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Null Broadening With Snapshot-Deficient Covariance
Matrices in Passive Sonar

H. Song, Member, IEEE, W. A. Kuperman, W. S. Hodgkiss, Member, IEEE, Peter Gerstoft, and Jea Soo Kim

Abstract—Adaptive-array beamforming achieves high reso-
lution and sidelobe suppression by producing sharp nulls in the
adaptive beampattern. Large-aperture sonar arrays with many
elements have small resolution cells; interferers may move through
many resolution cells in the time required for accumulating a
full-rank sample covariance matrix. This leads to “snapshot-de-
ficient” processing. In this paper, the null-broadening technique
originally developed for an ideal stationary problem is extended
to the snapshot-deficient problem combined with white-noise
constraint (WNC) adaptive processing. Null broadening allows
the strong interferers to move through resolution cells and in-
creases the number of degrees of freedom, thereby improving the
detection of weak stationary signals.

Index Terms—Covariance matrix taper (CMT), null broad-
ening, robust adaptive beamforming, snapshot-deficient pro-
cessing, white-noise constraint (WNC).

I. INTRODUCTION

RECENT trends in passive sonar systems include the use of
large-aperture arrays with many elements to form narrow

beams in order to detect quiet targets in a noisy background [1],
[2]. This paper is concerned with the detection of weak sources
in the presence of fast-moving strong interferers crossing
many resolution cells in a time interval too small to build a
full-rank covariance matrix. To achieve this, we combine the
null-broadening approach developed for an ideal stationary
problem [3]–[5] with white-noise constraint (WNC) adaptive
processing [6].

At low frequencies, the background often is dominated by
loud and fast surface ships that move through many narrow
beams or cells in the time it takes to obtain a satisfactory sample
covariance matrix. Larger arrays require longer duration snap-
shots due to the longer transit time of sound across the array.
More snapshots are also needed due to the many elements
[7]–[10]. Usually, this leads to “snapshot-deficient” processing
[1]. A number of techniques have been developed to carry
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out adaptive processing with less-than-full-rank covariance
matrices. The two most common are diagonal loading [11] and
subspace methods [12], [13]. Recently, a multirate adaptive
beamforming (MRABF) approach was proposed by Cox [2],
which uses only a few snapshots to estimate and null the
loud moving interferers, followed by more-standard adaptive
procedures using many more snapshots to find weak stationary
targets.

Null broadening can provide a simple and robust approach
to the snapshot-deficient problem arising from the motion of
strong interferers when combined with robust WNC processing
[6]. Because adaptive-array processing places sharp nulls in the
directions of interferers, the presence of interferer motion does
not provide sufficient nulling of the interferer given the number
of snapshots available, which results in a masking of the desired
target signal. Fig. 1 shows an example where source motion de-
grades the performance with 20 snapshots for a 128-element
array, especially on the weakest target at .
We also note that the bias of signal and noise has increased sig-
nificantly due to source motion, which will be discussed in Sec-
tion II. Null broadening allows the interferers to move through
resolution cells while also being contained within a single wide
null. In addition, the WNC can exploit the significant bias asso-
ciated with snapshot deficiency [1].

The null-broadening concept [3]–[5] was originally devel-
oped to improve the robustness of the adaptive algorithms and
demonstrated for a stationary problem. The potential of this ap-
proach, however, has not been fully explored due to its unde-
sirable effects, such as decrease in array gain and broadening
of the mainlobe. Here we extend the null-broadening approach
to detect weak stationary targets in a nonstationary background
such that only a limited number of snapshots are available due
to fast-moving strong interferers crossing many resolution cells.
Specifically, in this article we

• review adaptive planewave beamformingvis a vissnap-
shot and bias issues;

• describe the null-broadening techniques in terms of eigen-
values;

• demonstrate the robustness of the null-broadening
approach combined with the WNC processing for a
snapshot-deficient problem arising from source motion in
the presence of mismatch;

• investigate the bias issues associated with the processing
method;

• characterize the performance of the null-broadening ap-
proach using probability of detection.

