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Geoacoustic inversion estimates environmental parameters from measured acoustic fields !e.g.,
received on a towed array". The inversion results have some uncertainty due to noise in the data and
modeling errors. Based on the posterior probability density of environmental parameters obtained
from inversion, a statistical estimation of transmission loss !TL" can be performed and a credibility
level envelope or uncertainty band for the TL generated. This uncertainty band accounts for the
inherent variability of the environment not usually contained in sonar performance prediction model
inputs. The approach follows #Gerstoft et al. IEEE J. Ocean. Eng. 31, 299–307 !2006"$ and is
demonstrated with data obtained from the MAPEX2000 experiment conducted by the NATO
Undersea Research Center using a towed array and a moored source in the Mediterranean Sea in
November 2000. Based on the geoacoustic inversion results, the TL and its variability are estimated
and compared with the measured TL. © 2007 Acoustical Society of America.
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I. INTRODUCTION

Geoacoustic inversion using matched-field processing is
a model-based technique that has been applied successfully
to derive environmental and seabed parameters for propaga-
tion prediction.1–4 Computer simulations are used to model
the acoustic response to different sea-bed types !forward
models", and efficient search algorithms used to find the en-
vironment giving an optimal match between the modeled and
measured data. It should be noted, however, that inverse
problems are usually under-determined, and solutions may
not be unique. For example, if the results of the inversion are
only required for sonar performance prediction, it is only the
resulting acoustic field in the water that matters, often at long
range and within a restricted range of frequencies. In this
context, a precise description of the seabed is not necessary,
and it usually is sufficient to describe a simpler “effective”
seabed model having a similar acoustic effect on the under-
water sound field within the range-frequency domain of
interest.5

By far, a sound source in combination with a receiving
vertical line array !VLA" is the most common configuration
for collection of acoustic data for geoacoustic inversion. It is
a sensible choice as the propagating acoustic field is received
at almost all angles if the VLA spans a large portion of the
water column. The use of horizontal line arrays !HLAs" has
been gaining in popularity as it offers several advantages
over a VLA. This includes the ease of deployment from a
ship, and the ability to cover large areas of interest as the

ship travels, together with either a separate towed source,2,6,7

or using the ship self-noise for inversion.8,9 Others have used
bottom-moored horizontal line arrays and a towed source.3,10

In this paper, a towed array with a fixed source was used for
geoacoustic inversion, which to the authors’ knowledge, is a
setup that has not been presented in current literature on
geoacoustic inversion.

There are uncertainties associated with the seabed pa-
rameters obtained from geoacoustic inversion, and in this
paper, the mapping of these uncertainties to the transmission
loss domain is also presented. This has been performed using
results from a VLA with a moving source.11,12 In this paper,
we present results obtained using a HLA with a stationary
source. Sonar performance prediction using a probability
density function based on environmental variability has also
been discussed in Refs. 13–15.

II. PARAMETER ESTIMATION USING GENETIC
ALGORITHMS AND INVERSION PROCEDURE

A. Base line environment model

The base line environmental model established for the
North Elba site from Ref. 16 was used. Figure 1 illustrates
the base line environmental model, comprising the water col-
umn, a constant thickness sediment layer with depth depen-
dent sound speed increasing with depth, and a bottom half-
space layer.

B. Inversion procedure and cost function

The inversion is performed as follows:
!1" Record the acoustic field at the site of interest.
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!2" Choose a suitable propagation model. In this paper,
the NURC SNAP normal-mode propagation model,17 which
is robust, fast, and suitable for low frequencies, was used.

!3" Choose a suitable cost function to minimize. The
phone-coherent method traditionally has been used. How-
ever, recent analysis2,7,18 has shown that frequency-coherent
matched-field inversion works well for multi-frequency HLA
data when the source spectrum is known, where matched-
field correlations between data and replica frequency vectors
are performed coherently over frequency but incoherently
over range !hydrophones". The frequency-coherent cost
function is derived using the maximum likelihood method in
Sec. III A and is given by
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In Eqs. !1" and !2", NF is the number of frequency compo-
nents, NH is the number of hydrophones, aij corresponds to
the modeled Green’s function !* denotes the complex conju-
gate", qij is the measured complex pressure, and s!" j" is the
complex source term at the jth frequency. In Eq. !2", the
correlation is between the measured and modeled acoustic
pressure vectors. The cost function takes on a value of 0 for
two identical signals and 1 for completely uncorrelated sig-
nals.

