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Machine leaning  contains the mathematical tools we need to do 
data science

Can Machine Learning
• Replace CTBTO/SONAR processing chain?
• Discover PDE (Partial differential equation) in video?
• Find sea mines?
• Design metamaterials?
• Predict earthquakes?
• Source location in the ocean waveguide w/o training?
• Replace 50 years of array processing?
• Learn the physical model (sound speed, temperature…)

http://noiselab.ucsd.edu/


Machine learning versus knowledge based
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F=ma 
Introductory knowledge
First order
Analytic physical models

Data driven models
Little or no physics
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Non-linear
Numerical physical models

Amount of Knowledge

Hybrid model, combining 
machine learning and physics

Acoustic insight can be improved by leveraging the strengths of both physical 
and ML-based, data-driven models.



We can’t model everything…

Back scattering from fish school

Reflection from 
complex geology

Detection of mines. Navy uses dolphins 
to assist in this.
Dolphins = real ML!

Predict acoustic field in turbulence

Weather prediction



Machine Learning for physical Applications 
noiselab.ucsd.edu
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Murphy: “…the best way to make machines that can learn from 
data is to use the tools of probability theory, which has been 
the mainstay of statistics and engineering for centuries.“



SAGA (NURC 1992-97)  is also ML
SAGA has the features that characterize a ML approach:
• Data-driven
• Model based 
• Gaussian based likelihoods.
• Bayesian posterior probabilities 
Also later additions
• Sequential estimation
• Particle Filtering ENVIRONMENTAL 

INFORMATION

• Search parameters 
• parameter bounds

GENETIC  
ALGORITHMS (GA)

• Discretize parameters 
• Select “Populations” of  
   parameters

Use GA to generate new  
populations with better  
match to observed data

SYNTHETIC 
DATA

Forward models 
• OAST 
• OASR 
• SNAP 
• SNAPRD 
• PROSIM 
• POPP 
• TPEM

OBJECTIVE 
FUNCTION

• Bartlett 
• Matched filter 
• LSQ

OBSERVED DATA

• Single or multi frequency 
  pressure on a vertical array 
• Coherent or incoherent  
  transmisslon loss 
• Reflection coefficients 
• Reverberation data 
• Tropospheric data

INVERSION 
RESULT

• Best estimate 
• Uncertainty analysis

Feedback
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Gerstoft, 1994



Compressive beamforming is also ML
• Simulation
• Source 1 (50 m)
• Surface Interferer
• Freq. = 204 Hz
• SNR = 10 dB
• Int/S1 = 10 dB
• Stationary noise

SBL1

Bartlett

WNC -3dB

Xenaki 2014, 2015, Gemba 2017

Coherent

Incoherent

SNR=0dB

SNR=20dB

CS beamforming:
- single or multiple snapshots
- coherent or incoherent



• 42-page JASA review of ML theory. Available on arXiv or  
http://noiselab.ucsd.edu/.  (Pdf of talk is also there)

• Sections:
– Machine learning principles

• Supervised/ Unsupervised learning
– Deep learning
– Source localization in speech processing
– Source localization in ocean acoustics
– Bioacoustics
– Seismic exploration
– Perception of everyday sounds

• Reverberation
• Environmental sounds
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Acoustic data provide scientific and engineering insights in fields ranging from biology and
communications to ocean and Earth science. We survey the recent advances and transforma-
tive potential of machine learning (ML), including deep learning, in the field of acoustics. ML
is a broad family of statistical techniques for automatically detecting and utilizing patterns
in data. Relative to conventional acoustics and signal processing, ML is data-driven. Given
su�cient training data, ML can discover complex relationships between features. With large
volumes of training data, ML can discover models describing complex acoustic phenom-
ena such as human speech and reverberation. ML in acoustics is rapidly developing with
compelling results and significant future promise. We first introduce ML, then highlight ML
developments in five acoustics research areas: source localization in speech processing, source
localization in ocean acoustics, bioacoustics, seismic exploration, and environmental sounds
in everyday scenes.

c�2019 Acoustical Society of America. [http://dx.doi.org(DOI number)]

[XYZ] Pages: 1–42

I. INTRODUCTION

Acoustic data provide scientific and engineering in-
sights in a very broad range of fields including machine in-
terpretation of human speech1 and animal vocalizations,2

ocean source localization,3,4 and imaging geophysical
structures in the ocean.5,6 In all these fields, data analy-
sis is complicated by a number of challenges. These chal-
lenges include data corruption, missing or sparse mea-
surements, reverberation, and large data volumes. For
example, multiple acoustic arrivals of a single event or
utterance make source localization and speech interpre-
tation a di�cult task for machines.1,7 In many cases, such
as acoustic tomography and bioacoustics, large volumes
of data can be collected. The amount of human e↵ort re-
quired to manually identify acoustic features and events
rapidly becomes limiting as the size of the data sets in-
crease. Further, patterns may exist in the data that are
not easily ascertained by human cognition.

