Machine learning and applications to ocean acoustics

Peter Gerstoft,

http://noiselab.ucsd.edu/. Slides and 42-page review paper [Bianco 2019]
With help from Mike Bianco, Emma Ozanich, Haigiang Niu, Kay Gemba,
James Traer, Christoph Mecklenbrauker, Eliza Michalopoulou

Machine leaning contains the mathematical tools we need to do
data science

Can Machine Learning

 Replace CTBTO/SONAR processing chain?

« Discover PDE (Partial differential equation) in video?

* Find sea mines?

« Design metamaterials?

* Predict earthquakes?

e Source location in the ocean waveguide w/o training?

« Replace 50 years of array processing?

« Learn the physical model (sound speed, temperature...)


http://noiselab.ucsd.edu/

Machine learning versus knowledge based

Acoustic insight can be improved by leveraging the strengths of both physical
and ML-baseq, data-driven models.

Volumes of Data

Machine Learning

A Probabilistic Perspective

Data driven models Hybrid model, combining
Little or no physics : machine learning and physics
Fundamentals
of Acoustics -
N~
F=ma AN
Introductory knowledge :
First order : Non-linear
Analytic physical models Numerical physical models

Amount of Knowledge



g We can’t model everything...

Detection of mines. Navy uses dolphins
to assist in this.

Dolphins = real ML!




Machine Learning for physical Applications

noiselab.ucsd.edu

Murphy: “...the best way to make machines that can learn from
data is to use the tools of probability theory, which has been
the mainstay of statistics and engineering for centuries.”

= PATTERN RECOGNITION g
=

Trevor Hastie
Robert Tibshirani
Jerome Friedman

Data Mining, Inference, and Prediction

Machine Learning

A Probabilistic Perspective

Kevin P. Murphy




SAGA (NURC 1992-97) is also ML

SAGA has the features that characterize a ML approach:
« Data-driven

 Model based

« Gaussian based likelihoods.

« Bayesian posterior probabilities

Also later additions
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Compressive beamforming is also ML

Compressive beamforming

A Xenaki, P Gerstoft, K Mosegaard - JASA, 2014 Cited by 142 v
Multiple and single snapshot compressive beamforming
P Gerstoft, A Xenaki, CF Mecklenbrauker- JASA, 2015 Cited by 78 -9
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Machine learning in acoustics: a review

Michael J. Bianco,!'®) Peter Gerstoft,! James Traer,? Emma Ozanich,! Marie A. Roch,3 Sharon Gannot

Charles-Alban Deledalle,® and Weichang Li®
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« 42-page JASA review of ML theory. Available on arXiv or
http://noiselab.ucsd.edu/. (Pdf of talk is also there)

« Sections:
— Machine learning principles
» Supervised/ Unsupervised learning
— Deep learning
— Source localization in speech processing
— Source localization in ocean acoustics
— Bioacoustics
— Seismic exploration
— Perception of everyday sounds
* Reverberation
» Environmental sounds



http://noiselab.ucsd.edu/

ML Principles

In ML, we are often interested in training a model to produce a desired output
given inputs,

y=f(x) +e
« Input x € RY, N features
« output y € R”, P outputs

« Supervised learning: the P outputs have labelled examples (response
variables y)

« Unsupervised learning: there are no labels. The goal is to find interesting
properties from x, as an autoencoder x=f(x)

..... and we frain the model

TnD




Two ways to make computers do what you want:

In Image processing this has been done:

1) Hand-engineered design: Consciously
figure out exactly how to manipulate
symbolic representations to perform the
task and then tell the computer in detalil
what to do.

2) Learning: Show computers lots of
examples of input with desired outputs. Let
the computer learn how to map inputs to
outputs using general purpose learning
procedure

Example training set

airplane )?,!
automobile 5
bird -1 &%
cat il |
A close-up of a child a; m

holding a stuffed animal. deer .