Equation !2" may be expressed equivalently as
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In Eq. !3", the correlation is between the measured and mod-
eled Green’s function, where the measured Green’s function
is obtained by dividing the measured acoustic data qij by the
known source spectrum over the frequency band. Equation
!2" is preferred as Eq. !3" may suffer from numerical insta-
bilities when s!" j" is close to zero. Note that the source term

needs to be explicitly included in the frequency-coherent
cost function in both Eqs. !2" and !3".

The frequency-coherent cost function was used in this
paper, as we found the phone-coherent method yields worse
results, as in Refs. 2, 7, and 18.

!4" An efficient algorithm is needed to navigate the enor-
mous search space and find the global minimum of the cost
function. In this paper, a genetic algorithm search is used
with the propagation model SNAP as implemented in the in-
version package, SAGA,19 40,000 forward models were used
in the inversion searches. Reference 20 provides a detailed
description of GA and their application to geoacoustic pa-
rameter estimation.

III. MAPPING GEOACOUSTIC PARAMETER
UNCERTAINTIES TO TRANSMISSION LOSS DOMAIN

The mapping of geoacoustic parameter uncertainties to
the transmission loss !TL" domain has been described in
Refs. 11 and 12 and is summarized in this section for com-
pleteness.

Figure 2 summarizes the estimation of TL !usage do-
main U" from ocean acoustic data observed on a vertical or
horizontal array !data domain Q".11 Based on the ocean
acoustic data, we statistically characterize TL, the usage do-
main U. The vector qi represents the acoustic data observed
at the ith hydrophone and the vector u represents TL at sev-
eral ranges and depths. This is mapped via a set of environ-
mental parameters m in the environmental domain M. Both
the experimental data qi and the usage domain quantity u are
related to m via forward models Q!m" and U!m". The geoa-
coustic inverse problem is solved as an intermediate step to
obtain the posterior distribution of environmental parameters
p!m (qi". We are not just interested in the environment itself,
but also a statistical estimation of the TL field. Based on the
posterior distribution p!m (qi", the probability distribution of
the TLp!u (qi" is obtained via Monte Carlo integration. From
this TL probability distribution, all relevant statistics of TL
such as the median, percentiles and correlation coefficients
can be obtained. The vector u is used to denote the transmis-
sion loss as a K-dimensional vector at discrete !rk ,zk" posi-
tions, where uk=u!rk ,zk".

FIG. 1. !Color online" The base line environmental model for the North
Elba experiment site !see Ref. 16".

FIG. 2. An observation q !!Q" is mapped into a distribution of environ-
mental parameters m !!M" that potentially could have generated it. These
environmental parameters are then mapped into the usage domain U.
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A. Frequency-coherent likelihood and cost functions

The likelihood function for the frequency-coherent
model #Eq. !4"$ is derived following a similar approach as in
Refs. 21 and 22 which focused on the phone-coherent model.

In the case of the coherent Bartlett processor, the source
strength is known from frequency to frequency in a relative
sense, but the absolute amplitude and phase are unknown.
This is often the case, for example, when a Linear Frequency
Modulation !LFM" signal is transmitted, where the absolute
amplitude and phase are unknown. At a single phone, the
relation between the observed complex-valued data vector
qi= #qi!"1" . . .qi!"NF

"$T and the modeled data may be de-
scribed by the model23

qi = #Sai!m" + e . !4"

Here S is the diagonal matrix with its diagonal being the
source vector at zero phase,

S = +
s!"1" 0 . . . 0
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, ! ,
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"
- ,

and #=Aei$ represents the unknown amplitude scaling and
phase shift which are independent of frequency. The Green’s
function ai!m" at the corresponding NF frequencies is ob-
tained using an acoustic propagation model and an environ-
mental model m. The error term is represented by e.

In the Bayesian inference framework, the solution to the
inverse problem is given by

p!m(qi" =
p!qi(m"p!m"

p!qi"
% L!m"p!m" , !5"

where L!m" is used to denote the likelihood function
p!qi (m".

