problem:

x̂m ¼ arg min
xm2RN

kym * Cxmk2 subject to kxmk0 ¼ 1; (12)

where the non-zero coefficients xn
m ¼ 1. In this problem,

selection of the coefficient in xm corresponds to mapping the
observation vector ym to cn, similar to the selector function
Sn. The vector quantized ym is thus written, alternately from
Eq. (11), as

ŷm ¼ Cx̂m: (13)

E. K-means

Given the MSE metric [Eq. (8)], VQ codebook vectors
[c1,…,cN] which correspond to the centroids of the data

FIG. 2. (Color online) Partitioning of Gaussian random distribution
(r1¼ 0.75, r2¼ 0.5) using (a) five codebook vectors (K-means, VQ) and
with (b) five dictionary vectors from dictionary learning (K-SVD, T¼ 1).
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Y within (R1,…, RN) minimize the reconstruction error. The
assignment of cn as the centroid of yj 2 Rn is

cn ¼
1

jRnj
X

j2Rn

yj; (14)

where jRnj is the number of vectors yj 2 Rn.
The K-means algorithm shown in Table I, iteratively

updates C using the centroid condition Eq. (14) and the ‘2

nearest-neighbor criteria Eq. (9) to optimize the code vectors
for VQ. The algorithm requires an initial codebook C0. For
example, C0 can be N random vectors in RK or selected
observations from the training set Y. The K-means algorithm
is guaranteed to improve or leave unchanged the MSE dis-
tortion after each iteration and converges to a local
minimum.12,16

III. DICTIONARY LEARNING

Two popular algorithms for dictionary learning, the
method of optimal directions (MOD)13 and the K-SVD,12

are inspired by the iterative K-means codebook updates for
VQ (Table I). The N columns of the dictionary Q, like the
entries in codebook C, correspond to partitions in RK .
However, they are constrained to have unit ‘2-norm and thus
separate the magnitude (coefficients xn) from the shapes
(dictionary entries qn) for the sparse processing objective
Eq. (6). When T¼ 1, the ‘2-norm in Eq. (6) is minimized by
the dictionary entry qn that has the greatest inner product
with example ym.9 Thus for T¼ 1, [q1,…,qN] define radial
partitions of RK . These partitions are shown in Fig. 2(b) for
a hypothetical 2D (K¼ 2) random data set. This corresponds
to a special case of VQ, called gain-shape VQ.16 However,
for sparse processing, only the shapes of the signals are
quantized. The gains, which are the coefficients xm, are
solved. For T> 1, the sparse solution is analogous to VQ,
assigning examples ym to dictionary entries in Q for up to T
non-zero coefficients in xm.

Given these relationships between sparse processing
with dictionaries and VQ, the MOD13 and K-SVD12 algo-
rithms attempt to generalize the K-means algorithm to

optimization of dictionaries for sparse processing for T' 1.
They are two-step algorithms which reflect the two update
steps in the K-means codebook optimization: (1) partition
data Y into regions (R1,…,RN) corresponding to cn and (2)
update cn to centroid of examples ym 2 RN. The K-means
algorithm is generalized to the dictionary learning problem
Eq. (7) as two steps:

(1) Sparse coding: Given dictionary Q, solve for up to T
non-zero coefficients in xm corresponding to examples
ym for m¼ [1,…,M].

(2) Dictionary update: Given coefficients X, solve for Q
which minimizes reconstruction error for Y.

The sparse coding step (1), which is the same for both
MOD and K-SVD, is accomplished using any sparse solution
method, including matching pursuit and basis pursuit. The
algorithms differ in the dictionary update step.