Input is an image Output is a caption




Two ways to make computers do what you want:

In Ocean acoustics:

1) Hand-engineered design: See the 1000
papers on Match Field Processing!

Sometimes it works...

=> Old School

2) Learning: Show computers lots of
examples of input with desired outputs. Let
the computer learn how to map inputs to
outputs using general purpose learning

procedure
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\What is an artificial neuron?

We simplify a real neuron to investigate how neurons can do
computations that are too difficult to program as
« Converting image pixel intensity into string of words

describing it
Relu
output A rectified linear neuron

) ! weights =

i s

“ =

inputs coming from other O
Neurons or Sensors ;

weightedo sum of inputs




\What is artificial neural network

Connecting neurons in layers with no cycles gives a feed-forward neural
net (FNN).

a; = ReLu(w"x)= ReLu(Xy-, wyxy,)

@==  (Qutput neurons

Multiple layers of hidden neurons
Hidden layers

= Input neurons



Supervised training vs backgrogagatom

Supervised training is inefficient:
« Take a few of the training cases and Q
measure the NN output. (called A SRS

stochastic sampling)

Change one weight slightly. Q Q Q

If NN output improved, keep it.
Q Q Q Q O
feRefe

Backpropagation efficiently compute how a change in weight
effects the NN output.

The error gradients for all of the weights is obtained at once.
The chain rule dictates how the NN output change for each

weight.



How to learn many layers of features

Compare outputs with the correct

answer to get the error signal
Back-propagate error

signal to get
derivatives for learnin ‘—‘
. Output neurons

Hidden layers

4—4 Input neurons

For L layers with N neurons, we have N?L weights



(a) R=0.1—2.86 km

Matched-Field Processing on test data 1—=—— =

Noise09 Frequencies [300:10:950]Hz Z, =128 143 m

H
eAz=1m

Qeee O

- Cp = 1572 — 1593 m/s
p=176 g/cm® «, =2.0dB/\

G
ﬂﬂb%w %G

20 40 60 80 100120
Time [index] Time [index]

Mean Absolute Percentage Error error of MFPs: 55% and 19%
Niu 2017a, JASA



Pressure data preprocessing

Sound p(f) = S(f)g(f,r) +n, S(f) Source term
pressure

Normalize pressure  P(f) = Lp(f) - ||§((]cf))||2 L Number of
’g; rle:(l;;:le the effect \/1221 P (f)] SEensors

Sample Covariance  c(f) = — S p.(/)pH (/)
Matrix to reduce effect
of source phase

Ns Number of
snapshots

SCM is a conjugate symmetric matrix.

Input vector X to NN: the real and imaginary parts of the entries of
diagonal and upper triangular matrix in C(f)




ML source range classification

Array Data: 300-950Hz with 10Hz  First NN is trained with one source

increment, i.e., 66 frequencies.
16 hydrophones with 1 m spacing Test-Data-1 Test-Data-2

o o predictions =— GPS ranges

FNN . —
3 hidden layers with 512 nodes

| —
(a) _

Range (km)

SVM
Radial basis Functions

Range (km)

RF
Random forest

Range (km)

0 20 40 60 80100 O 20 40 60 80100
Niu 2017a, JASA Time [index] Time [index]



Other parameters: FNN for range classification

Conclusion

- Easier than conventional

MFP

- Classification easier than

regression

- FNN, SVM, RF works.

- Works for:
- multiple ships,

- Deep/shallow water

60s Science )

Scientfic Am

Niu 2017a, JASA
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DOA estimation with Neural Networks

5 layers with 1024 nodes fully connected
20 element array at A/3 spacing, searching for 180 DOAs

Coherent sources.
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DOA for two sources from SWELLEx96

5 layers with 1024 nodes fully connected
One frequency (79 Hz), L=1 snapshot

N = e 5 = ° Towed Source

60 & - F . = = Interferer
: £ = Endfire to array
F4 F4 — — Broadside to array

50 3 {
40 | e seels

E i %

|_

108

0 180 360 O 180 360 O 180 360
Azimuth (*) Azimuth (*) Azimuth (*)
Ozanich 2019

SWellEx-96 Event S59
JD 134, 11:45 GMT to JD 134, 12:50 GMT

 —

HLA North Array Elements

Element #1 is the reference elel
at location (0,0).

