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Null Broadening With Snapshot-Deficient Covariance
Matrices in Passive Sonar

H. Song Member, IEEEW. A. Kuperman, W. S. Hodgkis$lember, IEEEPeter Gerstoft, and Jea Soo Kim

_Abstract—Adaptive-array beamforming achieves high reso- out adaptive processing with less-than-full-rank covariance
lution and sidelobe suppression by producing sharp nulls in the matrices. The two most common are diagonal loading [11] and

adaptive beampattern. Large-aperture sonar arrays with many subspace methods [12], [13]. Recently, a multirate adaptive
elements have small resolution cells; interferers may move through ’ ) '

many resolution cells in the time required for accumulating a P€amforming (MRABF) approach was proposed by Cox [2],
full-rank sample covariance matrix. This leads to “snapshot-de- Which uses only a few snapshots to estimate and null the
ficient” processing. In this paper, the null-broadening technique loud moving interferers, followed by more-standard adaptive

originally developed for an ideal stationary problem is extended procedures using many more snapshots to find weak stationary
to the snapshot-deficient problem combined with white-noise targets

constraint (WNC) adaptive processing. Null broadening allows ) . .
the strong interferers to move through resolution cells and in- Null broadening can provide a simple and robust approach

creases the number of degrees of freedom, thereby improving the to the snapshot-deficient problem arising from the motion of
detection of weak stationary signals. strong interferers when combined with robust WNC processing

Index Terms—Covariance matrix taper (CMT), null broad- [6]. Because adaptive-array processing places sharp nulls in the
ening, robust adaptive beamforming, snapshot-deficient pro- directions of interferers, the presence of interferer motion does

cessing, white-noise constraint (WNC). not provide sufficient nulling of the interferer given the number
of snapshots available, which results in a masking of the desired
I. INTRODUCTION target signal. Fig. 1 shows an example where source motion de-

) . ) grades the performance with 20 snapshots for a 128-element
R ECENT trends in passive sonar systems include the useaw‘ay, especially on the weakest targetiat sinf = —0.7.

large-aperture arrays with many elements to form narraje 5150 note that the bias of signal and noise has increased sig-
beams in order to detect quiet targets in a noisy background [{icantly due to source motion, which will be discussed in Sec-
[2]. This paper is concerned with the detection of weak SOUrCg§, |1 Null broadening allows the interferers to move through
in the presence of fast-moving strong interferers crossingsq|,tion cells while also being contained within a single wide
many resolution cells in a time interval too small to build &, n addition, the WNC can exploit the significant bias asso-
full-rank covariance matrix. To achieve this, we combine ““anted with snapshot deficiency [1].
null-broadening approach developed for an ideal stationaryrpq null-broadening concept [3]-[5] was originally devel-

problem [3]-[5] with white-noise constraint (WNC) adaptivé,eq tg improve the robustness of the adaptive algorithms and

processing [6]. . , demonstrated for a stationary problem. The potential of this ap-
At low frequencies, the background often is dominated Qyoach however, has not been fully explored due to its unde-

loud and fast surface ships that move through many narQyapie effects, such as decrease in array gain and broadening
beams or cells in the time it takes to obtain a satisfactory sampl&nhe mainlobe. Here we extend the null-broadening approach

covariance matrix. Larger arrays require longer duration snag-qetect weak stationary targets in a nonstationary background
shots due to the longer transit time of sound across the argych, that only a limited number of snapshots are available due
More snapshots are also needed due to the many elemegis si moving strong interferers crossing many resolution cells.
[7]-[10]. Usually, this leads to “snapshot-deficient” processingpecifically, in this article we

[1]. A number of techniques have been developed to carry . . - .
* review adaptive planewave beamformivig a vissnap-

shot and bias issues;
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Fig. 2. Beampattern of lineaV = 64 element array when steered broadside
(6 = 0) with interfering sources at = 0.3 andu = 0.8: CBF (dashed line)
and ABF (solid line). Note the two-deep nulls in the directions of the interferers
with ABF.

whereR is the measured covariance mateifg) is the steering
vector pointing degrees from the broadsidedenotes the Her-
mitian transpose operation, ahé the identity matrix. The op-
tional diagonal loading of strengthis included to control the
white-noise gain.