A. The K-SVD algorithm

The K-SVD algorithm is here chosen for its computa-
tional efficiency, speed, and convergence to local minima (at
least for T¼ 1). The K-SVD algorithm sequentially opti-
mizes the dictionary entries qn and coefficients xm for each
update step using the SVD, and thus also avoids the matrix
inverse. For T¼ 1, the sequential updates of the K-SVD pro-
vide optimal dictionary updates for gain-shape VQ.12,16

Optimal updates to the gain-shape dictionary will, like
K-means updates, either improve or leave unchanged the
MSE and convergence to a local minimum is guaranteed.
For T> 1, convergence of the K-SVD updates to a local min-
imum depends on the accuracy of the sparse-solver used in
the sparse coding stage.12

In the K-SVD algorithm, each dictionary update step i
sequentially improves both the entries qn 2 Qi and the coef-
ficients in xm 2 Xi, without change in support. Expressing
the coefficients as row vectors xn

T 2 RN and xj
T 2 RN , which

relate all examples Y to qn and qj, respectively, the ‘2-pen-
alty from Eq. (7) is rewritten as

kY*QXk2
F ¼

####Y*
XN

n¼1

qnxn
T

####
2

F

¼ kEj * qjx
j
Tk

2
F ; (15)

where

Ej ¼ Y*
X

n 6¼j

qnxn
T

$ %
: (16)

Thus, in Eq. (15) the ‘2-penalty is separated into an error
term Ej ¼ ½ej;1;…; ej;M& 2 RK$M, which is the error for all
examples Y if qj is excluded from their reconstruction, and
the product of the excluded entry qj and coefficients
xj

T 2 RN .
An update to the dictionary entry qj and coefficients xj

T

which minimizes Eq. (15) is found by taking the SVD of
Ej, which provides the best rank-1 approximation of Ej.
However, many of the entries in xj

T are zero (corresponding
to examples which do not use qj). To properly update qj and

TABLE I. The K-means algorithm (Ref. 16).

Given: training vectors Y ¼ ½y1;…; yM& 2 RK$M

Initialize: index i¼ 0, codebook C0 ¼ ½c0
1;…; c0

N & 2 RK$N ,

MSE0 solving Eq. (8)–(11)

I: Update codebook

1. Partition Y into N regions (R1,…, RN) by

Rn ¼ fij8l 6¼n; kyi * ci
nk2 < kyi * ci

lk2g [Eq. (9)]

2. Make code vectors centroids of yj in partitions Rn

ciþ1
n ¼ 1

jRi
nj
X

j2Ri
n

yj

II. Check error

1. Calculate MSEiþ1 from updated codebook Ciþ1

2. If jMSEiþ1 *MSEij < g
i¼ iþ 1, return to I

else

end

1752 J. Acoust. Soc. Am. 141 (3), March 2017 Michael Bianco and Peter Gerstoft



xj
T with SVD, Eq. (15) must be restricted to examples ym

which use qj,

kER
j * qjx

j
Rk

2
F ; (17)

where ER
j and xj

R are entries in Ej and xj
T , respectively, corre-

sponding to examples ym which use qj, and are defined as

ER
j ¼ fej;lj8l; xj

l 6¼ 0g; xj
R ¼ fx

j
lj 8l; xj

l 6¼ 0g: (18)

Thus for each K-SVD iteration, the dictionary entries and
coefficients are sequentially updated as the SVD of
ER

j ¼ USVT. The dictionary entry qi
j is updated with the first

column in U and the coefficient vector xj
R is updated as the

product of the first singular value S(1, 1) with the first col-
umn of V. The K-SVD algorithm is given in Table II.

The dictionary Q is initialized using N randomly
selected, ‘2-normalized examples from Y.9,12 During the
iterations, one or more dictionary entries may become
unused. If this occurs, the unused entries are replaced using
the most poorly represented examples ym (‘2-normlized),
determined by reconstruction error.