0364-9059/03$17.00 © 2003 IEEE
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(a)

(b)

Fig. 1. Adaptive beamforming withK = 20 snapshots for aN = 128
element array: (a) 9 fixed sources and (b) 2 moving and 7 fixed sources.
The source levels and positions are denoted by�. The horizontal dashed line
indicates the noise level minus the array gain(10 logN). The effect of source
motion over 20 snapshots is observable in (b), especially on the weakest target
at u = sin � = �0:7. Note that the bias of signal and noise has increased
significantly due to source motion, which will be exploited in Section V.

II. SNAPSHOT-DEFICIENT PROCESSING

We begin by briefly reviewing adaptive planewave beam-
forming (ABF). We then address snapshot-deficient processing
due to source motion and discuss the bias issue and nulling of
strong interferers.

A. ABF

MVDR adaptive beamforming places nulls in the direction
of loud interferers in the acoustic environment described by the
cross-spectral density matrix (CSDM) or covariance matrix [2].
The MVDR weights with diagonal loading is

(1)

Fig. 2. Beampattern of linearN = 64 element array when steered broadside
(� = 0) with interfering sources atu = 0:3 andu = 0:8: CBF (dashed line)
and ABF (solid line). Note the two-deep nulls in the directions of the interferers
with ABF.

where is the measured covariance matrix, is the steering
vector pointing degrees from the broadside,denotes the Her-
mitian transpose operation, andis the identity matrix. The op-
tional diagonal loading of strengthis included to control the
white-noise gain.

Fig. 2 shows the beampattern of a linear array with 64 sensors
with half-wavelength spacing ( when steered to the broad-
side . The array is subjected to two stationary interfering
sources of the same amplitude and located at

and . Note the deep and sharp nulls
produced in the directions of two interferers with ABF (solid
line) compared to a conventional beampattern in the background
(dashed line). The interfering sources are 30 dB louder than
the channel noise. The exact, full-rank CSDM without diagonal
loading is used for this example such that

(2)

with dB and dB.
A robust version of the MVDR beamformer is the white-noise

gain-constraint (WNC) beamformer [6], which adjusts the diag-
onal loading for each steering angleto satisfy a white-noise
constraint such that

(3)

where is the number of elements of the array andis given
by (1). In practice, the white-noise gain (WNG) is introduced as

WNG dB (4)

where WNG dB corresponds to a linear processor and
WNG dB corresponds to a pure MVDR processor.
WNG dB will be used later in the simulations, which
is chosen as a compromise in the presence of mismatch in the
array-element positions between the robustness of the conven-
tional linear processor and the interference-rejection capability
of the pure MVDR processor.
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B. Sample Covariance Matrix

The sample covariance matrix is

(5)

where the are the complex Fourier-amplitude vectors of the
receiver outputs at the frequency of interest and theth snapshot
and is the number of snapshots.

As discussed by Baggeroer and Cox [1], there are time and
bandwidth limits on the number of snapshots available with
large-aperture sonar arrays operating in a dynamic environment.
At broadside, the mainlobe of a resolution cell has a cross-range
extent of

(6)

where is the range to a source, is the aperture of the array,
and is the wavelength. A source moving with tangential speed

transits this resolution cell and is within the cell for
duration

(7)

where is the bearing rate of the source.
The limit to the available bandwidth for frequency averaging

is determined by signals close to endfire. The estimate of the
phase in the cross spectra is smeared when one averages over too
large of a bandwidth. The available bandwidth is constrained by
[1], [7]

(8)

where , the transit time across the array at end-
fire. The product of and gives the approximate number
of snapshots available. In this paper, we are primarily con-
cerned with the case when source motion limits the number of
snapshots assuming narrow-band signals.

C. Snapshots and Bias

The usual criterion employed in adaptive processing for ade-
quate estimation of was specified to be by Reed
et al. [9]. This typically is unattainable for most sonar oper-
ating environments with multiple moving surface ships repre-
senting discrete sources, especially for large arrays with narrow
beams. Carlson [11] suggested diagonal loading the sample co-
variance matrix to reduce the required samples to as few as
1-2 . Other results [2], [14], [15] suggest that effective nulling
can be achieved with at least equal to twice the number of
strong interfering sources (i.e., for ).