Fig. 2 shows the beampattern of a linear array with 64 sensors
with half-wavelength spacing\{2) when steered to the broad-
sideu = 0. The array is subjected to two stationary interfering
sources of the same amplitude and located,at sin(6;) =
0.3 anduy = sin(f;) = 0.8. Note the deep and sharp nulls
produced in the directions of two interferers with ABF (solid
line) compared to a conventional beampattern in the background
(dashed line). The interfering sources are 30 dB louder than
the channel noise. The exact, full-rank CSDM without diagonal
—1 -0.5 0 0.5 1 loading is used for this example such that

u = sin(0)
(b)

Fig. 1. Adaptive beamforming wit = 20 snapshots for &V = 128
element array: (a) 9 fixed sources and (b) 2 moving and 7 fixed sources.
The source levels and positions are denoted byhe horizontal dashed line with o2 = 30 dB ands? = 0 dB.

indicates the noise level minus the array géifilog V). The effect of source A yohyst version of the MVDR beamformer is the white-noise
motion over 20 snapshots is observable in (b), especially on the weakest target . . . .
atu = sinf = —0.7. Note that the bias of signal and noise has increasédain-constraint (WNC) beamformer [6], which adjusts the diag-
significantly due to source motion, which will be exploited in Section V. onal loading: for each steering angleto satisfy a white-noise

constraint@,, such that

R =02 [s(ul)s(ul)T + s(ug)s(ug)T] + 021 (2)

Il. SNAPSHOTDEFICIENT PROCESSING

2 et | L
We begin by briefly reviewing adaptive planewave beam- 0" < Gy = |W W| <N ®3)

forming (ABF). We then address snapshot-deficient processin

due to source motion and discuss the bias issue and nuIIindgl lreJIV IS thet.nuTPE)er c;:‘.telemgnts O.f th\(/avir(r;ay amctis %'Vend
strong interferers. y (1). In practice, the white-noise gain ( ) is introduced as

A. ABF WNG = 10log(6%/N) < 0 dB (4)

MVDR adaptive beamforming places nulls in the direction ere WNG — 0 dB corresponds to a linear orocessor and
of loud interferers in the acoustic environment described by t - P ! P
NG = —oo dB corresponds to a pure MVDR processor.

cross-spectral density matrix (CSDM) or covariance matrix [ NG — —2 dB will be used later in the simulations. which

The MVDR weights with diagonal loading is . S ) )
is chosen as a compromise in the presence of mismatch in the
array-element positions between the robustness of the conven-
R+ eI]~!s(6) tional linear processor and the interference-rejection capability
wuvDr(f) = sT(O)[R + 1]~ 1s(0) @) of the pure MVDR processor.
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B. Sample Covariance Matrix "
The sample covariance matrix is 3=Wl(g-1)
N
R= i7d Z xix;r (5)
i=1
where thex; are the complex Fourier-amplitude vectors of the
receiver outputs at the frequency of interest andthenapshot 00 00O

and K is the number of snapshots. _ _ o
As discussed by Baggeroer and Cox [1], there are time aﬁg. 3. Mailloux approach '[3] d_|str|butes a cluster of equal—strength_
. .. . .Jncoherent sources arranged in a line centered around each source difection
bandwidth limits on the number of snapshots available de]th a trough width ofl” between the outermost nulls.

large-aperture sonar arrays operating in a dynamic environment.
At broadside, the mainlobe of a resolution cell has a cross-rangesince there are no analytical results for bias in general when

extent of K < N with diagonal loading < o2, Baggeroer and Cox [1]
A showed, via Monte Carlo simulations, two important features:
AX =~ T (6) 1) the bias does not depend upon direction and 2) the bias for
: . K < N issignificant. In particular, the bias increases with a de-
wherer is the range to a sourcé, is the aperture of the array, crease in the number of snapshots. In the presence of mismatch,

and) is the wavelength. A source moving with tangential Spe%wever, the bias depends upon direction such that strong sig-

:j;ur:(’]lt:fntransns this resolution cell and is within the cell fOrnals are subject to much larger signal suppression than are weak

signals [16].