50
East (m)



DOA for two sources from SWO6

5 layers with 1024 nodes fully connected
One frequency (79 Hz), L=10 snapshot

SWellEx-96 Event S59
ID 134, 11:45 GMT to ID 134, 12:50 GMT

More snapshots give cleaner image

SBL :

Towed Source

Interferer

Endfire to array
— — Broadside to array

0 180 | 360 O 180 | 360
Azimuth (*) Azimuth (*) Azimuth (*)
Ozanich 2019



Deep Convolutional NN

256 % 256
image with
3 channels

Conv
11 x 11

+ReLU

256 x 256
tensor with
16 channels

Pooling Convolution 5 x 5 RPN

2% 2 + ReLU e
64 x 64

128 x 128 128 x 128 tensor with

tensor with
16 channels

tensor with 32 channels

32 channels

e Flat —>

FC + ReLU

1x1
tensor with
2048 channels

1024 features

FC + ReLU

1024 features

FC + Softmax

10 output

classes

Feature hierarchy (deep encoder) Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3)
x[:,:,0] wO[:,:,0
0 0 00O 0O 0 O Q_/II:I"E
0 2 >0 DOl
0f2]2]2 o 1 o 0 ||1 ||0
10
(1) s 02 1 o2 L
Wl,l = b(l)
! 00 0 0 0 0 1o
. . x[z,1,1] w10[:{-,2
an activation 0 0 0 0 - /
function 0 3 0 %I-_I 0
bgi\ 0] 72 g % Gl B
2,1 .
& @ > — pooling —> . o ]2 L U Bias b(1x1x1)
;:.onvolution 0 || 1 || 1 0 0 bO[<,:,0]
0 2 1 1 0
0 0 O 0 0
xX[:,:,2]
..... bél) — pooling —» 0 l Z 0 0
abias z(l) ﬂ 1 0 0
o_|l7 ||0_ 1 2 0
|| 1 ||0 0 1 0
) convolution- layer 1 pooling layer 1 0 2 0 0 1 0
Bianco 2019, Niu 2019, 1T T T T

Output Volume (3x3»
o[:,:,0]

4 -1 -1
m-s -1
2 4 -8

CNN uses less
weights than FNN



Magnitude only localization

Single receiver,
3-16 km from source
Multi-frequency 100-200 Hz,

magnitude only

Much less input as sample covariance
matrix is not needed. Magnitude is
averaged directly

SAGA, multi frequency objective function

IXyaeale)r
S PR laf, ©)2

or(©) =1

p and g are magnitudes
Niu 2019

Latitude (Degree)

37.9

(a) ' /
37.88

37.86 ¢
37.84 | /
37.82 o * Airgun signals ||
. O Receiver
37.8 : .
123.4 123.5 123.6 123.7

Longitude (Degree)

Amplitude

Sample index
o) NS O
o o o o

o

o
(

Sample index
NS O
o

100 120 140 160 80 200
Frequency (Hz)

Amplitude

100 120 140 160 180 200
Frequency (Hz)



Range (km)

ML and SAGA ranging

Estimate of location:

5 (@)
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Niu JASA 2019
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Does ML beat SAGA?



Graph Slgnal Processing for locating a source
- unsu CPerwsed

Location 2: Otis Redding - “Hard to handle”

00:10

. tlm:SS]
30-microphone array
“V VvV Vv Vv

20 -
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v
V
V
V

Spectral coherence

ZX f.t)- X;(f.)

Freq [Hz]

(Normallzatlon.
Riahi 2017~ "emwsa |IX(f,0)|?°=1) 25




Statistically significant entries
=> Connectivity matrix

10

15+

20

25

30t

4 4 A <

5 10 15 20 25 30

-~ n i warl

Graph with 30 nodes

V

V

Hec. no.

