Exploring the earth with seismic noise: Anthropogenic and exogenic noise sources Peter Gerstoft, With help from Nima Riahi, Mike Bianco,

Slides are available from http://noiselab.ucsd.edu

- Noise is full of information.
- Think of characterizing a dark room
- My focus is on extracting information from noise (acoustic, seismic, EM) with the help of signal processing, compressive sensing, and machine learning.

Contents:

Long Beach array Observing traffic Localizing weak sources Noise tomography Antarctica Tsunami generated plate waves

Noise observation on seismic sensor array

March 5—12, 2011: 3TB, 5200 Stations in Long Beach, California

Geophones samples at 250 Hz for 6 months

Our motivation: Long Beach (CA) array

Noise Tracking of Cars/Trains/Airplanes

5200 element Long Beach array (Dan Hollis)

Riahi, Gerstoft, The seismic traffic footprint: Tracking trains, aircraft, and cars seismically, GRL 2015

Seismic intensity can be used as source ³³⁸⁷ proximity indicator

Power spectra

Riahi, 2015

118.20°W

33.84°N

33.78°N

33.75°N

118.20°W

118.17°W

118.17°W

118.14°W

118.14°W

33.81°N

33.78°N

33 75°N

Long Beach Blue Line Metro

Seismic power along the metro track during rush hour

Raw seismic power

Watching airplanes with your feet (ears?)

Seismic power on runway

Riahi, 2015

Observing the I-405

Seismic power for traffic monitoring

Processed seismic power along the I-405

Filtered for eastward moving sources

Currently other sensing techniques is favored. Riahi, 2015

LOCATING WEAK SOURCES USING GRAPH SIGNAL PROCESSING

Riahi, Gerstoft (2017), Using Graph Clustering to Locate Sources within a Dense Sensor Array, Signal Processing 2017,

Graph Signal Processing for locating a source

Location 1: Prince - "Sign o' the times"

Spectral coherence

$$\hat{C}_{ij}(f) = \frac{1}{N} \sum_{t=1}^{N} X_i(f,t) \cdot \bar{X}_j(f,t)$$
(Normalization:
|X(f,t)|²=1) 13

Two sources in the network

- Each sensor is a **node** in the graph. ٠
- If **nodes** *i* and *j* are significantly correlated • $|C_{ii}| > \xi$, then they share an **edge**.
- A **subgraph** has high spatial coherence across • a subarray (=> likely a source nearby).

Connected subgraphs: 5 nodes and 9 edges 8 nodes and 20 edges

 $\overline{)}$

 ∇

388.65 UTME [km]

Few false detections450'000 sensor clusters detected in total

Conclusions

- ✓ Pair-wise coherence defines a network across array sensors.
- ✓ Weak within-array sources induce topology on that network. This topology is used to approximately localize weak sources.
- ✓ Model-free approach
- ✓ Tested on large-scale empirical geophone data

Constructing Greens Functions from noise

Vibro-source

From ambient noise

Coherent signals from noise data

The Green's function emerges from the cross-correlation of the diffuse wave field at two points of observation:

 $G(\mathbf{x}_A,\mathbf{x}_B,t) \propto \langle v(\mathbf{x}_A,-t) * v(\mathbf{x}_B,t) \rangle$ ~ 100 msec 2000 1500 noise autocorrelation 1000 Time-derivative of auto-correlation (arbitrary units) Receiver 500 Direct pulse/echo signal (volts) Receiver Raw Signal 0 Source S -500 (DD -1000 Pulse/echo -1500 -2000 -2500 -3000 -3500 0.3 0.4 -4000

-4500

20

30

-0.5

110

100

90

time (microseconds)

"By cross-correlating ambient noise recorded at two locations, the Green's function between these two locations can be reconstructed". (Claerbout 1999, Weaver 2001.)

Rickett and Clearbout 1999; Weaver and Lobkis, 2001

Seismic interferometry and in southern California

Individual paths have different travel time=> tomograpghy Sabra, GRL 2005; Gerstoft, Geophysics 2006

Ambient noise Surface wave Tomography

Low Velocity Region~Sedimentary basins A: San Joaquin, B: Ventura, C: L.A., D: Salton Sea

One month of ambient noise can replace 10 years of earthquake tomography!