It will be shown that the significant bias due to snapshot de-
ficiency turns out to be beneficial because it can be exploited
) by the WNC processor, which can reduce the bias selectively
whered is the bearing rate of the source. resulting in a significant increase in dynamic range. The effect

The limit to the available bandwidth for frequency averagingf diagonal loading on the bias (MVDR) is described theoreti-
is determined by signals close to endfire. The estimate of thgjly using eigenanalysis in the Appendix, which confirms that

phase inthe cross spectra is smeared when one averages oveh@8ias is independent of steering angle as indicated in [1].
large of a bandwidth. The available bandwidth is constrained by

CAX

AT = — ~ — 7
rf Lo 0

(11, [7] I1l. NuLL BROADENING
< - 1 8) In this section, we review the null-broadening approaches
8L 8Tiransit [3]-[5] with a focus on the useful property for a snapshot-defi-

WhereTianse = L/c, the transit time across the array at enOr;ient problem. The method is most simply presented by consid-

fire. The product ofAT and B gives the approximate numbere|r|ng a line array, although it can be applied to two-dimensional
of snapshotd( available. In this paper, we are primarily conPlanararrays.
cerned with the case when source motion limits the numbeer

i . Distribution of Fictitious Sources
snapshots assuming narrow-band signals.

Assuming that the narrow-band signals impinging on the
C. Snapshots and Bias array are uncorrelated with each other as well as with the
d%c_)atially white noise, the terms in the covariance mdgifor

The usual criterion employed in adaptive processing for a g .
ploy puve p g a one-dimensional array are [3]

quate estimation oR was specified to bé& > 2N by Reed

et al. [9]. This typically is unattainable for most sonar oper- Ryn = Nn + Y 07/ O/ mmnut, (9)

ating environments with multiple moving surface ships repre- 1

senting discrete sources, especially for large arrays with narrde sum is performed over all interfering sources with averaged

beams. Carlson [11] suggested diagonal loading the sample goweros? and direction cosines, = sin ¢; for # measured from

variance matrix to reduce the required samples to as fewtas broadside. The numberts, are the element locationd] is

1-2 N. Other results [2], [14], [15] suggest that effective nullinghe noise covariance, afg,,, is a Kronecker delta function.

can be achieved witli' at least equal to twice the number of |n order to produce a trough of width’ in each of the in-

strong interfering sourcel®/ (i.e., K > 2M for N > M). terference directions;, Mailloux [3] distributed a cluster of
When using a limited number of snapshots and diagong&jual-strength incoherent sources around each original source,

loading, significant biases (loss in the estimated output powelg shown in Fig. 3. In this case, the additional sources can be

are introduced in adaptive processing [1], [7], as seen earlielsiimmed in closed form as a geometric sum and can be written
Fig. 1. The Capon and Goodman formula for bias and variangeg

[20] is valid only for the case of no loading and with > N, « _

which is typically not the case for sonars. An analytical formulg (07 /q) &G/ @m =) (withe)

is given in [15] for K > M under some conditions on thex=1

diagonal loading (i.eg2 < ¢ < Ax where\x denotes the _ sin(qAmn) 23 2/ N) @ =)

smallest interference eigenvalue). - gsin(Apmy,) (10)
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Fig. 4. Beampattern of & = 64 element array steered broadside withFig. 5. The eigenvalues of the original covariance maRix(crosses) and
augmented covariance matrRR: Mailloux (dashed line) withy = 7 and the tapered matriR (circles) for anV. = 64 element array. The significant
Zatman (solid line). Two interfering sources are incident at 0.3 andu =  number of eigenvalues has increased from 2 to 14. On the other hand, the larger

0.8. Note the null broadening obtained at these two locations Uing 0.1.  eigenvalues have decreased, resulting from the CMT operation. The first five
eigenvalues of the CMT matriX' are also superimposed (squares).

whereA,,,,, = 7(2., —2,)§/A ands = W/(q—1). Since there whereT, = sincl(m — n)d] andd = by /2fo = W/2 cor-

IS no _angle depe_zndence in the sinc function, we obtain a n(rec\aNsponds to half of the null width defined in the Mailloux
covariance matrix term

approach. The solid line in Fig. 4 shows the resulting beampat-
B o_n sin(qAmn) a1 tem using the wide-band covariance maltiwith d = W/2 =
mn " gsin(Amn) 0.05. It is interesting to note that the bandwidtlh implicitly

. . . aries with the direction cosine = sin 6 for a fixed value ofd
In this formulation, we have introduced a source strengih

. . ; 0 keepb,,u a constant.
equally distributed with levet?/q rather tharv? in [3]. W . . )
In Fig. 4, the adaptive beampattern of\a — 64 element Although both approaches achieve null broadening to the de

linear array is shown with the original covariance maRof sired W'dthW’. note from !:'g' 4 that the solid fine produce_s
(2) replaced by the augmented covariance marir (11) with flatter troughs in the adaptive pattern than does the dashed line.