When using a limited number of snapshots and diagonal
loading, significant biases (loss in the estimated output power)
are introduced in adaptive processing [1], [7], as seen earlier in
Fig. 1. The Capon and Goodman formula for bias and variance
[20] is valid only for the case of no loading and with ,
which is typically not the case for sonars. An analytical formula
is given in [15] for under some conditions on the
diagonal loading (i.e., where denotes the
smallest interference eigenvalue).

Fig. 3. Mailloux approach [3] distributes a cluster ofq equal-strength
incoherent sources arranged in a line centered around each source direction�

with a trough width ofW between the outermost nulls.

Since there are no analytical results for bias in general when
with diagonal loading , Baggeroer and Cox [1]

showed, via Monte Carlo simulations, two important features:
1) the bias does not depend upon direction and 2) the bias for

is significant. In particular, the bias increases with a de-
crease in the number of snapshots. In the presence of mismatch,
however, the bias depends upon direction such that strong sig-
nals are subject to much larger signal suppression than are weak
signals [16].

It will be shown that the significant bias due to snapshot de-
ficiency turns out to be beneficial because it can be exploited
by the WNC processor, which can reduce the bias selectively
resulting in a significant increase in dynamic range. The effect
of diagonal loading on the bias (MVDR) is described theoreti-
cally using eigenanalysis in the Appendix, which confirms that
the bias is independent of steering angle as indicated in [1].

III. N ULL BROADENING

In this section, we review the null-broadening approaches
[3]–[5] with a focus on the useful property for a snapshot-defi-
cient problem. The method is most simply presented by consid-
ering a line array, although it can be applied to two-dimensional
planar arrays.

A. Distribution of Fictitious Sources

Assuming that the narrow-band signals impinging on the
array are uncorrelated with each other as well as with the
spatially white noise, the terms in the covariance matrixfor
a one-dimensional array are [3]

(9)

The sum is performed over all interfering sources with averaged
power and direction cosines for measured from
the broadside. The numbers are the element locations, is
the noise covariance, and is a Kronecker delta function.

In order to produce a trough of width in each of the in-
terference directions , Mailloux [3] distributed a cluster of
equal-strength incoherent sources around each original source,
as shown in Fig. 3. In this case, the additional sources can be
summed in closed form as a geometric sum and can be written
as

(10)
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Fig. 4. Beampattern of aN = 64 element array steered broadside with
augmented covariance matrix~R: Mailloux (dashed line) withq = 7 and
Zatman (solid line). Two interfering sources are incident atu = 0:3 andu =

0:8. Note the null broadening obtained at these two locations usingW = 0:1.

where and . Since there
is no angle dependence in the sinc function, we obtain a new
covariance matrix term

(11)

In this formulation, we have introduced a source strength
equally distributed with level rather than in [3].

In Fig. 4, the adaptive beampattern of a element
linear array is shown with the original covariance matrixof
(2) replaced by the augmented covariance matrixin (11) with

and (dashed line). As opposed to the sharp nulls
in Fig. 2, the beampattern clearly shows null broadening.

B. Dispersion Synthesis

Rather than physically distributing fictitious sources, Zatman
[4] used dispersion to widen the null of a narrow-band signal.
Assuming a rectangular spectrum of bandwidth centered
at frequency , the augmentation of the fictitious sources is
achieved by a synthetic averaging of the narrow-band covari-
ance matrix over the bandwidth

(12)

where and is the
time delay between the elements. For actual broad-band signals,
null broadening was demonstrated in [17] with experimental
data by making use of waveguide invariant theory [18] and av-
eraging the estimated array-covariance matrix across frequency.