Following the derivation in Ref. 11 where the error vec-
tor e is assumed to be Gaussian distributed with zero mean
and covariance Ce=&I, the likelihood function is given by
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Here, & is assumed to be constant over the frequency band.
The maximum-likelihood estimate of # is obtained by

solving # log L
## =0, giving
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Substituting #ML back into Eq. !6", the likelihood function is
then
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where
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is the cost function for the ith hydrophone. For a single re-
ceiver, the cost function in Eq. !1" can be obtained by nor-
malizing Eq. !9" with /qi/2. For NH hydrophones, the likeli-
hood function may be written as

L!m,!" = &
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where the noise variance &i is assumed to be different at
different hydrophones.

For an HLA, the noise variance at the first hydrophone
could be different from the last hydrophone due to distance
from the towing vessel and different flow noise. The error
variance ! may be treated as a nuisance parameter and elimi-
nated via integrating Eq. !10" weighted by a noninformative
prior of !#p!&i"%1/&i$ over its entire range24
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0

(

¯ 1
0
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!11"

Integrating out !, the likelihood function for the
frequency-coherent cost function case is then

L!m" =
1

'NF
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or,
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where !̄Fi

g !m"=
NH2&
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!Fi
!m" is the geometric mean of the

cost function over NH hydrophones. The cost function de-
fined in Eq. !2" is thus derived from the likelihood function
L!m".

The above derivation assumes that the errors are inde-
pendent across both spatial samples of the acoustic field and
frequencies. In practice, these errors may be strongly corre-
lated, for example, when the dominant source of errors is due
to frequency-dependent modeling mismatch, the modeling
errors may not be independent across the frequencies used.
In this case, the full data error covariance matrix Ce, which
would be nondiagonal in general, should be used.25

B. Prediction in the TL domain

Probability density functions that describe yet unob-
served events are referred to as predictive distributions. The
posterior predictive distribution of u for a set of discrete
ranges and depths given the observed acoustic data qi may
be obtained by integrating the values of the TL with respect
to the posterior distribution of the model parameters11

J. Acoust. Soc. Am., Vol. 122, No. 5, November 2007 Goh et al.: Statistical estimation of transmission loss 2573



p!u(qi" = 1
M

)!U!m" − u"p!m(qi"dm . !14"

It is possible to implement Eq. !14" directly using Markov
chain Monte Carlo !MCMC" methods described in the next
subsection. The posterior distribution p!u (qi" carries all the
information about TL in the presence of the geoacoustic in-
version uncertainties. As the predictive distributions are not
necessarily Gaussian, it is preferable to characterize the dis-
tributions with medians and distance between the 5th and
95th percentiles instead of means and standard deviations.
The *th percentile of the TL distribution at a given position,
denoted by u*, is computed by finding the TL value that
satisfies

1
−(

u*

p!u(qi"du = */100. !15"

The present formulation in the usage domain, Eq. !14",
has the advantage that it is easy to incorporate additional
independent information about the environment m, as carried
out in Eqs. !16"–!18". If the additional parameters ma with
probability density p!ma" are independent of m, then

p!u(qi" = 1
Ma

)!U!m,ma" − u"p!m(qi"p!ma"dmdma,

!16"

where Ma is the environmental domain spanned by m and
ma. Equation !16" is used in the computation of the influence
of sound speed variability on TL prediction in Sec. VI.

In addition, suppose the posterior distribution p!mi (qi"
of a parameter mi from m is not the correct distribution to be
used in mapping to the usage domain !e.g., assumption of
constant source depth throughout the trial". Under the as-
sumption that this parameter is independent of the other pa-
rameters and the observed data vector qi, p!mi (qi" can be
replaced with an alternative distribution p!mi". Then

p!u(qi" = 1
M

)!U!mi,m−i" − u"p!m−i(qi"p!mi"dmidm−i,

!17"

where m−i is the parameter vector m with its ith component
removed. This is used for including uncertainty in the source
depth using statistics from the matched-field estimated
source depths in the TL prediction in Sec. VI.

Finally, not all parameters in m are required for input in
the forward mapping u=U!m". Only a subset m! is required,
e.g., receiver geometric parameters such as receiver range,
receiver depth, array bow, and array tilt are not used in the
forward mapping. Then u=U!m"=U!m!" and

p!u(qi" = 1
M!