B - : atman’s approach produces continuous fictitious sources dis-
.W - 0.1andg = 7 (dashed ine). As opposedto the sh_arp nuIt%ributed along the beamwidtiW/, whereas the Mailloux ap-
in Fig. 2, the beampattern clearly shows null broadening.

proach places a finite number of discrete sourg@sthin the

B. Dispersion Synthesis i)is:lledth. Asg; increases, the two approaches become iden-

Rather than physically distributing fictitious sources, Zatman
[4] used dispersion to widen the null of a narrow-band signat. Covariance Matrix Taper

Assuming a rectangular spectrum of bar!dyv?dgh centered . Guerci [5] combined the above null-broadening approach
at fr_equencyfo, the au_gmentatlt_)n of the fictitious sources iSyith diagonal loading through the concept of a “covariance
achieved k.)y a ;ynthetm averaging of the narrow-band COVaiatrix taper” (CMT) and theoretically investigated the effect
ance matrixk(f) over the bandwidth of CMT on the adaptive beampattern. In this paper, diagonal

- 1 [fotw/2) loading is handled separately by the robust WNC processor.
R = 3= Ronn(f) df The Mailloux—Zatman (MZ) null-broadening approach is de-
W S fo=(bw/2) scribed in (13) as a modification of the original sample covari-
_ Sy Tinn) Runn(f0) (12) ance matrix® through the CMT matrixI', which is a positive
ThwTmn semidefinite matrix with its diagonal entries equal to 1. Note
Where Ry (f) = 727/ ™ and oy, = (2m — oo )ui/c is the that bothR andR are, in general, positive semidefinite Hermi-

time delay between the elements. For actual broad-band signg&’é1 matrices.

null broadening was demonstrated in [17] with experimental Null broadening or the Hadamard operation increases the
data by making use of waveguide invariant theory [18] and aOE‘mber of eigenvalues [degrees of freedom (DOF)] such that

eraging the estimated array-covariance matrix across frequency. rank(R) < rank(R o T) < rank(R) x rank(T) (14)
For a half-wavelength uniform line array,, — z,, = (m — ) ]
n)A/2, the wide-band covariance matrix can be calculated ¥§10s€ proof can be found in [19] (Theorem 5.1.7). Fig. 5

the Hadamard (element-wise) product [19JRRaNdT as demonstrates that the two eigenvalues corresponding to each
interferer have increased to 14 above the noise level, since

R=RoT (13) each interferer is represented by fictitious nearby sources. For
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40 — Mailloux | ' resolution for this example. Note that= 7 corresponds to
- -- Zatman the number of eigenvalues larger than the noise level (or the ef-
30 4+ fective rank ofT) in Fig. 5 (circles) for each source. A lower

bound on the angular resolution is derived in [23], applying the
Cramer—Rao formalism demonstrating that it is proportional to
the classical Rayleigh limit\/ L) and a factor depending on the
output signal-to-noise ratio (SNR).

It is also shown in Fig. 6 that the CMT operation reduces
the beamformer output power due to discrete sources since it
distributes the source power over the null width However,
the reduction of the signal power is negligible as compared to
the significant bias resulting from a small number of snapshots
when applied to a snapshot-deficient problem, as discussed in
Section II-C. Note that the total power is preserved since the
trace ofR is not affected by the CMT matriX', whose diagonal
entries are equal to 1. Accordingly, the largest eigenvalues of the
original covarianc® (crosses) have decreasedir(circles) in
Fig. 5.

— Mailloux
--- Zatman

IV. NULL BROADENING WITH SNAPSHOTDEFICIENT R

Thus far, the null-broadening technique has been applied to
either an exact covariance matiik in (9) or to a 2N sample
covariance matrix by Guerci [5] assuming a stationary process.
While the concept was originally introduced for robustness of
adaptive algorithms, the usefulness of this approach was lim-
ited by its undesirable effects, such as decrease in array gain
and broadening of the mainlobe as shown in Fig. 6. Here, we
apply the CMT null-broadening approach to the case when only
a limited number of snapshots are available due to interference
motion (i.e., K <« N) and the interference can move across
several resolution cells.