« Each sensor is a node in the graph.

« If nodes i and j are significantly correlated
|C;;|>¢, then they share an edge.

« A subgraph has high spatial coherence across
a subarray (=> likely a source nearby).

Riahi 2017

V V W k14

<¢ €4 < <

V \ 4 v
V \V4 v
V V V
V V V
Connected subgraphs:

5 nodes and 9 edges

8 nodes and 20 edges

26



Graph clustering for localization within a sensor
array

Peter Gerstoft and Nima Riahi, nhoiselab.ucsd.edu
Christoph Mecklenbrauker, TU Wien

Based on paper: Riahi and Gerstoft, Signal Processing, 2017
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Helicopter rotor noise (seismo-acoustic coupling)

Several peaks consistent with helicopter rotor harmonics

(20-100 Hz).
Doppler shift

frigh/flow=(Vot+Vv)/(vo-v)=1.4 i.e. v=250 km/h
Speed over ground 7km/2min=210km/h
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v Movement in map

54:00 54:30 55:00 55:30 56:00 56:30
time [MM:SS]

28



Days Simulated (From 2015-06-01): 0
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Based on 9400 time windows x 10 frequency bins.
Each dot is the center of a cluster. 90% of the clusters cover <1.5% of the area.
Few false detections

Riahi, Gerstoft, Signal Processing 2017 29



Noise Tracking of Cars/Trains/Airplanes

5200 element Long Beach array (Dan HO||IS)
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Riahi, Gerstoft, GRL 2015 024;45 25:00 25?15 25;30 25;45

Noise Tracking of Cars/Trains/Airplanes
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Travel time tomography

Travel times from noise cross-correlations

560 T

distance = speed x time

slowness = 1/speed

¢ Task: Given travel times, estimate regional phase speed distribution
d: M travel times

d =14 +-m, A : "Tomography matrix": ray paths through the discretized map

m : N-pixel slowness image

2D map slowness map

4
—_ xl1 AT : : A 3.5 LOW Ve|OCIty
Slowness map and s T 1o g § W _ WeeE , Region~Sedimentary
measurements 5 \' o \\ 8 P basins A: San
- static_ms in red % _______ ){4‘({_\\ ¥ 5 NG TS 25 éQanxln,DS:S\;ir;t:ra,
- raysin blue * X3 Sea, E: Peninsular
i e O 15 range, F: Sierra
: . - . Nevada
-120 -119 -118  -117 -116 -115

Range (length) Longitude



Sparse models and dictionaries

® Sparse modeling assumes each signal model can be reconstructed from a
few vectors from a large set of vectors, called a dictionary D
® Adds auxiliary sparse model to measurement model

d=Am+n, m~Dx and |x| < Q
® Optimization changes from estimating m to estimating sparse coefficients x
m D €
| = LHEDHETE o
||

XA n x @ error
measurements dictionary

| 4

T" nonzero
entries, ||
T<Q

Qx1

sparse signal

* Sparse objective: min||ADx — d||2 subject to ||x||[o < T
X



Dictionary learning and sparsity

unsupervised
« Dictionary learning obtains "optimal" sparse modeling dictionaries directly from data

« Dictionary learning was developed in neuroscience (a.k.a. sparse coding) to help
understand mammalian visual cortex structure

« Assumes (1) Redundancy in data: image patches are repetitions of a few elemental
shapes; and (2) Sparsity: each patch is represented with few atoms from dictionary

"Natural" images, patches shown in magenta Learn dictionary D describing Y = [y, ..., y1]

EENONIENM/[IEEN VSN
NEoVim=lISBENS (TN
WEREriNk=sMdn=EES
ZEANEELSAVEIIRADE
NANSANEE=ECERENPN=
EEI?IMI Il AZRN

g & & 8 8 ¥ B 8 & g

50 100 150 200 250 300 350 400 450 500

e Fach patch is signal y;
e Setofall patches Y = [y, ..., y71]

17 .
HLIUMNEIV.M‘I‘IHII“‘I
SLESARNNEERVIEZERR

Olshausen 2009

Sparse model for patch y; composed of few atoms from D

X; = argmin||y; — Dx;||2 subject to ||x;]lo < T

a 0 -1C2+...

