Machine learning and applications to ocean acoustics

Peter Gerstoft,

http://noiselab.ucsd.edu/. Slides and 42-page review paper [Bianco 2019] With help from Mike Bianco, Emma Ozanich, Haiqiang Niu, Kay Gemba, James Traer, Christoph Mecklenbrauker, Eliza Michalopoulou

Machine leaning contains the mathematical tools we need to do data science

Can Machine Learning

- Replace CTBTO/SONAR processing chain?
- Discover PDE (Partial differential equation) in video?
- Find sea mines?
- Design metamaterials?
- Predict earthquakes?
- Source location in the ocean waveguide w/o training?
- Replace 50 years of array processing?
- Learn the physical model (sound speed, temperature...)

Machine learning versus knowledge based

Acoustic insight can be improved by leveraging the strengths of both physical and ML-based, data-driven models.

Volumes of Data

Back scattering from fish school

Predict acoustic field in turbulence

We can't model everything...

Detection of mines. Navy uses dolphins to assist in this.

Dolphins = real ML!

Machine Learning for physical Applications noiselab.ucsd.edu

Murphy: "... the best way to make machines that can learn from data is to use the *tools of probability theory*, which has been the mainstay of statistics and engineering for centuries."

SAGA (NURC 1992-97) is also ML

SAGA has the features that characterize a ML approach:

- Data-driven
- Model based
- Gaussian based likelihoods.
- Bayesian posterior probabilities
- Also later additions
- Sequential estimation
- Particle Filtering

Gerstoft, 1994

Compressive beamforming is also ML

Machine learning in acoustics: a review

Michael J. Bianco,^{1, a)} Peter Gerstoft,¹ James Traer,² Emma Ozanich,¹ Marie A. Roch,³ Sharon Gannot Charles-Alban Deledalle,⁵ and Weichang Li⁶
¹Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
²Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
³Department of Computer Science, San Diego State University, San Diego, CA 92182, USA
⁴Faculty of Engineering, Bar-Ilan University, Ramat-Gan 5290002, Israel
⁵Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92037, USA
⁶Aramco Research Center-Houston, Aramco Services Company, Houston, TX 77084

42-page JASA review of ML theory. Available on arXiv or <u>http://noiselab.ucsd.edu/</u>. (Pdf of talk is also there)

- Sections:
 - Machine learning principles
 - Supervised/ Unsupervised learning
 - Deep learning
 - Source localization in speech processing
 - Source localization in ocean acoustics
 - Bioacoustics
 - Seismic exploration
 - Perception of everyday sounds
 - Reverberation
 - Environmental sounds

ML Principles

In ML, we are often interested in training a model to produce a desired output given inputs,

 $y=f(x) + \epsilon$

- Input $\mathbf{x} \in \mathbb{R}^N$, N features
- output $\mathbf{y} \in \mathbb{R}^{P}$, P outputs
- Supervised learning: the P outputs have labelled examples (response variables y)
- Unsupervised learning: there are no labels. The goal is to find interesting properties from x, as an autoencoder x=f(x)
- and we *train* the model

Two ways to make computers do what you want:

In Image processing this has been done:

1) Hand-engineered design: Consciously figure out exactly how to manipulate symbolic representations to perform the task and then tell the computer in detail what to do.

2) Learning: Show computers lots of examples of input with desired outputs. Let the computer learn how to map inputs to outputs using general purpose learning procedure

Input is an image

Output is a caption

Example training set

Two ways to make computers do what you want:

In Ocean acoustics:

1) Hand-engineered design: See the **1000** papers on Match Field Processing! Sometimes it works...

=> Old School

2) Learning: Show computers lots of examples of input with desired outputs. Let the computer learn how to map inputs to outputs using **general purpose** learning procedure

What is an artificial neuron?

We simplify a real neuron to investigate how neurons can do computations that are too difficult to program as

 Converting image pixel intensity into string of words describing it

What is artificial neural network

Connecting neurons in layers with no cycles gives a feed-forward neural net (FNN).

$$a_j = \operatorname{ReLu}(\boldsymbol{w}^T \boldsymbol{x}) = \operatorname{ReLu}(\sum_{n=1}^N w_n x_n)$$

Input neurons

Supervised training vs backpropagatoin

Supervised training is inefficient:

- Take a few of the training cases and measure the NN output. (called stochastic sampling)
- Change one weight slightly.
- If NN output improved, keep it.

- Backpropagation efficiently compute how a change in weight effects the NN output.
- The error gradients for all of the weights is obtained at once. The chain rule dictates how the NN output change for each weight.