As described in Section II, the number of snapshots is lim-
ited by the resolution cell sizg/ L. On the other hand, effective

(b) nulling of the strong moving interferers usually requires a larger

Fig. 6. MVDR output power using the Mailloux approach (solid) wih number of snapshots (e.g., at leaSt> 2M), wherelM is the

(@) ¢ = 5 and (b)g = 7. The result with the Zatman approach is superimposedumber of sources [1], [14], [15]. Null broadening offers a ro-

in the dashed line. Note thqt<'7 produces resolvable discrete sources rathgg st approach to this snapshot-deficient problem. It allows the

than a broad null. The dotted line is the output power Rth . . .
interferers to move through several resolution cells in the total
observation time, increasing the number of snapsRotssable

a snapshot-deficient problem, the rankRfusually isK and for weak target detection. At the same time, null broadening in-

is much smaller than the number of array elemé¥itdn this creases the DOF by generating fictitious sources over the null

case, the increased degrees of freedom by the null-broadeniidth, which the processor uses efficiently by containing each

approach will be significant and can enhance the detectionmbving source in a single broad null. The increased DOF en-

weak targets in the presence of strong interferers. ables us to detect weak stationary targets otherwise obscured

The number of significant eigenvalues of the CMT maffix by the strong moving interferers. With the null-broadening ap-
is (W/(A/L) + 1) from the analogy between the temporal angdroach, we can resolve all of the targets simultaneously, in-
spatial domains [21], [22]. This corresponds to the number ofuding the moving sources, rather than trying to separate them
resolution cells over the null widt#V plus one. Fig. 5 shows thatin a multistage process [2], [12], [13]. This approach is simple
there are four significant eigenvaluesIhfor W/(A/L) = 3.2 because it requires only the Hadamard multiplication without
(squares). However, the number of fictitious sources distributady significant effort. Finally, the previously unexplored ben-
over a null widthi¥ is determined by the resolution capabilityefit of null broadening combined with the WNC adaptive pro-
of an adaptive beamformer [16], [23]. Fig. 6 shows the MVDRessing is a significant increase in dynamic range by selectively
beamformer output power (solid line) when @)= 5 and reducing the bias from the small number of available snapshots.
(b) ¢ = 7. We observe that all of the fictitious sources are It is appropriate to mention how the value Bf is chosen
resolved wheny = 5 rather than producing a broad null agor null broadening in (13). For a stationary problem with an
shown wheng = 7, indicating that each resolution cell re-exact covariance matriR, W is the desirable null width in
quires approximately two fictitious sources due to the highéirection cosine (see Fig. 4). With source motion, we expect to




SONGet al. NULL BROADENING WITH SNAPSHOT-DEFICIENT COVARIANCE MATRICES IN PASSIVE SONAR 255

Power (dB)

-1 -0.5

0 s 1 -5 05 0 05 1
u = 8in(6) u = sin(6)

(© (d)

Fig. 7. Baseline results using MVDR processing fr= 128, K = 20 and diagonal loading af = 10 dB: (a) nine fixed sources, (b) nine fixed sources with

AEL errors, (c) two moving and seven fixed sources, and (d) two moving and seven fixed sources with AEL errors. The source levels and positioes are denot
by x. The effects of source motion ov&f = 20 snapshots are observable in (c) and (d), especially on the weakest target at).7. Note the bias of MVDR

due to the small number of snapshots accumulated.

achieve null broadening with a smallgr rather than the one (40 dB) is initially atu = —0.42 with Aw = 0.0028 (three
normally required for a stationary case. In addition, a smallémes slower than the 25-dB source). Doppler frequency shift
null width is desirable to resolve closely spaced beams. We wdllie to source motion is not taken into account assuming tan-
use the notation df/;, to distinguish it from the stationary case gential motion. The seven fixed sources are at (—0.7,—0.5,
According to our simulations, it appears that a resolution cellp.25, 0.15, 0.3, 0.5, 0.7) with the weakest target at —0.7.
size\/ L is appropriate folV,,, although this requires further For these simulations, a mismatch in the array element location
investigation. It should be noted, however, that we can use qUiféEL) of 0.1\ rms is introduced, with the exception of Fig. 7(a)
abroadrange df/y; (e.9.,Was < W), making null broadening and (c).
a robust process. We useK = 20 snapshots, which is about twice the number
of sourceg M = 9) as suggested in [1], [14], and [15]. The two
V. SIMULATIONS moving sources then occupy 9 and 3 resolution cells, respec-
tively. Fig. 7 shows baseline results obtained using the MVDR