Bianco 201820719 —




Checkerboard dictionary example

Slowness (s/km)
0.3 0.35 0.4 0.45 0.5

Dictionary D HEE
N s ® y:Rz’SZDXz’

= --I l.-
I "™ "-'l- 20 , _E :
S = . Ris = gt i
= |'._|| | =< 40

Slowness 10x10 pixel patches
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\\‘M'Ianl
BaRaEsE\
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X; = argmlnHyz Dx;|l2 subject to ||xi|lo < T

BlanCO 2018, 2019




LST slowness image and sampling

Slowness (s/km)

0.3 0.35 0.4 0.45 0.5
. N — H/'Q >
l—\/ 71—y . L
‘\/7_[ ; E (a)- Slowness map and
2 'l Ee e measurements
E . Wi T | - stations in red
= S b - rays in blue
o ©
% 60 o x~
o
8
10 .
1 20 40 60 80 100 Range
Range (km) Pixels and “patches”
Slowness map and sampling: Tomography matrix Mx N
« Discrete slowness map N=W1 x W2 pixels (straight ray) c R
« I overlapping v/n x v/n pixel patches N " D c R7*Q
iqht- owness dictionary
M straight-ray paths Q<1
“Local” model X; = arg min||R;ss — Dx;||3 subject to ||x;|jo = T
Xi
“Global” model t=As, +e  Sg=argmin [[t — Asgll3 + Aillsg — s[5,

Sg

Bayesian formulation



LST ver nventional tomography

Both use same travel times (from Fan-Chi Lin), unsupervised

LST 3 mill rays Fan-Chi Lin, Geophysics, 8mill Rays

Latitude

33.85° ' 085
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n=100, Q=200, T=1 om!ﬁo 0?65 0!70 0.75_0.85

Phase velocity (km/s)

Bianco 2018, 2019 37




Predicting Earthquakes in Laboratory

« Kaggle competition.

Experimental run time

ML gives little or no insight into the model. We
want the ML algorithm to provide a line of i

C
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O Thresholds @ Other features 0. o o o
© Higher moments o o O th y f n d M L th t
L nce iney 1ou d d
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o

o
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s
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., 2 =

Es
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reasoning together with the calculated result.
Not just the outcome of Bayes formalism.
=> That will come



First principles VS Data driven

Data Small data Big data to train

Domain expertise High reliance on domain Results with little domain
expertise knowledge

Fidelity/ Universal link can handle non-  Limited by the range of values
linear complex relations spanned by training data

Robustness

Complex and time consuming  Rapidly adapt to new problems

Adaptability derivation to use new relations

Parameters are physicall Physically agnostic, limited by

Interpretability the rigidity of the functional form

Perceived
Importance. Geophys  SignalProc Peter Googl



Summary

Machine learning, big data, data science, artificial intelligence are similar.
Data science has lots of opportunities in geophysics.

Neural networks is one method. Similar methods are Support Vector Machines
(SVM) and Random Forrest (RF). Use the latter for a first test.

Unsupervised learning is more challenging than supervised learning

We need explainable artificial intelligence. We want the ML algorithm to provide a
line of reasoning together with the calculated result / fit / decision.

Actions: Download ML JASA review

TRY http://playground.tensorflow.orq

Can ML

Replace CTBTO processing chain?

Discover PDE (Partial differential equation) in video?
Find sea mines?

Design metamaterials?

Predict earthquakes?

Replace 50 years of array processing

Source location in the ocean waveguide w/o training.


http://playground.tensorflow.org/
http://playground.tensorflow.org/

FINITO



