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Group Velocity Measurement

Distance Travelled

Time It TookGroup Velocity

(8.3)

earthquake

station

distance

Earthquake timet = 238 s
d = 1000 km

Need to know exact location and timing of an earthquake



Group Velocity Measurement
Distance Travelled

Time It TookGroup Velocity

(8.3)

earthquake

station 2

Earthquake timet1 = 238 s

d = 200 km

station 1

t2 = 285 s

Location of stations are well known
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Filter seismograms  Measure group velocity  Plot group velocity vs. frequency

Dispersion: dependence of wave speed on frequency
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Group Velocity Dispersion

Filter seismograms  Measure group velocity  Plot group velocity vs. frequency
more accurate

Use single, well-dispersed surface wave arrival less accurate

Dispersion: dependence of wave speed on frequency



Group Velocity Dispersion

Use single, well-dispersed surface wave arrival

Dispersion: dependence of wave speed on frequency

Earthquake: Mexico
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Component: Vertical
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Group Velocity Dispersion

Use single, well-dispersed surface wave arrival

Dispersion: dependence of wave speed on frequency

Earthquake: Mexico
Station: CCM, Cathedral Cave,
             Missouri
Distance: 22.4 degrees
Component: vertical

earthquake

station

distance

dWell-dispersed Rayleigh wave 



Group Velocity Dispersion

Use single, well-dispersed surface wave arrival

Dispersion: dependence of wave speed on frequency

Earthquake: Mexico
Station: CCM, Cathedral Cave,
             Missouri
Distance: 22.4 degrees
Component: vertical
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Group Velocity Dispersion

Use single, well-dispersed surface wave arrival

Dispersion: dependence of wave speed on frequency

Earthquake: Mexico
Station: CCM, Cathedral Cave,
             Missouri
Distance: 22.4 degrees
Component: vertical

time = 417.8 s

T/2 = 27.85 s

Period = T = 55.7 s

Period (seconds)

G
ro

up
 V

el
oc

ity
 (

km
/s

)



Group Velocity Dispersion

Use single, well-dispersed surface wave arrival

Dispersion: dependence of wave speed on frequency

Earthquake: Mexico
Station: CCM, Cathedral Cave,
             Missouri
Distance: 22.4 degrees
Component: vertical

time = 445.7 s

T/2 = 21.4 s

Period = T = 42.8 s
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Group Velocity Dispersion

Use single, well-dispersed surface wave arrival

Dispersion: dependence of wave speed on frequency

Earthquake: Mexico
Station: CCM, Cathedral Cave,
             Missouri
Distance: 22.4 degrees
Component: vertical

time = 467.1 s

Period = T = 38.5 s
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Group Velocity Dispersion

Use single, well-dispersed surface wave arrival

Dispersion: dependence of wave speed on frequency

Earthquake: Mexico
Station: CCM, Cathedral Cave,
             Missouri
Distance: 22.4 degrees
Component: vertical
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Group vs. Phase Velocities

Illustration from 
http://galileo.phys.virginia.edu/classes/109N/more_stuff/Applets/sines/GroupVelocity.html



Phase Velocity Measurement

earthquake

station

distance

Earthquake time

d

Phase Velocity: speed at which phase travels

We need to know the initial phase of the wave generated by the earthquake
      single station method not reliable



Phase Velocity Measurement

time

Phase Velocity: speed at which phase travels

Cycle ambiguity
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Phase Velocity Measurement

time

Phase Velocity: speed at which phase travels

earthquake

station 2
d

station 1

t



Phase Velocity Dispersion

Filter seismograms  Measure phase velocity  Plot phase velocity vs. frequency

Dispersion: dependence of wave speed on frequency
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Filter seismograms  Measure phase velocity  Plot phase velocity vs. frequency

Dispersion: dependence of wave speed on frequency

Shearer (1999)



Phase Velocity Dispersion

Filter seismograms  Measure phase velocity  Plot phase velocity vs. frequency

Dispersion: dependence of wave speed on frequency

Shearer (1999)

Rayleigh Wave Sensitivity to Depth
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Phase Velocity Dispersion

Filter seismograms  Measure phase velocity  Plot phase velocity vs. frequency

Dispersion: dependence of wave speed on frequency

 Implication for mantle velocity structure?

Shearer (1999)

Rayleigh Wave Sensitivity to Depth
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Global Surface Waves

November 3, 2002 Denali, Alaska Earthquake

ANTO
VHZ

Filtered between 3 and 8 mHz
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Global Surface Waves
November 3, 2002 Denali, Alaska Earthquake

Filtered between 3 and 8 mHz

ANTO
VHZ

ANTO
VHE





Standing Waves

Standing Wave: Stationary wave generated by constructive/destructive 
                           interference of two waves travelling in opposite directions 

Standing waves or normal modes 
    of the Earth



Standing Waves

1-D, fixed ends

Standing Wave: Stationary wave generated by constructive/destructive 
                           interference of two waves travelling in opposite directions 

Standing waves constitute basis functions.

m = 0 m = 1 m = 2

Index gives the number of nodes.