)!U!m!" − u"p!m!(qi"dm!, !18"

where M! is the environmental domain spanned by m! and
p!m! (qi" can be obtained from p!m (qi" by integrating out
the parameters which are not required.

C. Markov chain Monte Carlo methods

Markov chain Monte Carlo !MCMC" is essentially
Monte Carlo integration using Markov chains. MCMC meth-
ods are a class of algorithms for sampling from probability
distributions based on constructing a Markov chain that has
the desired distribution as its stationary distribution. In the
Bayesian framework, there is often a need to integrate over
high-dimensional probability distributions to make inference
about model parameters or to make predictions. MCMC
methods are able to evaluate integrals in high-dimensional
space efficiently26,27 and have been found to be well suited
for problems of Bayesian inference. They are extensively
used in various fields of inverse problems, including ocean
acoustics.9,28 The commonly used MCMC methods are the
Metropolis-Hastings algorithm,29,30 and Gibbs sampling.31

The integral in Eq. !14" is the expectation of function
)!U!m"−u" with respect to the posterior distribution of the
model parameters. It can be approximated by using the
MCMC samples 3m!t"4 drawn from the posterior distribution
of model parameters p!m (qi",

p!u(qi" =
1
T)

t=1

T

)!U!m!t"" − u" , !19"

where the superscript t is used to label the sequence of states
in a Markov chain and T denotes the total length of the
sequence. Equation !19" is implemented using a numerical
approximation by binning the calculated TL values. The bin
width should be selected small enough to have negligible
effect on the distribution. In this paper, a 1 dB bin width is
used.

Using all samples from MCMC runs would consume a
large amount of computation time to compute p!u (qi" and
memory storage to save all the samples 3m!t"4.32 Statistical
literature has suggested that inferences could be based on a
subsampling of each sequence, with a subsampling factor
high enough that successive draws of m are approximately
independent.27,32,33 The subsampling reduces the number of
samples needed to calculate p!m (qi", translating into a large
saving in computer time for calculating p!u (qi". The sub-
sampled model parameter vectors then are used to compute
p!u (qi".

11

All results presented in this paper are generated by
SAGA,19 which implements the MCMC method using the
Metropolis-Hastings algorithm described in Ref. 34.

IV. EXPERIMENTAL SETUP

The experiment was conducted as part of the
MAPEX2000 experiment by the NATO Undersea Research
Center !NURC" on 28 November 2000 in a shallow water
area north of Elba island, off the Italian west coast !see Fig.
3".

This area is characterized by a flat bottom covered with
clay and sand-clay sediments. The bathymetry was measured
to be between 110 and 120 m along the track, !42.928° N,
10.145° E" to !42.928° N, 10.260° E". The HLA was towed
by NRV Alliance at approximately 4 knots with the first hy-
drophone approximately 350 m behind the ship’s stern. The
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acoustic source deployed from NRV Manning which was
moored at !42.926° N, 10.206° E". The tow depth of the
HLA was 55–65 m during the trial. The HLA is 254 m in
length, and data recorded along the entire length was used
!128 hydrophones spaced at 2 m". A sequence of 2 s LFM
sweeps from 150 to 500 Hz was transmitted every 15 s. The
received time series was converted to the frequency domain
using a fast Fourier transform with a frequency bin width of
0.09 Hz. Frequency bins corresponding to 300–500 Hz in
10 Hz increments were used in the inversion for comparison
with modeled results.

The sound speed profile was measured before the ex-
periment and shown in Fig. 4. The profile exhibits a slight
positive gradient for most of the water column, except near
the bottom, where there is a sharp decrease in sound speed.

V. HLA SEABED CHARACTERIZATION: INVERSION
RESULTS

During the experiment, a 2 s LFM signal !150–500 Hz"
was transmitted from the fixed source at 15 s intervals. This
was recorded by the HLA towed by NRV Alliance.

Before inversion, the received acoustic data were decon-
volved by dividing by the ideal 2 s LFM source spectrum
over the 150–500 Hz frequency band.7 The frequency bins
used for inversion correspond to the frequencies Doppler

shifted according to the Doppler factor of !1++ /c", where c
is the sound speed, and + is the ship velocity !positive when
moving towards the source, and negative when moving
away". With the ship speed at 2 m/s, this corresponds to a
maximum shift of about 8 bins at 500 Hz.