Machine learning (ML) techniques8,9 have enabled
broad advances in automated data processing and pat-
tern recognition capabilities across many fields, includ-
ing computer vision, image processing, speech process-

a)mbianco@ucsd.edu

ing, and (geo)physical science.10,11 ML in acoustics is
a rapidly developing field, with many compelling solu-
tions to the aforementioned acoustics challenges. The
potential impact of ML-based techniques in the field of
acoustics, and the recent attention they have received,
motivates this review.

ML, broadly defined, is a family of statistical tech-
niques for automatically detecting and utilizing patterns
in data. The patterns obtained are used to predict future
data or make decisions from uncertain measurements.
In this way ML provides a means for machines to gain
knowledge, or to ‘learn’.12,13 ML methods are often di-
vided into two major categories: supervised and unsu-
pervised learning. There is also a third category, called
reinforcement learning but we do not discuss it here. In
supervised learning, the goal is to learn a predictive map-
ping from inputs to outputs given labeled input and out-
put pairs. The labels can be categorical or real-valued
scalars for classification and regression, respectively. In
unsupervised learning, no labels are given, and the task
is to discover interesting or useful structure within the
data. An example of unsupervised learning is clustering
analysis (e.g. K-means14). Other paradigms exist but are
beyond the scope of this paper. Supervised and unsuper-
vised modes can also be combined. Names semi- and

J. Acoust. Soc. Am. / 23 June 2019 JASA 1
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ML Principles
In ML, we are often interested in training a model to produce a desired output 
given inputs,

y=f(x) +𝝐
• Input x ∈ ℝ$, N features
• output y ∈ ℝ%, P outputs

• Supervised learning: the P outputs have labelled examples (response 
variables y)

• Unsupervised learning: there are no labels. The goal is to find interesting 
properties from x, as an autoencoder &x=f(x)

• ….. and we train the model

Features               Output



Two ways to make computers do what you want:
In Image processing this has been done:
1) Hand-engineered design: Consciously 
figure out exactly how to manipulate 
symbolic representations to perform the 
task and then tell the computer in detail 
what to do.

2) Learning: Show computers lots of 
examples of input with desired outputs. Let 
the computer learn how to map inputs to 
outputs using general purpose learning 
procedure

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Attempts have been made

15

John Canny, “A Computational Approach to Edge Detection”, IEEE TPAMI 1986

Find edges Find corners

?



Two ways to make computers do what you want:
In Ocean acoustics:
1) Hand-engineered design: See the 1000 
papers on Match Field Processing! 
Sometimes it works…
=> Old School

2) Learning: Show computers lots of 
examples of input with desired outputs. Let 
the computer learn how to map inputs to 
outputs using general purpose learning 
procedure

(b)

(a)

(c)

(b)

(a)

(c)

740 10 Signals in Noise

Fig. 10.17 Matched-field ambiguity surfaces for two 130-dB sources placed 100 m apart (rs1 D
10:0 km, rs2 D 10:1 km, zs D 50 m) and with no mismatch. (a) Bartlett, (b) MV, (c) MCM



What is an artificial neuron?

We simplify a real neuron to investigate how neurons can do 
computations that are too difficult to program as

• Converting image pixel intensity into string of words 
describing it

ReLu

0
0



What is artificial neural network 

Connecting  neurons in layers with no cycles gives a feed-forward neural 
net (FNN).

Output neurons

Input neurons

Multiple layers of hidden neurons
Hidden layers

𝑎( = ReLu 𝒘/𝒙 = ReLu ∑234$ 𝑤2𝑥2



Supervised training vs backpropagatoin
Supervised training is inefficient:
• Take a few of the training cases and 

measure the NN output. (called 
stochastic sampling)

• Change one weight slightly.
• If NN output improved, keep it.