For a half-wavelength uniform line array
, the wide-band covariance matrix can be calculated as

the Hadamard (element-wise) product [19] ofand as

(13)

Fig. 5. The eigenvalues of the original covariance matrixR (crosses) and
the tapered matrix~R (circles) for anN = 64 element array. The significant
number of eigenvalues has increased from 2 to 14. On the other hand, the larger
eigenvalues have decreased, resulting from the CMT operation. The first five
eigenvalues of the CMT matrixT are also superimposed (squares).

where and cor-
responds to half of the null width defined in the Mailloux
approach. The solid line in Fig. 4 shows the resulting beampat-
tern using the wide-band covariance matrixwith

. It is interesting to note that the bandwidth implicitly
varies with the direction cosine for a fixed value of
to keep a constant.

Although both approaches achieve null broadening to the de-
sired width , note from Fig. 4 that the solid line produces
flatter troughs in the adaptive pattern than does the dashed line.
Zatman’s approach produces continuous fictitious sources dis-
tributed along the beamwidth , whereas the Mailloux ap-
proach places a finite number of discrete sourceswithin the
beamwidth. As increases, the two approaches become iden-
tical.

C. Covariance Matrix Taper

Guerci [5] combined the above null-broadening approach
with diagonal loading through the concept of a “covariance
matrix taper” (CMT) and theoretically investigated the effect
of CMT on the adaptive beampattern. In this paper, diagonal
loading is handled separately by the robust WNC processor.

The Mailloux–Zatman (MZ) null-broadening approach is de-
scribed in (13) as a modification of the original sample covari-
ance matrix through the CMT matrix , which is a positive
semidefinite matrix with its diagonal entries equal to 1. Note
that both and are, in general, positive semidefinite Hermi-
tian matrices.

Null broadening or the Hadamard operation increases the
number of eigenvalues [degrees of freedom (DOF)] such that

(14)

whose proof can be found in [19] (Theorem 5.1.7). Fig. 5
demonstrates that the two eigenvalues corresponding to each
interferer have increased to 14 above the noise level, since
each interferer is represented by fictitious nearby sources. For
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(a)

(b)

Fig. 6. MVDR output power using the Mailloux approach (solid) with~R:
(a)q = 5 and (b)q = 7. The result with the Zatman approach is superimposed
in the dashed line. Note thatq < 7 produces resolvable discrete sources rather
than a broad null. The dotted line is the output power withR.

a snapshot-deficient problem, the rank ofusually is and
is much smaller than the number of array elements. In this
case, the increased degrees of freedom by the null-broadening
approach will be significant and can enhance the detection of
weak targets in the presence of strong interferers.

The number of significant eigenvalues of the CMT matrix
is from the analogy between the temporal and
spatial domains [21], [22]. This corresponds to the number of
resolution cells over the null width plus one. Fig. 5 shows that
there are four significant eigenvalues infor
(squares). However, the number of fictitious sources distributed
over a null width is determined by the resolution capability
of an adaptive beamformer [16], [23]. Fig. 6 shows the MVDR
beamformer output power (solid line) when (a) and
(b) . We observe that all of the fictitious sources are
resolved when rather than producing a broad null as
shown when , indicating that each resolution cell re-
quires approximately two fictitious sources due to the higher

resolution for this example. Note that corresponds to
the number of eigenvalues larger than the noise level (or the ef-
fective rank of ) in Fig. 5 (circles) for each source. A lower
bound on the angular resolution is derived in [23], applying the
Cramer–Rao formalism demonstrating that it is proportional to
the classical Rayleigh limit ( ) and a factor depending on the
output signal-to-noise ratio (SNR).

It is also shown in Fig. 6 that the CMT operation reduces
the beamformer output power due to discrete sources since it
distributes the source power over the null width. However,
the reduction of the signal power is negligible as compared to
the significant bias resulting from a small number of snapshots
when applied to a snapshot-deficient problem, as discussed in
Section II-C. Note that the total power is preserved since the
trace of is not affected by the CMT matrix , whose diagonal
entries are equal to 1. Accordingly, the largest eigenvalues of the
original covariance (crosses) have decreased in(circles) in
Fig. 5.