Figure 5 shows the one-dimensional posterior probabil-
ity distribution plots of the geometric and sediment param-
eters for an inversion performed at frame 195 where the
range between the source and the first hydrophone is 750 m.
The plots indicate the uncertainty existing in the parameters
obtained from the geoacoustic inversion results.

VI. TRANSMISSION LOSS „TL… ESTIMATION FROM
INVERSION RESULTS

In this section, the mapping of the uncertainties in the
estimation of the seabed parameters resulting from the geoa-
coustic inversion to uncertainties in the transmission loss do-
main is discussed.

A. Predictive distribution of transmission loss

The MCMC method using the Metropolis-Hastings al-
gorithm is applied to the geoacoustic inversion results to
compute the TL uncertainty as a result of uncertainty in the
environmental parameters. The results were obtained based
on the posterior probability distributions of the parameters
obtained for frame 195 !Fig. 5". The posterior predictive dis-
tribution of TL for the position !ri ,zi" is obtained by integrat-
ing the predictions of TL with respect to the posterior distri-
bution of the model parameters, using Eq. !14". Figure 6!a"
shows the TL uncertainty plot at a receiver depth of 60 m
over range at a frequency of 300 Hz. Figures 6!b" and 6!c"
show the uncertainty spread in TL at a region of destructive
and constructive interference at 1030 and 1510 m, respec-
tively. The TL uncertainty band is about 5 dB around the
region of constructive interference and widens to approxi-
mately 15 dB around the region of destructive interference,
i.e., regions of destructive interference are predicted with
much more uncertainty than regions of constructive interfer-
ence. Figure 6!d" summarizes the predictive distribution by

FIG. 3. !Color online" Bathymetry of experimental location, and track of
NRV Alliance during the MAPEX2000 experiment. All times are Coordi-
nated Universal Time !UTC". Each frame represents a 15 s increment.

FIG. 4. Sound speed profile taken from a Conductivity Temperature Depth
!CTD" cast at position !42.943° N 10.127° E" on 28 November 2000.
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the median !heavy line" and the 90% credibility interval
!gray area". This is a practical way to convey the uncertainty
in TL.

B. Experimental comparisons

The predictive TL distributions obtained in the preced-
ing subsection are now compared with the actual TL obser-
vations. Bayesian inference provides the posterior distribu-
tion of the full parameter vector. To estimate the statistical
properties of TL, only the posterior probability distribution
of the input parameters to the forward model are required.
These parameters include the geoacoustic parameters and
water depth !water depth is included as it affects the number
of propagating modes in the ocean waveguide". Source depth
is also an important parameter for predicting TL fields accu-
rately. In this data set, the matched-field estimated source
depths varied with a mean of 52.3 m and standard deviation
of 3.2 m. Other geometric parameters such as range, receiver
depth, array bow and tilt are not used as input parameters to
the forward model, and are removed from the parameter vec-
tor m #see Eq. !18"$. The initial prediction was performed at

three frequencies, 300, 400, and 500 Hz, with the source
depth fixed at the value obtained at the time of the inversion
of frame 195. Figure 7!a" compares the observed TL
!crosses" with the initial TL prediction statistics !solid line
with gray area" for the frequencies 300, 400, and 500 Hz and
for an array depth of 55 m. The initial prediction was not
satisfactory as uncertainties in parameters such as the source
depth were not modeled, resulting in 30–50% of the ob-
served TL values falling outside the 90% credibility interval
!CI". As frequency increases, larger spreads in TL predictions
also are observed. This is most pronounced near regions of
destructive interference.

Next, the uncertainty in the source depth was modeled
using a Gaussian model with a mean of 52.3 m and standard
deviation of 3.2 using the statistics from the matched field
estimated source depths, and introduced into the parameter
vector m !see also Sec. III B". The TL prediction process was
then repeated with the inclusion of the source depth uncer-
tainties. There is now a marked improvement with ,80% of
the observed TL values falling within the predicted 90% CI.
The TL prediction plot is shown in Fig. 7!b".