• Backpropagation efficiently compute how a change in weight 
effects the NN output.

• The error gradients for all of the weights is obtained at once. 
The chain rule dictates how the NN output change for each 
weight.



How to learn many layers of features 
Compare outputs with the correct 
answer to get the error signal

Output neurons

Input neurons

Hidden layers

Back-propagate error 
signal to get 
derivatives for learning

For L layers with N neurons, we have N2L weights



Matched-Field Processing on test data 1 

120

synthetic replicas           measured replicas

Noise09 Frequencies [300:10:950]Hz 

Mean Absolute Percentage Error error of MFPs:   55% and 19%

D = 152 m

Zs = 5 m

R = 0:1! 2:86 km

Zr = 128! 143 m

"z = 1 m

Layer
Cp = 1572! 1593 m=s

; = 1:76 g=cm3 ,p = 2:0 dB=6
24 m

Halfspace Cp = 5200 m=s

; = 1:8 g=cm3 ,p = 2:0 dB=6

(a)

𝐵 = p9Cp

Niu 2017a, JASA



Pressure data preprocessing

16

Sound 
pressure

Source term

Normalize pressure 
to reduce the effect 
of            

Number of 
sensors

Sample Covariance 
Matrix to reduce effect 
of source phase 

Number of 
snapshots

Input vector X to NN: the real and imaginary parts of the entries of 
diagonal and upper triangular matrix in 

SCM is a conjugate symmetric matrix.



ML source range classification
Array Data: 300–950Hz with 10Hz 
increment, i.e., 66 frequencies. 
16 hydrophones with 1 m spacing

FNN
3 hidden layers with 512 nodes

SVM
Radial basis Functions

RF  
Random forest

Test-Data-1    Test-Data-2

Niu 2017a, JASA

First NN is trained with one source



Other parameters: FNN for range classification

1 snapshot

5 snapshot

20 snapshot

13 Output

690 Output

138 Output
Conclusion
- Easier than conventional 

MFP
- Classification easier than 

regression
- FNN, SVM, RF works.
- Works for:

- multiple ships,
- Deep/shallow water

Niu 2017a, JASA

60s Science
Scientfic Am



DOA estimation with Neural Networks

Array SNR=0dBSNR=100dB

5 layers with 1024 nodes fully connected
20 element array at 𝜆/3 spacing, searching for 180 DOAs 

Ozanich 2019

Time (samples) Time (samples)

Coherent sources.

N = 20 
elements

DOA = °
Magnitude = 1

DOA = °
Magnitude = 1



DOA for two sources from SWELLEx96
5 layers with 1024 nodes fully connected
One frequency (79 Hz), L=1 snapshot
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DOA for two sources from SW06
5 layers with 1024 nodes fully connected
One frequency (79 Hz), L=10 snapshot

More snapshots give cleaner image

CBFNN SBL

Ozanich 2019



Deep Convolutional NN

Bianco 2019, Niu 2019, 

CNN uses less 
weights than FNN



Magnitude only localization

FIG. 11. (Color online) (a) Experiment geometry; (b) The

waveform of one received airgun signal; Spectrograms of 80

airgun signals normalized using (c) Eq. (3) and (d) Eq. (4);

(e) The spectrum comparison for the 40th signal.

B. Results

Source localization is performed following the steps
described in Sec. II C. As depicted in Fig. 3, the pre-
processed signals are first fed to ResNet50-1 for range
interval determination. Subsequently, the inputs are pro-

cessed by the corresponding models ResNet50-2-x-R and
ResNet50-2-x-D for range and depth estimation. The
ResNet50 models obtained in Sec. III are tested on the
experimental data.

It is of interest to compare the focalized MFP with
the deep learning method. The focalized MFP is im-
plemented using SAGA43 software package (i.e., an im-
plementation based on focalized MFP15,25 using the en-
vironmental parameters in Table II). The normal mode
code SNAP43 is used to generate the replicas in SAGA.
There are 10 unknown parameters including source range
and depth searched in SAGA. The optimal parame-
ters are obtained by minimizing the following frequency-
coherent objective function:

�F (⇥) = 1�
|
PF

f=1 p̂(f)q̂(f,⇥)|2
PF

f=1 |p̂(f)|
2
PF

f=1 |q̂(f,⇥)|2
, (14)

where ⇥ represents the unknown parameter set. p̂(f)
and q̂(f) are the piecewise normalized magnitudes of
measured and replica fields (i.e. Eq. (4)) at the fth fre-
quency.
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FIG. 12. (Color online) Predicted source ranges (a) and

depths (b) by the deep learning and SAGA methods.