Sabra, GRL 2005, Gerstoft et al 2006

3D Earth model

Free space noise correlation (3D)

$$C_{12}(\tau) = \int_{-\infty}^{\infty} P(\mathbf{r}_1, t) P(\mathbf{r}_2, t + \tau) dt$$
$$\frac{dC_{12}(\tau)}{d\tau} \propto -G(t) + G(-t)$$

Sources yielding constant time-delay T lay on same hyperbola

$$\begin{array}{cccc} 2 \rightarrow 1 & 1 \rightarrow 2 \\ C_{12}(\tau) & & & \\ -L/c & & 0 & +L/c \end{array} & \tau \end{array}$$

With cross-correlation process the phase of the source signal is removed, →Arrival time is given by the center of the pulse (envelope maximum) Isotropic noise distribution → Symmetric Correlation function. Using ambient noise on a drifting array we can map the bottom properties

Siderius et al., JASA 2006, Gerstoft et al., JASA 2008, Harrison, JASA 2009, Traer et al., JASA 2009, 2010, 2011 Siderius et al., JASA 2010

Endfire beamforming

Wind and waves make sound coming from all directions

Beamforming with a vertical array allows the sound coming from directions other than endfire to be greatly reduced.

This makes short time-averaging possible- an important component for practical application. Vertical array

Passive fathometer

Ambient noise 50-4000 Hz

Boomer

Adaptive processing gives better resolution of reflections

Siderius et al., 2009

Sparse models and dictionaries

- Sparse modeling assumes each signal model can be reconstructed from a few vectors from a large set of vectors, called a dictionary D
- Adds auxiliary sparse model to measurement model

$$\mathbf{d} = \mathbf{Am} + \mathbf{n}, \ \mathbf{m} \approx \mathbf{Dx} \ \text{and} \ |\mathbf{x}| \ll Q$$

Optimization changes from estimating m to estimating sparse coefficients x

• Sparse objective: $\min_{\mathbf{x}} \|\mathbf{A}\mathbf{D}\mathbf{x} - \mathbf{d}\|_2$ subject to $\|\mathbf{x}\|_0 \leq T$

Dictionary learning and sparsity unsupervised

- Dictionary learning obtains "optimal" sparse modeling dictionaries directly from data
- Dictionary learning was developed in neuroscience (a.k.a. sparse coding) to help understand mammalian visual cortex structure
- Assumes (1) <u>Redundancy in data</u>: image patches are repetitions of a few elemental shapes; and (2) <u>Sparsity</u>: each patch is represented with few atoms from dictionary

"Natural" images, patches shown in magenta

- Each patch is signal \mathbf{y}_i
- Set of all patches $\mathbf{Y} = [\mathbf{y}_1, ..., \mathbf{y}_I]$

Learn dictionary **D** describing $\mathbf{Y} = [\mathbf{y}_1, ..., \mathbf{y}_I]$

Sparse model for patch \mathbf{y}_i composed of few atoms from \mathbf{D}

$$\widehat{\mathbf{x}}_{i} = \arg\min_{\mathbf{x}_{i}} \|\mathbf{y}_{i} - \mathbf{D}\mathbf{x}_{i}\|_{2} \text{ subject to } \|\mathbf{x}_{i}\|_{0} \leq T$$
$$\mathbf{y} = \mathbf{y} = \mathbf{y} = \mathbf{z} \mathbf{x}_{1} + \mathbf{z} \mathbf{x}_{2} + \dots$$

Checkerboard dictionary example

LST slowness image and sampling

Slowness map and sampling:

- Discrete slowness map N=W1 x W2 pixels
- *I* overlapping $\sqrt{n} \times \sqrt{n}$ pixel patches
- *M* straight-ray paths

Tomography matrix
(straight ray) $\mathbf{A} \in \mathbb{R}^{M \times N}$ Slowness dictionary $\mathbf{D} \in \mathbb{R}^{n \times Q}$
 $Q \ll I$

"Local" model
$$\hat{\mathbf{x}}_i = \underset{\mathbf{x}_i}{\operatorname{arg\,min}} \|\mathbf{R}_i \mathbf{s}_s - \mathbf{D} \mathbf{x}_i\|_2^2$$
 subject to $\|\mathbf{x}_i\|_0 = T$
"Global" model $\mathbf{t} = \mathbf{A} \mathbf{s}_g + \epsilon$ $\hat{\mathbf{s}}_g = \underset{\mathbf{s}_g}{\operatorname{arg\,min}} \|\mathbf{t} - \mathbf{A} \mathbf{s}_g\|_2^2 + \lambda_1 \|\mathbf{s}_g - \mathbf{s}_s\|_2^2$,