IV. NULL BROADENING WITH SNAPSHOTDEFICIENT

Thus far, the null-broadening technique has been applied to
either an exact covariance matrix in (9) or to a 2 sample
covariance matrix by Guerci [5] assuming a stationary process.
While the concept was originally introduced for robustness of
adaptive algorithms, the usefulness of this approach was lim-
ited by its undesirable effects, such as decrease in array gain
and broadening of the mainlobe as shown in Fig. 6. Here, we
apply the CMT null-broadening approach to the case when only
a limited number of snapshots are available due to interference
motion (i.e., ) and the interference can move across
several resolution cells.

As described in Section II, the number of snapshots is lim-
ited by the resolution cell size . On the other hand, effective
nulling of the strong moving interferers usually requires a larger
number of snapshots (e.g., at least ), where is the
number of sources [1], [14], [15]. Null broadening offers a ro-
bust approach to this snapshot-deficient problem. It allows the
interferers to move through several resolution cells in the total
observation time, increasing the number of snapshots, usable
for weak target detection. At the same time, null broadening in-
creases the DOF by generating fictitious sources over the null
width, which the processor uses efficiently by containing each
moving source in a single broad null. The increased DOF en-
ables us to detect weak stationary targets otherwise obscured
by the strong moving interferers. With the null-broadening ap-
proach, we can resolve all of the targets simultaneously, in-
cluding the moving sources, rather than trying to separate them
in a multistage process [2], [12], [13]. This approach is simple
because it requires only the Hadamard multiplication without
any significant effort. Finally, the previously unexplored ben-
efit of null broadening combined with the WNC adaptive pro-
cessing is a significant increase in dynamic range by selectively
reducing the bias from the small number of available snapshots.

It is appropriate to mention how the value of is chosen
for null broadening in (13). For a stationary problem with an
exact covariance matrix , is the desirable null width in
direction cosine (see Fig. 4). With source motion, we expect to
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(a) (b)

(c) (d)

Fig. 7. Baseline results using MVDR processing forN = 128; K = 20 and diagonal loading of� = 10 dB: (a) nine fixed sources, (b) nine fixed sources with
AEL errors, (c) two moving and seven fixed sources, and (d) two moving and seven fixed sources with AEL errors. The source levels and positions are denoted
by �. The effects of source motion overK = 20 snapshots are observable in (c) and (d), especially on the weakest target atu = �0:7. Note the bias of MVDR
due to the small number of snapshots accumulated.

achieve null broadening with a smaller rather than the one
normally required for a stationary case. In addition, a smaller
null width is desirable to resolve closely spaced beams. We will
use the notation of to distinguish it from the stationary case.
According to our simulations, it appears that a resolution cell
size is appropriate for , although this requires further
investigation. It should be noted, however, that we can use quite
a broad range of (e.g., ), making null broadening
a robust process.

V. SIMULATIONS

We test the null-broadening technique using an example with
severe motion [2]. However, we increase the number of array
elements for snapshot-deficient processing with a smaller reso-
lution cell size.

A. Baseline Results With MVDR Processing

A 128-element linear array with a half wavelength spacing
( ) is used with a resolution cell size of .
There are two strong moving sources and seven fixed sources
( ) in 0 dB uncorrelated noise. The source levels are:
moving sources (40, 25 dB) and fixed sources (10, 10, 5,
0, 11, 12, 9 dB). One of the moving sources (25 dB) is ini-
tially near endfire ( ) and moves toward broadside with

per snapshot. The other stronger moving source

(40 dB) is initially at with (three
times slower than the 25-dB source). Doppler frequency shift
due to source motion is not taken into account assuming tan-
gential motion. The seven fixed sources are at ( 0.7, 0.5,

0.25, 0.15, 0.3, 0.5, 0.7) with the weakest target at .
For these simulations, a mismatch in the array element location
(AEL) of rms is introduced, with the exception of Fig. 7(a)
and (c).

We use snapshots, which is about twice the number
of sources as suggested in [1], [14], and [15]. The two
moving sources then occupy 9 and 3 resolution cells, respec-
tively. Fig. 7 shows baseline results obtained using the MVDR
processor where the effect of source motion is clearly demon-
strated. Note that Fig. 7(a) and (c) are identical to Fig. 1(a) and
(b), as shown earlier. A diagonal loading of dB is ap-
plied, which is 10 dB above the noise level. The source levels
and positions are denoted by the asterisks. Fig. 7(a) assumes all
nine sources to be stationary, verifying that snapshots
can resolve all of the sources.