IV. EXPERIMENTAL RESULTS

To demonstrate the usefulness of the dictionary learning
approach, we here analyze two data sets: (1) thermistor data
from the HF-97 acoustics experiment,31,32 conducted off the
coast of Point Loma, CA and (2) conductivity, temperature,
and depth (CTD) data collected across the Luzon Strait near
the South China Sea (SCS).33 Training data Y were derived
from the data sets by converting raw thermistor and CTD data
to SSPs and subtracting the mean. The HF-97 thermistor data
were recorded every 15 s, over a 48 h period, from 14 to 70 m
depth, with 4 m spacing (15 points). The full 11 488 profile

data set was down-sampled to M¼ 1000 profiles for the train-
ing set, and SSPs were interpolated to K¼ 30 points using a
shape-preserving cubic spline. The SCS CTD data were
recorded at about 1 m resolution from 116 to 496 m depth (384
points). From the SCS data set, M¼ 755 profiles were used as
the training set, and the profiles were uniformly down-sampled
to K¼ 50 points. The SSP data sets are shown in Fig. 3. Both
data sets have small and large spatiotemporal variations.

EOFs were calculated from the SVD [Eq. (2)] and LDs
(learned dictionaries) were generated with the K-SVD algo-
rithm (Table II), using OMP for the sparse coding stage. The
number of non-zero coefficients solved with OMP for each
dictionary was held fixed at exactly T non-zero coefficients.
The initial dictionary Q0 was populated using randomly
selected examples from the training sets Y.

A. Learning SSP dictionaries from data

Here, LDs and EOFs were generated using the full SSP
data from HF-97 (M¼ 1000) and SCS (M¼ 755). The EOFs
and LDs from HF-97 are shown in Figs. 4 and 5 and from
the SCS in Fig. 6. The HF-97 LD, with N¼K and T¼ 1, is
compared to the EOFs (K¼ 30) in Fig. 4. Only the leading
order EOFs [Fig. 4(a)] are informative of ocean SSP vari-
ability whereas all shape functions in the LD [Fig. 4(b)] are
informative [Figs. 4(c)–4(d)]. This behavior is also evident

TABLE II. The K-SVD Algorithm (Ref. 12).

Given: Y 2 RK$M; Q0 2 RK$N ; T 2N, and i¼ 0

Repeat until convergence:

1. Sparse coding

for m¼ 1: M

solve Eq. (6) using any sparse solver

a: x̂m ¼ arg min
xm2RN

kym *Qixmk2 subject to kxmk0 + T

end

b: X ¼ ½x̂1;…; x̂M&
2. Dictionary update

for j¼ 1: N

a: compute reconstruction error Ej as

Ej ¼ Y*
X

n6¼j

qi
nxn

T

b: obtain ER
j ; xj

R corresponding to nonzero xj
T

c: apply SVD to ER
j

ER
j ¼ USVT

d: update qi
j : qi

j ¼ Uð:; 1Þ
e: update xj

R : xj
R ¼ Vð:; 1ÞSð1; 1Þ

end

f: Qiþ1¼Qi

i¼ iþ 1 FIG. 3. (Color online) Sound speed profile (SSP) data from (a) HF-97 and
(b) SCS experiments.
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for the SCS data set (Fig. 6). The EOFs (K¼ 50) calculated
from the full training set are shown in Fig. 6(a), and the LD
entries for N¼ 50 and T¼ 1 sparse coefficient are shown in
Fig. 6(b). The overcomplete LDs for the HF-97 data shown
in Fig. 5 and for the SCS data in Fig. 6(c).

As illustrated in Fig. 1, by relaxing the requirement of
orthogonality for the shape functions, the shape functions can
better fit the data and thereby achieve greater compression.
The Gram matrix G, which gives the coherence of matrix col-
umns, is defined for a matrix A with unit ‘2-norm columns as
G ¼ jATAj. The Gram matrix for the EOFs [Fig. 4(e)] shows
the shapes in the EOF dictionary are orthogonal (G¼ I, by
definition), whereas those of the LD [Fig. 4(f)] are not.

B. Reconstruction of SSP training data

In this section, EOFs and LDs are trained on the full
SSP data sets Y¼ [y1,…,yM]. Reconstruction performance

of the EOF and LDs are then evaluated on SSPs within the
training set, using a mean error metric.