Bayesian formulation

LST versus conventional tomography

Both use same travel times (from Fan-Chi Lin), unsupervised

LST 3 mill rays

Fan-Chi Lin, Geophysics, 8mill Rays

Noise monitoring Ross Ice Shelf, Antarctica

Gravitational

Baker et al., 2019

Strong IG event Feb 2015

Range to storm 2000 km.

Slowness spectra 19-21 Feb 2015

Obtained by averaging the beamforming output over 0-20° azimuth. Phase speed dispersion curves of ocean gravity waves, flexural waves, flexural-gravity waves

S₀ Symmetric AIWB model

Ambient seismic noise in the firn layer

Geophysical Research Letters

RESEARCH LETTER

10.1029/2018GL079665

Key Points:

 High-frequency (>5 Hz), narrow-band signals observed on an ice shelf are sensitive to changes in the near-surface firn layer
 Spectral peak frequency changes coincide with melt/freeze events on the ice shelf as well as with storm-driven redistribution snow
 Melt events have a unique spectral signature and can be modeled in terms of the penetration depth to which these thermal anomalies diffuse

Supporting Information: • Supporting Information S1

Correspondence to: J. Chaput, jchaput82@gmail.com

Citation:

Chaput, J., Aster, R. C., McGrath, D., Baker, M., Anthony, R. E., Gerstoft, P., et al. (2018). Near-surface environmentally forced changes

Near-Surface Environmentally Forced Changes in the Ross Ice Shelf Observed With Ambient Seismic Noise

J. Chaput^{1,2}, R. C. Aster³, D. McGrath³, M. Baker³, R. E. Anthony⁴, P. Gerstoft⁵, P. Bromirski⁵, A. Nyblade⁶, R. A. Stephen⁷, D. A. Wiens⁶, S. B. Das⁷, and L. A. Stevens⁹

¹ Department of Mathematics, Colorado State University, Fort Collins, CO, USA, ²Department of Geological Sciences, University of Texas at El Paso, El Paso, TX, USA, ³Department of Geosciences, Colorado State University, Fort Collins, CO, USA, ⁴U.S. Geological Survey, Albuquerque Seismological Laboratory, Albuquerque, NM, USA, ⁵Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA, ⁶Department of Geosciences, Pennsylvania State University, State College, University Park, PA, USA, ⁷Woods Hole Oceanographic Institution, Woods Hole, MA, USA, ⁸Department of Farth and Planetary Sciences, St. Louis, MO, USA, ⁹Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA

Abstract Continuous seismic observations across the Ross Ice Shelf reveal ubiquitous ambient resonances at frequencies >5 Hz. These firn-trapped surface wave signals arise through wind and snow bedform interactions coupled with very low velocity structures. Progressive and long-term spectral changes are associated with surface snow redistribution by wind and with a January 2016 regional melt event. Modeling demonstrates high spectral sensitivity to near-surface (top several meters) elastic parameters. We propose that spectral peak changes arise from surface snow redistribution in wind events and to velocity drops reflecting snow lattice weakening near 0°C for the melt event. Percolation-related refrozen layers and layer thinning may also contribute to long-term spectral changes after the melt event. Single-station observations are inverted for elastic structure for multiple stations across the ice shelf. High-frequency ambient noise seismology presents opportunities for continuous assessment of near-surface ice shelf or other firm environments.

And then, late night TV...

EARTH SCIENCE

Scientists Discover a Weird Noise Coming From Antarctic Ice Shelf

Brian Kahn 10/16/18 4:52pm • Filed to: ICE ON THIN ICE ~
 𝔅
 𝔅
 𝔅

 615.3K
 84
 6

Photo: O.V.E.R.V.I.E.W. (Flickr)

The Antarctic is no stranger to weird sounds, from <u>ancient trapped air</u> <u>bubbles</u> popping to entire <u>ice sheets disintegrating</u>. Now we can add another freaky track to the ouevre of icy masterpieces.

FINITO