The range and depth estimated by the ResNet50-2-x-
R and ResNet50-2-x-D are shown in Figs. 12(a) and (b),
along with the predictions calculated by SAGA. The mea-
surements of ranges and depths are also given in Fig. 12
for comparison. Overall, the range predictions by deep
learning and SAGA fit the GPS data well except for some

10 J. Acoust. Soc. Am. / 6 June 2019 JASA/Deep learning for source localization

SAGA, multi frequency objective function

Single receiver, 
3-16 km from source
Multi-frequency 100-200 Hz, 
magnitude only

Much less input as sample covariance 
matrix is not needed. Magnitude is 
averaged directly

Niu 2019

<𝒑 and <𝒒 are magnitudes



ML and SAGA ranging

Niu JASA 2019
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f = 750 
Hz

Graph Signal Processing for locating a source

25

Location 1: Prince - “Sign o’ the times”

Location 2: Otis Redding - “Hard to handle”

Spectral coherence 
between i and j

i j

(Normalization: 
|X(f,t)|2=1)

30-microphone array

Riahi 2017

unsupervised



Two sources in the network

26

Statistically significant entries 
=> Connectivity matrix

Connected subgraphs:
5 nodes and 9 edges

8 nodes and 20 edges

Graph with 30 nodes

• Each sensor is a node in the graph.
• If nodes i and j are significantly correlated 

|Cij|>ξ, then they share an edge.
• A subgraph has high spatial coherence across 

a subarray (=> likely a source nearby).

Riahi 2017



7 km

10 
km

Graph clustering for localization within a sensor 
array

Peter Gerstoft and Nima Riahi,      noiselab.ucsd.edu
Christoph Mecklenbrauker, TU Wien

March 5—12, 2011:  3TB, 5200 Stations in Long Beach, California
Based on paper: Riahi and Gerstoft, Signal Processing, 2017



UTME [km]
389 390 391 392 393 394 395

U
TM

N

3736

3737

3738

3739

3740

3741

3742

3743

3744

3745

05:53:09--05:55:06h
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Aliased 
energy

12 Hz

Helicopter rotor noise (seismo-acoustic coupling)
Several peaks consistent with helicopter rotor harmonics 
(20-100 Hz). 
Doppler shift 
fhigh/flow=(v0+v)/(v0-v)≈1.4 i.e. v≈250 km/h
Speed over ground 7km/2min=210km/h

✓ Rotor frequencies

✓ Doppler frequency shift

✓ Movement in map

47 Hz
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10-19Hz 40-49Hz

Clusters on March 10

Based on 9400 time windows x 10 frequency bins.
Each dot is the center of a cluster. 90% of the clusters cover <1.5% of the area.
Few false detections

pump jacks and drill rigs
2: Pumping facility

Long Beach light rail
(Blue Line Metro)

airport

Golfcourse

Riahi, Gerstoft, Signal Processing 2017 



Noise Tracking of Cars/Trains/Airplanes

5200 element Long Beach array (Dan Hollis)

Riahi, Gerstoft, The seismic traffic footprint: Tracking trains, aircraft, and cars seismically, GRL 2015 
30



Noise Tracking of Cars/Trains/Airplanes

Total seismic power on 
receivers close to the 
runway. 1 sec segments 
used. Plot probably 
shows an airplane taking 
off from the Southern 
end of the runway in 
Long Beach airport 
(bottom in left satellite 
picture). Take off velocity 
~50m/s.

Accelerating airplane on Long Beach 
airport runway, moving northwest 
and taking off at about 120 mi/h.