The coefficients for the learned Q and initial Q0 dictio-
naries x̂m are solved from the sparse objective [Eq. (6)] using
OMP. The least squares (LS) solution for the T leading-order
coefficients xL 2 RT from the EOFs P were solved by Eq.
(5). The best combination of T EOF coefficients was solved
from the sparse objective [Eq. (6)] using OMP. Given the
coefficients X¼ [x1,…,xm] describing examples
Y¼ [y1,…,ym], the reconstructed examples Ŷ ¼ ½ŷ1;…; ŷm&
are given by Ŷ ¼ QX̂. The mean reconstruction error (ME)
for the training set is then

ME ¼ 1

KM
kY* Ŷk1: (19)

We here use the ‘1-norm to stress the robustness of the LD
reconstruction.

FIG. 4. (Color online) HF-97: (a) EOFs and (b) LD entries (N¼K and T¼ 1, sorted by variance r2
qn

). Fraction of (c) total SSP variance explained by EOFs
and (d) SSP variance explained for examples using LD entries. Coherence of (e) EOFs and (f) LD entries.
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To illustrate the optimality of LDs for SSP compression,
the K-SVD algorithm was run using EOFs as the initial dic-
tionary Q0 for T¼ 1 non-zero coefficient. The convergence
of ME for the K-SVD iterations is shown in Fig. 7(a). After

30 K-SVD iterations, the mean error of the M¼ 1000 profile
training set is decreased by nearly half. The convergence is
much faster for Q0 consisting of randomly selected examples
from Y.

For LDs, increasing the number of entries N or increasing
the number of sparse coefficients T will always reduce the
reconstruction error (N and T are decided with computational

FIG. 5. (Color online) HF-97: LD entries (a) N¼ 60 and T¼ 1, (b) N¼ 90
and T¼ 1, and (c) N¼ 90 and T¼ 5. Dictionary entries are sorted in
descending variance r2

qn
.

FIG. 6. (Color online) SCS: EOFs (a) and LD entries, (b) N¼K¼ 50 and
T¼ 1, and (c) N¼ 150 and T¼ 1. Dictionary entries are sorted in descending
variance r2

qn
.
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considerations). The effect of N and T on the mean recon-
struction error for the HF-97 data is shown in Fig. 7(b). The
errors are calculated for the range N¼K to N¼ 4K and the
dictionaries were optimized to use a fixed number non-zero
coefficients (T).

The reconstruction error using the EOF dictionary is
compared to results from LDs Q with N¼ 3K, using T non-
zero coefficients. In Figs. 8(a) and 8(c) results are shown for
the HF-97 (N¼ 90) and SCS (N¼ 150) data, respectively.
Coefficients describing each example ym, were solved (1)
from the LD Q, (2) from Q0, the dictionary consisting of N
randomly chosen examples from the training set (to illustrate
improvements in reconstruction error made in the K-SVD
iterations), (3) the leading order EOFs, and (4) the best com-
bination of EOFs. The mean SSP reconstruction error using
the LDs trained for each sparsity T is less than EOF recon-
struction, for either leading order coefficients or best coeffi-
cient combination, for all values of T shown. The best
combination of EOF coefficients, chosen approximately
using OMP, achieves less error than the LS solution to the
leading order EOFs, with added cost of search.

Just one LD entry achieves the same ME as more than 6
leading order EOF coefficients, or greater than 4 EOF coeffi-
cients chosen by search [Figs. 8(a) and 8(c)]. To illustrate
the representational power of the LD entries, both true and
reconstructed SSPs are shown in Fig. 9(a) for the HF-97 data
and in Fig. 9(b) for the SCS data. Nine true SSP examples
from each training set, for HF-97 (SCS) taken at 100 (80)
point intervals from m¼ 100*900 (80*720), are recon-
structed using one LD coefficient. It is shown for each case,
that nearly all of the SSP variability is captured using a sin-
gle LD coefficient.