How to learn many layers of features

Compare outputs with the correct answer to get the error signal

For *L* layers with *N* neurons, we have N^2L weights

Mean Absolute Percentage Error error of MFPs: **55%** and **19%** Niu 2017a, JASA

Sound
pressure
$$\mathbf{p}(f) = S(f)\mathbf{g}(f, \mathbf{r}) + \mathbf{n},$$
 $S(f)$ Source termNormalize pressure
to reduce the effect
of $|S(f)|$ $\tilde{\mathbf{p}}(f) = \frac{\mathbf{p}(f)}{\sqrt{\sum_{l=1}^{L} |p_l(f)|^2}} = \frac{\mathbf{p}(f)}{\|\mathbf{p}(f)\|_2}$ L Number of
sensors

Sample Covariance Matrix to reduce effect of source phase

Sound

of |S(f)|

$$\mathbf{C}(f) = \frac{1}{N_s} \sum_{s=1}^{N_s} \tilde{\mathbf{p}}_s(f) \tilde{\mathbf{p}}_s^H(f)$$

 N_s Number of snapshots

SCM is a conjugate symmetric matrix.

Input vector X to NN: the real and imaginary parts of the entries of diagonal and upper triangular matrix in $\mathbf{C}(f)$

ML source range classification

Array Data: 300–950Hz with 10Hz First NN is trained with one source increment, i.e., 66 frequencies. **Test-Data-1 Test-Data-2** 16 hydrophones with 1 m spacing predictions · **GPS** ranges 0 **FNN** 3.0 (d)3 hidden layers with 512 nodes (a) Range (km) 2.0 1.0 0 **SVM** 3.0 (b) (e) Range (km) **Radial basis Functions** 2.0 1.0 0 RF 3.0 (c) (f) Range (km) Random forest 2.0 1.0 0 60 80 100 20 80 100 20 60 40 0 40 0 Time [index] Niu 2017a, JASA Time [index]

Other parameters: FNN for range classification

DOA estimation with Neural Networks

5 layers with 1024 nodes fully connected 20 element array at $\lambda/3$ spacing, searching for 180 DOAs

DOA for two sources from SWELLEx96

DOA for two sources from SW06

5 layers with 1024 nodes fully connected One frequency (79 Hz), **L=10** snapshot

More snapshots give cleaner image

Deep Convolutional NN

Magnitude only localization

Single receiver, 3-16 km from source Multi-frequency 100-200 Hz, magnitude only

Much less input as sample covariance matrix is not needed. Magnitude is averaged directly

SAGA, multi frequency objective function

$$\phi_F(\Theta) = 1 - \frac{|\sum_{f=1}^F \hat{\mathbf{p}}(f) \hat{\mathbf{q}}(f, \Theta)|^2}{\sum_{f=1}^F |\hat{\mathbf{p}}(f)|^2 \sum_{f=1}^F |\hat{\mathbf{q}}(f, \Theta)|^2},$$

 \widehat{p} and \widehat{q} are magnitudes

ML and SAGA ranging

Statistics of location

Does ML beat SAGA?

Graph Signal Processing for locating a source

Location 1: Prince - "Sign o' the times"

Spectral coherence

$$\hat{C}_{ij}(f) = \frac{1}{N} \sum_{t=1}^{N} X_i(f,t) \cdot \bar{X}_j(f,t)$$
(Normalization:
|X(f,t)|²=1) 25

Two sources in the network

- Each sensor is a **node** in the graph. ٠
- If **nodes** *i* and *j* are significantly correlated • $|C_{ii}| > \xi$, then they share an **edge**.
- A **subgraph** has high spatial coherence across • a subarray (=> likely a source nearby).

Connected subgraphs: 5 nodes and 9 edges 8 nodes and 20 edges

 $\overline{)}$

 ∇

Graph clustering for localization within a sensor

array

Peter Gerstoft and Nima Riahi, **noiselab.ucsd.edu** Christoph Mecklenbrauker, TU Wien

Based on paper: Riahi and Gerstoft, Signal Processing, 2017

March 5—12, 2011: 3TB, 5200 Stations in Long Beach, California

Based on 9400 time windows x 10 frequency bins. Each dot is the center of a cluster. 90% of the clusters cover <1.5% of the area.

Few false detections

Riahi, Gerstoft, Signal Processing 2017

Noise Tracking of Cars/Trains/Airplanes

5200 element Long Beach array (Dan Hollis)

Riahi, Gerstoft, The seismic traffic footprint: Tracking trains, aircraft, and cars seismically, GRL 2015

Noise Tracking of Cars/Trains/Airplanes

Travel time tomography

Travel times from noise cross-correlations

distance = speed x time

slowness = 1/speed

• Task: Given travel times, estimate regional phase speed distribution

$$\mathbf{d} = \mathbf{A}\mathbf{m} + \mathbf{n},$$

d: M travel times

A: "Tomography matrix": ray paths through the discretized map m: N-pixel slowness image

Slowness map and measurements

- stations in red
- rays in blue

Sparse models and dictionaries

- Sparse modeling assumes each signal model can be reconstructed from a few vectors from a large set of vectors, called a dictionary D
- Adds auxiliary sparse model to measurement model

$$\mathbf{d} = \mathbf{Am} + \mathbf{n}, \ \mathbf{m} \approx \mathbf{Dx} \ \text{and} \ |\mathbf{x}| \ll Q$$