Once source motion is introduced in Fig. 7(c), is
not sufficiently large to enable detecting the weakest target at

. This is because the source motion effectively gen-
erates additional sources (e.g., two sources per resolution cell),
which in turn require more snapshots at a rate faster than the
accumulation of snapshots, thus exceeding the available DOF.
Thus the effective number of snapshots is reduced by source
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(a) (b)

(c) (d)

Fig. 8. Adaptive processing with the sample covariance matrixR̂ (upper panels) and a tapered~R (lower panels): (a) MVDR witĥR, (b) WNC withR̂, (c) MVDR
with ~R, and (d) WNC with~R. A diagonal loading of� = �20 dB is applied to the MVDR and as a reference level (minimum) to the WNC with WNG= �2 dB.
Although both (c) and (d) demonstrate the effectiveness of the null-broadening approach over (a) and (c), the WNC processing with~R in (d) shows remarkable
performance over MVDR processing witĥR in (a) in the presence of AEL errors. Note in (b) and (d) that the bias associated with discrete sources is significantly
reduced by the WNC while the noise floor remains the same, resulting in a significant increase in the dynamic range.

motion, resulting in a larger bias in Fig. 7(c), as discussed in
Section II. In the presence of rms AEL error, the MVDR
results get worse due to its sensitivity to mismatch as shown in
Fig. 7(b) and (d), especially for the strong signals (40, 25 dB)
subject to larger signal suppression [16]. Next, we combine the
null-broadening approach with robust WNC processing to im-
prove the results shown in Fig. 7(d).

B. Null Broadening With Robust WNC Processing

Fig. 8 shows results with the original sample covariance
matrix (upper panels) and a tapered (lower panels)
with , respectively. The left and right panels
employ MVDR and WNC processing, respectively. Note that
Fig. 8(a) is identical to Fig. 7(d), except that diagonal loading
of dB applied rather than 10 dB. The result is that the
noise floor level has decreased from40 dB to 100 dB, i.e.,
twice the change in diagonal loading (30 dB), which will be
discussed below. The idea is to apply a diagonal loading that is
minimal but sufficient for matrix inversion, allowing the WNC
processor to obtain an optimal diagonal loading level subject to
the WNG constraint (WNG dB).

Clearly, Fig. 8(c) and (d) demonstrates the effectiveness of
the null-broadening approach over (a) and (b), while the beams
are broader than Fig. 8(a) and (b). In particular, the WNC pro-
cessing in Fig. 8(d) shows the best performance in the presence

of AEL errors for the weakest target at . Note that the
WNC processing significantly reduces the bias associated with
the discrete sources (compare the left and right panels) without
affecting the noise level. As a result, the dynamic range has in-
creased significantly. Another observation is that the noise floor
level has increased from100 dB (upper panels) to 50 dB
(lower panels) due to the null broadening. This is because the
null broadening increases the DOF or the effective number of
snapshots, resulting in a smaller bias [1].

As discussed in Section III-C, null broadening increases the
number of degrees of freedom as shown in Fig. 9(a). For

, the number of eigenvalues in the sample covariance matrix
is 20. As a result of the Hadamard operation, the significant

number of eigenvalues in has increased up to 50, counting the
eigenvalues down to the 0-dB noise level. Fig. 9(b)–(d) displays
the WNC processing results with where the first 20, 50, and
100 eigenvectors, respectively, have been included in the pro-
cessing. In particular, Fig. 9(b) indicates that the first 20 eigen-
vectors do not represent all the discrete sources as compared
to Fig. 9(d) containing 100 eigenvectors, while the best perfor-
mance in Fig. 9(c), with 50 eigenvectors, confirms the number
of significant eigenvalues mentioned above. Note the apparent
improvement in the SNR [e.g., from 15 dB in Fig. 9(d) to 26 dB
for the weak target at ] since the noise-floor level is
further suppressed by excluding the noise components, despite
a slight reduction in the signal power.
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(a) (b)