Sines and Cosines

Fourier Transform: combination of sines and cosines  describe any 1-D function



Basis Functions

1-D

2-D
(Spherical Surface)

Sines and Cosines

Fourier Transform: combination of sines and cosines  describe any 1-D function

What are the standing waves or basis functions we can use to describe
any 2-D functions on a sphere?



Basis Functions

2-D
(Spherical Surface)

Longitude: Sines/Cosines Latitude: Legendre Functions
Index: angular order m Index: angular degree l and order m

Rule: -l ≤ m ≤ l
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Basis Functions

2-D
(Spherical Surface)

Longitude: Sines/Cosines Latitude: Legendre Functions
Index: angular order m Index: angular degree l and order m

Rule: -l ≤ m ≤ l

0 360180 090 -90

Longitude (degrees) Latitude (degrees)

m = 0

m = 1

m = 2

m = 3

l = 0

l = 1

l = 2

l = 3

m = 0

m = 1

m = 2

m = 3



Spherical Harmonics

m = 0 m = 1

m = 2

m = 3

m = 4

l = 2

l = 1

l = 3

l = 4

m = 0

l = 0



Basis Functions

3-D
(Sphere)

Spherical Surface: Spherical Harmonics

Radius: Bessel Functions (homogeneous sphere)

Indices: angular degree l and order m

Index: number of zero crossings n
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Basis Functions

1-D

2-D
(Spherical Surface)

3-D
(Sphere)

Sines and Cosines

Fourier Transform: combination of sines and cosines  describe any 1-D function

Longitude: Sines and Cosines

Latitude: Legendre Polynomials

Spherical Surface: Spherical Harmonics

Radius: Bessel Functions (homogenous sphere)

Index: angular order m

Index: angular degree l and order m

Indices: angular degree l and order m

Index: number of zero crossings n

Rule: -l ≤ m ≤ l

Spherical Harmonic Transform: combination of spherical harmonics
  describe any function on a spherical surface

Normal Modes: combination of the Earth’s normal modes
  describe any motion



Normal Mode Nomenclature

Earth: Sphere

 Spherical Harmonics and radial function to describe standing waves

 Need three indices: n = radius; l = latitude; m = longitude

Type of Motion

Spheroidal  Combination of shear and change in shape
                       denote by S

Toroidal  pure  shear, denote by T

 SH waves, Love waves

 SV waves, Rayleigh waves



Characteristic Frequency

Each mode has its characteristic frequency and decay constant.

Degeneracy

If Earth is

 Spherically symmetric
 Isotropic
 Non-rotating
 Laterally homogeneous

then

i.e., modes with same overtone number n, and angular degree l
 same characteristic frequency regardless of angular order m

 Mode names are often denoted and



Attenuation

amount of energy dissipated

quality factor Q initial energy

time
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Seismograms

Combination of normal modes can describe ANY motion on spherical Earth 

Seismogram observed at a station from a given earthquake

Constants determined by earthquake source mechanism, and 
station/hypocentral locations.

 Fourier Transform



Earth’s Free Oscillations (Spheroidal Mode)



Earth’s Free Oscillations (Toroidal Mode)



Normal-Mode Central Frequency



Normal-Mode Central Frequency



Synthetic Seismograms

Combination of normal modes can describe ANY motion on spherical Earth 

 Generate synthetic seismograms

Seismogram observed at a station from a given earthquake

Constants determined by earthquake source mechanism, and 
station/hypocentral locations.



Synthetic Seismograms

Combination of normal modes can describe ANY motion on spherical Earth 

 Generate synthetic seismograms

Filtered between 3 and 8 mHz

ANTO
VHZ
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synthetic

November 3, 2002 Denali, Alaska Earthquake



Synthetic Seismograms

Combination of normal modes can describe ANY motion on spherical Earth 

 Generate synthetic seismograms

Filtered between 3 and 8 mHz

ANTO
VHZ

observed

ANTO
VHZ

synthetic

November 3, 2002 Denali, Alaska Earthquake

observed

synthetic



Normal-Mode Splitting

0S2



Earth’s Free Oscillations (0T2 Receiver Strips)

0.370 0.375 0.380 0.385

Frequency (mHz)



Earth’s Free Oscillations (Spheroidal-Toroidal Coupling)