Optimization changes from estimating m to estimating sparse coefficients x

• Sparse objective: $\min_{\mathbf{x}} \|\mathbf{A}\mathbf{D}\mathbf{x} - \mathbf{d}\|_2$ subject to $\|\mathbf{x}\|_0 \leq T$

Dictionary learning and sparsity

unsupervised

- Dictionary learning obtains "optimal" sparse modeling dictionaries directly from data
- Dictionary learning was developed in neuroscience (a.k.a. sparse coding) to help understand mammalian visual cortex structure
- Assumes (1) <u>Redundancy in data</u>: image patches are repetitions of a few elemental shapes; and (2) <u>Sparsity</u>: each patch is represented with few atoms from dictionary

"Natural" images, patches shown in magenta

- Each patch is signal \mathbf{y}_i
- Set of all patches $\mathbf{Y} = [\mathbf{y}_1, ..., \mathbf{y}_I]$

Learn dictionary **D** describing $\mathbf{Y} = [\mathbf{y}_1, ..., \mathbf{y}_I]$

Sparse model for patch \mathbf{y}_i composed of few atoms from \mathbf{D}

$$\widehat{\mathbf{x}}_{i} = \arg\min_{\mathbf{x}_{i}} \|\mathbf{y}_{i} - \mathbf{D}\mathbf{x}_{i}\|_{2} \text{ subject to } \|\mathbf{x}_{i}\|_{0} \leq T$$
$$\mathbf{y} = \mathbf{y} = \mathbf{y} = \mathbf{z} \mathbf{x}_{1} + \mathbf{z} \mathbf{x}_{2} + \dots$$

Checkerboard dictionary example

LST slowness image and sampling

Slowness map and sampling:

- Discrete slowness map N=W1 x W2 pixels
- *I* overlapping $\sqrt{n} \times \sqrt{n}$ pixel patches
- *M* straight-ray paths

Tomography matrix
(straight ray) $\mathbf{A} \in \mathbb{R}^{M \times N}$ Slowness dictionary $\mathbf{D} \in \mathbb{R}^{n \times Q}$
 $Q \ll I$

"Local" model
$$\hat{\mathbf{x}}_i = \underset{\mathbf{x}_i}{\operatorname{arg\,min}} \|\mathbf{R}_i \mathbf{s}_s - \mathbf{D} \mathbf{x}_i\|_2^2$$
 subject to $\|\mathbf{x}_i\|_0 = T$
"Global" model $\mathbf{t} = \mathbf{A} \mathbf{s}_g + \epsilon$ $\hat{\mathbf{s}}_g = \underset{\mathbf{s}_g}{\operatorname{arg\,min}} \|\mathbf{t} - \mathbf{A} \mathbf{s}_g\|_2^2 + \lambda_1 \|\mathbf{s}_g - \mathbf{s}_s\|_2^2$,

Bayesian formulation

LST versus conventional tomography

Both use same travel times (from Fan-Chi Lin), unsupervised

LST 3 mill rays

Fan-Chi Lin, Geophysics, 8mill Rays

Predicting Earthquakes in Laboratory

• Kaggle competition.

Once they found a ML that could predict lab-EQ, they also could see the feature.

ML gives little or no insight into the model. We want the ML algorithm to provide a line of reasoning together with the calculated result. Not just the outcome of Bayes formalism.

=> That will come

	First princi	ples vs	Data driver	<u>۱</u>
Data	Small data		Big data to train	
Domain expertise	High reliance on domain expertise		Results with little domain knowledge	
Fidelity/ Robustness	Universal link can handle non- linear complex relations		Limited by the range of values spanned by training data	
Adaptability	Complex and time consuming derivation to use new relations		Rapidly adapt to new problems	
Interpretability	Parameters are physical!		Physically agnostic, limited by the rigidity of the functional form	
Perceived Importance.	Geophys	SignalProc	Peter	Googl

Summary

- Machine learning, big data, data science, artificial intelligence are similar.
- **Data science** has lots of opportunities in **geophysics**.
- Neural networks is one method. Similar methods are Support Vector Machines (SVM) and Random Forrest (RF). Use the latter for a first test.
- **Unsupervised learning** is more challenging than supervised learning
- We need explainable artificial intelligence. We want the ML algorithm to provide a line of reasoning together with the calculated result / fit / decision.

Actions: Download ML JASA review

TRY http://playground.tensorflow.org

Can ML

- Replace CTBTO processing chain?
- Discover PDE (Partial differential equation) in video?
- Find sea mines?
- Design metamaterials?
- Predict earthquakes?
- Replace 50 years of array processing
- Source location in the ocean waveguide w/o training.

FINITO