(c) (d)

Fig. 9. (a) The eigenvalues of the original covariance matrixR̂ (circles) withK = 20 snapshots and the tapered matrix~R (crosses) for anN = 128 element
array. Plots (b)–(d) show the WNC processing results with~R where the number of eigenvectors included in the processing are 20, 50, and 100, respectively. In
particular, (b) indicates that the first 20 eigenvectors do not represent all of the discrete sources as compared to (d), containing 100 eigenvectors. Note that (c), with
50 significant eigenvectors, shows an improvement in the apparent SNR because the noise floor level is further down by excluding the noise eigenvectors.

C. Effect of Diagonal Loading

Fig. 10 illustrates the effect of the reference (minimum) level
of diagonal loading on the bias for WNC processing with the
first 50 eigenvectors: (a) dB; (b) dB;
and (c) dB. Fig. 10(d) displays the power of signal at

(circles) and the noise (diamonds) as a function of the
reference diagonal-loading level where the signal power using
MVDR processing (squares) is superimposed for comparison
and the noise power (diamonds) is the same for both WNC and
MVDR processing. For dB, the noise power (dia-
monds) is reduced arbitrarily by the reference level of diagonal
loading with a slope of 2. On the other hand, the WNC signal
power (circles) remains the same because the WNC processing
increases the diagonal loading from the reference level until it
satisfies the WNG constraint WNG dB in (4). The actual
level of diagonal loading obtained is dB. As a result,
we can increase the dynamic range arbitrarily by using a refer-
ence diagonal-loading dB with the WNC processing.

The slope of 2 is derived in the Appendix, which applies when
the diagonal loading is much smaller than the smallest eigen-
value. The 50th smallest eigenvalue is about5 dB in Fig. 9(a),
which is well above dB. As continues to increase
(i.e., dB), the slope of both signal and noise ap-
proaches 1, as described in the Appendix. The increase in the
reference level of diagonal loading above dB deprives
the WNC processing of its sensitivity controlled by the WNG

constraint, turning back to the MVDR processing. We also note
that the output power with MVDR (dotted and dashed lines)
demonstrates that the bias is independent of steering angle, as
indicated in [1]. However, the WNC depends strongly on the
steering angle.

D. Beampattern and Null Width

Fig. 11 displays the beampattern for WNC processing when
steered in the direction of the weakest target at . The
dashed and solid lines show the results with the originaland
the tapered , respectively. Source positions over the
snapshots are denoted by, not the actual level. For conve-
nience, the dashed curve is displaced by 15 dB. Note the null
broadening achieved with with respect to the average side-
lobe level, especially around the stronger moving interferer at

. These beampatterns explain why Fig. 8(d) detects
the weak target while Fig. 8(b) does not.

In our example, over snapshots the two moving
sources (40 and 25 dB) traversed and 0.15, occu-
pying 3 and 9 resolution cells, respectively. We have used the
value of , corresponding approximately to a reso-
lution cell size as discussed in Section IV. Fig. 11
shows that we obtain an effective null width of
around the strong moving interferer at , which is about
10 times larger than the null width employed .
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(a) (b)

(c) (d)

Fig. 10. Effect of the reference (minimum) levelofdiagonal loadingon thebias forWNCprocessingwith the first50eigenvectors: (a)" = �30dB; (b)" = �20dB;
and (c)" = 0dB. Plot (d) displays the power of the signal atu = �0:7 (circles) and noise (diamonds) as a function of the reference diagonal-loading level�, where the
MVDR signal power (squares) is superimposed for comparison. Note that the noise power (diamonds) can be reduced arbitrarily with a slope of 2 up to� = �10 dB
(see the Appendix) while the WNC signal power (circles) remains the same with a large diagonal loading subject to the WNG constraint WNG= �2 dB.