Riahi, Gerstoft, GRL 2015 
31
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March 7th, 6-7am, rush hour, Blue Line



• Task: Given travel times, estimate regional phase speed distribution

Travel times from noise cross-correlations

Low Velocity 
Region~Sedimentary 
basins A: San 
Joaquin, B: Ventura, 
C: L.A., D: Salton 
Sea, E: Peninsular 
range, F: Sierra 
Nevada 

M travel times
"Tomography matrix": ray paths through the discretized map

N-pixel slowness image

Slowness map and 
measurements
- stations in red
- rays in blue

distance = speed x time

slowness = 1/speed

Travel time tomography



Sparse models and dictionaries
• Sparse modeling assumes each signal model can be reconstructed from a 

few vectors from a large set of vectors, called a dictionary D
• Adds auxiliary sparse model to measurement model

• Optimization changes from estimating m to estimating sparse coefficients x

dictionary

error

• Sparse objective:



Dictionary learning and sparsity

"Natural" images, patches shown in magenta Learn dictionary D describing

• Dictionary learning obtains "optimal" sparse modeling dictionaries directly from data
• Dictionary learning was developed in neuroscience (a.k.a. sparse coding) to help 

understand mammalian visual cortex structure
• Assumes (1) Redundancy in data: image patches are repetitions of a few elemental 

shapes; and (2) Sparsity: each patch is represented with few atoms from dictionary

Olshausen 2009

• Each patch is signal
• Set of all patches

Sparse model for patch      composed of few atoms from D

Bianco 2018, 2019

unsupervised



Checkerboard dictionary example

Dictionary

10x10 pixel patchesSlowness

Natural image

Bianco 2018, 2019



Pixels and “patches”

LST slowness image and sampling

Slowness map and sampling:
• Discrete slowness map  N=W1 x W2 pixels 
• overlapping                   pixel patches
• M straight-ray paths

“Local” model

“Global” model

Tomography matrix
(straight ray)

Slowness dictionary

Slowness map and 
measurements
- stations in red
- rays in blue

Bayesian formulation



LST versus conventional tomography
Both use same travel times (from Fan-Chi Lin), 
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each location by five cubic B-splines as shown in Figure 8a. In the
inversion, we fix theVP∕VS ratio and the density models (Figure 8b)
and only perturb the shear velocity model. We minimize the misfit
between observed and predicted dispersion curves (Herrmann and
Ammon, 2002) through a steepest descent nonlinear inversion
method (Lin et al., 2012). A half-space model beneath 1-km depth
is used. Tests show that small changes in the VP∕VS ratio and den-
sity models do not change the inverted shear velocity model signifi-
cantly. Figure 7b shows the inverted shear velocity models for the
two sample locations, and the predicted dispersion curves are shown
in Figure 7a.

RESULTS AND DISCUSSION

3D model

The compilation of all the inverted 1D models at different
locations is used to construct the 3D model. The shear velocity
model at three different depths is shown in Figure 9, where the aver-
age 1D model for the whole area is shown in Figure 10a. In general,

at 100-, 300-, and 650-m depths, the model shows very similar
velocity patterns as observed in Rayleigh wave phase velocity maps
at 2, 1, and 0.67 Hz, respectively (Figures 5 and 6). This is expected
considering the depth sensitivity kernels of the Rayleigh waves
(Figure 10b).
At shallow depths (<100 m; e.g., Figure 9a), a clear north–south

dichotomy with the transition near the Newport-Inglewood fault is
observed. The velocity difference, slow in the south and fast in
the north, can be due to the difference in geologic history and
the aquifer system separated by the fault zone. The Newport-
Inglewood fault zone is a right-lateral transpressional system, which
manifests itself as a line of hills on the earth surface and is a natural
geologic boundary in the area (Wright, 1991; Wesnousky, 2005). At
greater depths (>200 m; e.g., Figure 9b and 9c), a fast anomaly
associated with the Newport-Inglewood fault system starts to
emerge likely related to deeper earth material exhumed due to
the deformation process. Figure 11 shows three north–south cross
sections of the model. A clear north–south dichotomy in the top
100 m is again evident. Spatial variations of the fault-related fast
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Figure 5. The 1-Hz Rayleigh wave phase velocity map (upper) and its associated uncertainty estimation (lower) based on different numbers of
virtual sources. The number of virtual sources in each plot is shown on the top. Besides N equals to 5204, where all stations are used, the
triangles in the lower plots show the virtual source locations used.

Q50 Lin et al.
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each location by five cubic B-splines as shown in Figure 8a. In the
inversion, we fix theVP∕VS ratio and the density models (Figure 8b)
and only perturb the shear velocity model. We minimize the misfit
between observed and predicted dispersion curves (Herrmann and
Ammon, 2002) through a steepest descent nonlinear inversion
method (Lin et al., 2012). A half-space model beneath 1-km depth
is used. Tests show that small changes in the VP∕VS ratio and den-
sity models do not change the inverted shear velocity model signifi-
cantly. Figure 7b shows the inverted shear velocity models for the
two sample locations, and the predicted dispersion curves are shown
in Figure 7a.