C. Cross-validation of SSP reconstruction

The out of sample SSP reconstruction performance of
LDs and EOFs is tested using K-fold cross-validation.34 The
entire SSP data set Y of M profiles, for each experiment, is
divided into J subsets with equal numbers of profiles
Y¼ [Y1,…,YJ], where the fold Yj 2 RK$ðM=JÞ. For each of
the J folds: (1) Yj is the set of out of sample test cases, and
the training set Ytr is

FIG. 7. (Color online) HF-97: (a) Convergence of LD (N¼ 30, T¼ 1) mean
reconstruction error (ME), initialized using EOFs or N randomly selected
examples from Y. (b) ME versus non-zero coefficients T and number of dic-
tionary entries N.

FIG. 8. (Color online) Mean reconstruction error (ME) versus T using EOFs
(solved using LS and OMP) and LDs (N¼ 90 for HF-97 and N¼ 150 for
SCS) for (a) HF-97 and (c) SCS. Mean reconstruction error MECV for out-
of-sample data calculated with K-fold cross validation for J¼ 10 folds, (b)
HF-97 and (d) SCS.

FIG. 9. (Color online) True SSP reconstruction of nine example profiles
using one coefficient (T¼ 1) from LD for (a) HF-97 (N¼ 90) and (b) SCS
(N¼ 150).
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Ytr ¼ fYlj 8l 6¼jg; (20)

(2) the LD Qj and EOFs are derived using Ytr; and (3) coeffi-
cients estimating test samples Yj are solved for Qj with
sparse processor Eq. (6), and for EOFs by solving for leading
order terms and by solving with sparse processor. The out of
sample error from cross validation MECV for each method is
then

MECV ¼
1

KM

XJ

j¼1

kYj * Ŷjk1: (21)

The out of sample reconstruction error MECV increases
over the within-training-set estimates for both the learned
and EOF dictionaries, as shown in Figs. 8(b) and 8(d) for
J¼ 10 folds. The mean reconstruction error using the LDs,
as in the within-training-set estimates, is less than the EOF
dictionaries. For both the HF-97 (SCS) data, more than two
(2) EOF coefficients, choosing best combination by search,
or more than three (equal to 3) leading-order EOF coeffi-
cients solved with LS, are required to achieve the same out
of sample performance as one LD entry.

D. Solution space for SSP inversion

Acoustic inversion for ocean SSP is a non-linear problem.
One approach is coefficient search using genetic algorithms.1

Discretizing each coefficient into H values, the number of
candidate solutions for T fixed coefficients indices is

Sfixed ¼ HT : (22)

If the coefficient indices for the solution can vary, as per
dictionary learning with LD Q 2 RK$N , the number of can-
didate solutions Scomb is

Scomb ¼ HT N!

T! N * Tð Þ!
: (23)

Using a typical H¼ 100 point discretization of the coeffi-
cients, the number of possible solutions for fixed and combi-
natorial dictionary indices are plotted in Fig. 10. Assuming
an unknown SSP similar to the training set, the SSP may be
constructed up to acceptable resolution using one coefficient
from the LD (104 possible solutions, see Fig. 10). To achieve
the similar ME, seven EOFs coefficients are required (1014

possible solutions, Fig. 10) using fixed indices and the best
EOF combination requires five EOFs (1017 possible solu-
tions, Fig. 10).

V. CONCLUSION

Given sufficient training data, dictionary learning gener-
ates optimal dictionaries for sparse reconstruction of a given
signal class. Since these LDs are not constrained to be orthog-
onal, the entries fit the distribution of the data such that signal
example is approximated using few LD entries. Relative to
EOFs, each LD entry is informative to the signal variability.

The K-SVD dictionary learning algorithm is applied to
ocean SSP data from the HF-97 and SCS experiments. It is

shown that the LDs generated describe ocean SSP variability
with high resolution using fewer coefficients than EOFs. As
few as one coefficient from a LD describes nearly all the vari-
ability in each of the observed ocean SSPs. This performance
gain is achieved by the larger number of informative elements
in the LDs over EOF dictionaries. Provided sufficient SSP
training data are available, LDs can improve SSP inversion
resolution with negligible computational expense. This could
provide improvements to geoacoustic inversion,1 matched
field processing,36,37 and underwater communications.31
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