Fig. 11. Adaptive beampattern for WNC when steered in the direction of the
weakest target atu = �0:7. The dashed and solid lines show the result with
the originalR̂ and tapered~R, respectively. For convenience, the dashed curve
is displaced by 15 dB. Source positions over theK = 20 snapshots are denoted
by �, not the actual level. Note the null broadening obtained with~R, especially
around the strong moving source (u = �0:4), with respect to the average
sidelobe level.

E. Performance Analysis

The examples so far were based on single trials. Now
we characterize the performance of the null-broadening method

Fig. 12. Probability of detection of the weakest target atu = �0:7 as a
function of the input SNR for the tapered~R (solid) and originalR̂ (dashed).

over 200 independent trials as a function of the input SNR of
the weakest target at . The performance metric is the
probability of detecting, the weakest target [see Fig. 8(b)
and (d)], when using a high threshold . Fig. 12 shows
that the null-broadening approach with has a significantly
better performance than the case with. Although not shown
here, all of the remaining sources are always detected in the
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(a)

(b)

Fig. 13. Probability densities of the signal plus noise (circles and solid line)
and the noise alone (crosses and dashed line) for an input SNR= �10 dB:
(a) tapered~R and (b) originalR̂.

null-broadening approach. However, detection of the weakest
target with does not necessarily mean that we can detect all of
the other sources, even with an increase in SNR, indicating that
we simply do not have enough DOF to detect all of the sources
given the number of snapshots. When we plot the probability of
detecting all of the sources rather than the single weakest target,
the solid line remains the same, while the dashed line gets much
worse.

To specify the performance more completely, Fig. 13 shows
the probability densities of the signal plus noise (circles) and
the noise alone (crosses) from the 200 independent trials when
the input SNR dB. Fig. 13(a) shows that the probability
of false alarm is almost zero due to separation between the
signal-plus-noise and noise-alone densities. On the other hand,
Fig. 13(b) shows that there is significant overlap between them,
such that the probabilities of detection and false alarm
depend on the threshold. For instance, when we choose95 dB
as a threshold, is less than 0.2 for .

VI. CONCLUSION

The null-broadening technique combined with robust WNC
adaptive processing has been extended to the snapshot-deficient
problem arising from source motion. Null-broadening allows
the moving interferers to move through resolution cells and in-
creases the usable number of snapshots. At the same time, it in-
creases the number of degrees of freedom, providing effective
nulling of the moving interferers. Thus, the null-broadening ap-
proach can improve the detection of weak signals usually ob-
scured by power spreading of the strong moving interferers. In
addition, the significant bias introduced in adaptive processing
with a small number of snapshots can be exploited by robust
WNC adaptive processing, which reduces the bias associated
with discrete sources, leaving the biased (low) noise-floor level
untouched. The net effect is to increase the dynamic range sig-
nificantly. Simulations demonstrated the robustness of the null-
broadening approach, even with severe interferer motion in the
presence of AEL errors.

APPENDIX

POWER OUTPUT VERSUSDIAGONAL LOADING

This appendix derives the quadratic dependence of the
MVDR power output on the diagonal-loading level for a
covariance matrix less than full rank in a snapshot-deficient
problem when the diagonal loading is much smaller than the
eigenvalues of .

Consider the eigen-decomposition ofwith a dimension
for a snapshot-deficient problem with snapshots

(15)

where denotes theth largest eigenvalue and eigenvec-
tors, respectively. Then the inverse of, with diagonal-loading
, can be written explicitly as [24]

(16)

Substituting this expression into (1), we obtain the MVDR
weight vector

(17)

where and is a steering vector.
The output power is

(18)
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Defining , we can rewrite the above expression
as

(19)

When is much smaller than the smallest eigenvalue(i.e.,
), the effect of that appears along with in both

and will be negligible. In this case, the output power
changes quadratically with the diagonal-loading, i.e.,
resulting in a slope of 2 on a decibel scale. This result confirms
that the bias is independent of the steering vectoras indicated
in [1].

With , however, only the eigenvalues comparable to
, i.e., , will influence the power . Then and

when is multiplied with in the numerator, we end up with a
scale factor of. As a result, the power is linearly proportional
to the diagonal-loading level.
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