RESULTS AND DISCUSSION

3D model

The compilation of all the inverted 1D models at different
locations is used to construct the 3D model. The shear velocity
model at three different depths is shown in Figure 9, where the aver-
age 1D model for the whole area is shown in Figure 10a. In general,

at 100-, 300-, and 650-m depths, the model shows very similar
velocity patterns as observed in Rayleigh wave phase velocity maps
at 2, 1, and 0.67 Hz, respectively (Figures 5 and 6). This is expected
considering the depth sensitivity kernels of the Rayleigh waves
(Figure 10b).
At shallow depths (<100 m; e.g., Figure 9a), a clear north–south

dichotomy with the transition near the Newport-Inglewood fault is
observed. The velocity difference, slow in the south and fast in
the north, can be due to the difference in geologic history and
the aquifer system separated by the fault zone. The Newport-
Inglewood fault zone is a right-lateral transpressional system, which
manifests itself as a line of hills on the earth surface and is a natural
geologic boundary in the area (Wright, 1991; Wesnousky, 2005). At
greater depths (>200 m; e.g., Figure 9b and 9c), a fast anomaly
associated with the Newport-Inglewood fault system starts to
emerge likely related to deeper earth material exhumed due to
the deformation process. Figure 11 shows three north–south cross
sections of the model. A clear north–south dichotomy in the top
100 m is again evident. Spatial variations of the fault-related fast
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Figure 5. The 1-Hz Rayleigh wave phase velocity map (upper) and its associated uncertainty estimation (lower) based on different numbers of
virtual sources. The number of virtual sources in each plot is shown on the top. Besides N equals to 5204, where all stations are used, the
triangles in the lower plots show the virtual source locations used.
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Predicting Earthquakes in Laboratory
• Kaggle competition.

Geophysical Research Letters 10.1002/2017GL074677

Experimental run time

S
tr

es
s

S
tr

ai
n

Physics of
distant failure

Physics of
imminent failure

Impulsive & tremor-like signalsTremor-like signals
(amplitude x10)

a

b c

Figure 3. The physics of failure. The RF identifies two classes of signals and uses them to predict failure. (a) Shear stress
and dynamic strain encompassing two failure events. (b) Zoom of dynamic strain when failure is in the distant future.
This newly identified signal, termed “laboratory tremor” offers precise predictive capability of the next failure time.
(c) Zoom of a classic, impulsive acoustic emission observed in the critically stressed region just preceding failure
(note that vertical scale is different for two signals). Such signals are routinely identified preceding failure in the shear
apparatus, in brittle failure in most materials and in some earthquakes. Data are from experiment number p2394.

series carry quantitative frictional state information (see Figures S3 and S4), informing the RF of when the next
slip event will occur. If true, this is a remarkable observation in itself. We are currently working on the relation
between the signal variance and friction to determine if indeed there is a direct link.

There are a number of issues to consider in applying what we have learned to Earth. The laboratory shear rates
are orders of magnitude larger than Earth (5μm/s versus mms-cms/yr). The laboratory temperature conditions
in no way resemble those in Earth, while the pressures could be representative of in situ pressures when fluid
pressures are large. While it is a significant leap linking the laboratory studies to Earth scale, we know from
past work (Goebel et al., 2013; Johnson et al., 2013) that the fundamental scaling relation in fault physics, the
Gutenberg-Richter relation calculated from the laboratory precursors (Gutenberg & Richter, 1949), is within
the bounds observed in Earth (Goebel et al., 2013; Johnson et al., 2013). This similarity implies that some of
the important fault frictional physics scale. A laboratory experiment clearly cannot capture all of the physics
of a complex rupture in Earth. Nevertheless, the machine learning expertise we are developing as we move
from the laboratory to Earth will ultimately guide further work at large scale.