FIG. 5. !Color online" Posterior probability distribu-
tions for geometric parameters and sediment param-
eters, obtained from inversion for frame 195. The arrow
indicates the MAP value.

FIG. 6. !Color online" Posterior distribution of TL ver-
sus range for 300 Hz at 60 m array depth. !a" Contour
of posterior distribution for TL versus range. !b" Region
of destructive interference. !c" Region of constructive
interference. !d" Statistics of the predicted TL versus
range. The heavy line and the surrounding gray area
represent the median and the 90% credibility interval,
respectively.
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The ocean sound speed profile has been treated as
known, but it also could be treated as an uncertain parameter
#see Eq. !16"$. To observe the effects of sound speed profile
variability on TL prediction, the variability was modeled
with a Gaussian model with the measured values at each
depth as the mean, and a uniform standard deviation along
the whole water column !from 0 to 110 m with a 10 m spac-
ing". Figure 7!c" shows the predicted results using a standard
deviation of 1.7 m/s for the whole water column. This value
gives ,80% of the observed TL values falling within the
predicted 90% CI.

Figure 8 plots on the right the variation of the percent-
age of the observed TL values falling within the predicted
90% CI versus the standard deviation of the modeled sound
speed profile at 300 Hz. To the left, the median over range of

the TL spread at a single range is plotted. As expected, the
median of the spread of the predicted TL and the percentage
of the observed TL values falling within the predicted 90%
CI increases as the standard deviation increases. Table I sum-
marizes the comparison of the measured and predicted TL
from Fig. 7.

Complicated environments, such as spatial and temporal
fluctuations in the water column, sediment, sea surface and
water-sediment interface, are not modeled and this will in-
crease the error. Further, not all noise sources have been
taken into account. Therefore, the percentage of observed
data points within the computed 90% CI is less than pre-
dicted.

The TL measurement was carried out with a different
source depth at each range, due to the motion of the ship !the
matched-field inversion indicated a standard deviation of
3 m". It is the uncertainty in source depth that is reflected in
the large band of TL uncertainty in Fig. 7!b". Thus, it is
expected that if the true source depth at each range was in-
cluded in the statistical TL prediction, then the predicted TL
would lie in a much narrower credibility band !about 8 dB as
in Fig. 7!a"" and contain the same fraction of the measured
TL. The statistical prediction of TL also could be used in a
sensitivity study to explore the importance of each param-
eter. In such an approach, the reduction in TL uncertainty if
one parameter was fixed could be explored systematically.

VII. CONCLUSION

In this paper, the use of geoacoustic inversion results to
estimate statistically transmission loss are demonstrated for
data received on a towed horizontal array.

A frequency-coherent likelihood function based on a
noninformative prior probability distribution was derived for

FIG. 7. !Color online" Predicted and
measured TL !crosses" for frequencies
300, 400, and 500 Hz. The median of
the predicted TL !heavy line" is shown
together with the 90% CI !gray area".
!a" Initial prediction. !b" Prediction
with uncertainty introduced in source
depth. !c" Prediction with uncertainty
introduced in sound speed profile.

FIG. 8. !Color online" TL variation at 300 Hz versus standard deviation of
the modeled sound speed profile. Right axis !solid": Variation of the percent-
age of the observed TL falling within the predicted 90% CI. Left axis
!dashed": The median over range of the predicted TL spread at each range.
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the horizontal array. A Markov chain Monte Carlo sampling
was used to sample the posteriori distribution. Then, the pos-
terior probability density of environmental parameters is uti-
lized for the statistical estimation of TL. This is done by
mapping of the probabilities from the geoacoustic domain to
the transmission loss domain. It also is shown how additional
uncertainty can be incorporated into the TL uncertainty.

The approach is demonstrated on towed array data from
a sea trial in the North Elba area. Parameter uncertainties
obtained from geoacoustic inversion are mapped into the
transmission loss domain, where the probability distribution
of transmission loss over different ranges and frequencies is
obtained. The characteristic features such as the median and
lower/upper percentiles from the distribution also are ex-
tracted. The predicted TL statistics are compared with TL
measurements from the MAPEX2000 experiment. It is ob-
served that more than 80% of the measured TL data fall
within 90% of the range-varying predicted TL probability
distribution, demonstrating that the statistical estimation ap-
proach presented is reasonable.
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