4. Conclusion

To summarize, we show that ML applied to this experiment provides accurate failure forecasts based on the
instantaneous analysis of the acoustic signal at any time in the slip cycle and reveals a signal previously
unidentified. These results should suffice to encourage ML analysis of seismic signals in Earth. To our knowl-
edge, this is the first application of ML to continuous acoustic/seismic data with the goal of inferring failure
times. These results suggest that previous analyses based exclusively on earthquake catalogs (Alves, 2006;
Alexandridis et al., 2014; Keilis-Borok et al., 1988; Liu et al., 2005) may be incomplete. In particular, ML-based
approaches mitigate human bias by automatically searching for patterns in a large space of potentially
relevant variables. Our current approach is to progressively scale from the laboratory to the Earth by apply-
ing this approach to Earth problems that most resemble the laboratory system. An interesting analogy to
the laboratory may be faults that exhibit small repeating earthquakes. For instance, fault patches located
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Figure 1. Random Forest (RF) approach for predicting time remaining before failure. (a) Shear stress (black curve)
exhibits sharp drops, indicating failure events (laboratory earthquakes). We wish to predict the time remaining before
the next failure derived from the shear stress drops (red curve), using only the (b) acoustic emission (dynamic strain)
data. The dashed rectangle represents a moving time window; each window generates a single point on each feature
curve below (e.g., variance and kurtosis). (c) The RF model predicts the time remaining before the next failure by
averaging the predictions of 1,000 decision trees for each time window. Each tree makes its prediction (white leaf node),
following a series of decisions (colored nodes) based on features of the acoustic signal during the current window
(see supporting information S1). (d) The RF prediction (blue line) on data it has never seen (testing data) with 90%
confidence intervals (blue shaded region). The predictions agree remarkably well with the actual remaining times
before failure (red curve). We emphasize that the testing data are entirely independent of the training data, and were
not used to construct the model. Data are from experiment number p2394.

when making a prediction (blue curve): each prediction uses only the information within one single time
window of the acoustic signal. Thus, by listening to the acoustic signal currently emitted by the system, we
predict the time remaining before it fails—a “now” prediction based on the instantaneous physical charac-
teristics of the system that does not make use of its history. We quantify the accuracy of our model using R2,
the coefficient of determination.

A naive model based exclusively on the periodicity of the events (average interevent time) only achieves an
R2 performance of 0.3 (see Figure S2). In comparison, the time to failure predictions from the RF model are
highly accurate, with an R2 value of 0.89. Surprisingly, the RF model accurately predicts failure not only when
failure is imminent but also throughout the entire laboratory earthquake cycle, demonstrating that the sys-
tem continuously progresses toward failure. This is unexpected, as impulsive precursors are only observed
while the system is in a critical stress state. We find that statistics quantifying the signal amplitude distribution
(e.g., its variance and higher-order moments) are highly effective at forecasting failure. The variance, which
characterizes overall signal amplitude fluctuation, is the strongest single feature early in time (Figure 1b).
As the system nears failure, other outlier statistics such as the kurtosis and thresholds become predictive as
well. These outlier statistics are responding to the impulsive precursor AE (Figure 3c) typically observed as
a material approaches failure (Huang et al., 1998), including those under shear conditions in the laboratory
(Johnson et al., 2013) and in Earth (Bouchon et al., 2013, 2016; Wyss & Booth, 1997). These signals are due to
small, observable shear failures within the gouge immediately preceding the laboratory earthquake (Johnson
et al., 2013).
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Once they found a ML that 
could predict lab-EQ, they 
also could see the feature.

ML gives little or no insight into the model. We 
want the ML algorithm to provide a line of 
reasoning together with the calculated result. 
Not just the outcome of Bayes formalism. 

=> That will come
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Summary
• Machine learning, big data, data science, artificial intelligence are similar.
• Data science has lots of opportunities in geophysics.
• Neural networks is one method. Similar methods are Support Vector Machines 

(SVM) and Random Forrest (RF). Use the latter for a first test.
• Unsupervised learning is more challenging than supervised learning
• We need explainable artificial intelligence. We want the ML algorithm to provide a 

line of reasoning together with the calculated result / fit / decision.

Actions: Download  ML JASA review
• TRY http://playground.tensorflow.org

Can ML
• Replace CTBTO processing chain?
• Discover PDE (Partial differential equation) in video?
• Find sea mines?
• Design metamaterials?
• Predict earthquakes?
• Replace 50 years of array processing
• Source location in the ocean waveguide w/o training.

http://playground.tensorflow.org/
http://playground.tensorflow.org/
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