We test the null-broadening technique using an example Wgr]ocessor where the effect of source motion is clearly demon-

severe motion [2]. Howev_er_, We increase the_ number of arr Yated. Note that Fig. 7(a) and (c) are identical to Fig. 1(a) and
elements for snapshot-deficient processing with a smaller re%))-

. . , as shown earlier. A diagonal loadingof= 10 dB is ap-
lution cell size.

plied, which is 10 dB above the noise level. The source levels
. ) _ and positions are denoted by the asterisks. Fig. 7(a) assumes all
A. Baseline Results With MVDR Processing nine sources to be stationary, verifying that= 20 snapshots
A 128-element linear array with a half wavelength spacincan resolve all of the sources.

(N = 128) is used with a resolution cell size &f L = 0.016. Once source motion is introduced in Fig. 7(&), = 20 is
There are two strong moving sources and seven fixed souroes sufficiently large to enable detecting the weakest target at
(M = 9)in 0 dB uncorrelated noise. The source levels ara: = —0.7. This is because the source motion effectively gen-

moving sources (40, 25 dB) and fixed sourcesl, 10, 5, erates additional sources (e.g., two sources per resolution cell),
0, 11, 12, 9 dB). One of the moving sources (25 dB) is iniwhich in turn require more snapshots at a rate faster than the
tially near endfire ¢ = 0.95) and moves toward broadside withaccumulation of snapshots, thus exceeding the available DOF.
Au = —0.0075 per snapshot. The other stronger moving sour@éus the effective number of snapshots is reduced by source
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Fig.8. Adaptive processing with the sample covariance mBkrupper panels) and a taperBd(lower panels): (a) MVDR wittR., (b) WNC withR,, (c) MVDR

with R, and (d) WNC withR.. A diagonal loading o€ = —20 dB is applied to the MVDR and as a reference level (minimum) to the WNC with WNG2 dB.
Although both (c) and (d) demonstrate the effectiveness of the null-broadening approach over (a) and (c), the WNC proce®iimg(djitthows remarkable
performance over MVDR processing wilh in (a) in the presence of AEL errors. Note in (b) and (d) that the bias associated with discrete sources is significantly
reduced by the WNC while the noise floor remains the same, resulting in a significant increase in the dynamic range.

motion, resulting in a larger bias in Fig. 7(c), as discussed @i AEL errors for the weakest targetat= —0.7. Note that the
Section Il. In the presence 6f1\ rms AEL error, the MVDR WNC processing significantly reduces the bias associated with
results get worse due to its sensitivity to mismatch as shownthre discrete sources (compare the left and right panels) without
Fig. 7(b) and (d), especially for the strong signals (40, 25 dBffecting the noise level. As a result, the dynamic range has in-
subject to larger signal suppression [16]. Next, we combine theeased significantly. Another observation is that the noise floor
null-broadening approach with robust WNC processing to infevel has increased from 100 dB (upper panels) te-50 dB

prove the results shown in Fig. 7(d). (lower panels) due to the null broadening. This is because the
null broadening increases the DOF or the effective number of
B. Null Broadening With Robust WNC Processing snapshots, resulting in a smaller bias [1].

As discussed in Section IlI-C, null broadening increases the

Fig. 8 shows results with the original sample covarianaeumber of degrees of freedom as shown in Fig. 9(a).fFor
matrix R (upper panels) and a taperd®l (lower panels) 20, the number of eigenvalues in the sample covariance matrix
with Wy, = 0.013, respectively. The left and right panelsR is 20. As a result of the Hadamard operation, the significant
employ MVDR and WNC processing, respectively. Note thatumber of eigenvalues R hasincreased up to 50, counting the
Fig. 8(a) is identical to Fig. 7(d), except that diagonal loadingigenvalues down to the 0-dB noise level. Fig. 9(b)—(d) displays
of e = —20 dB applied rather than 10 dB. The result is that thihe WNC processing results wilR where the first 20, 50, and
noise floor level has decreased frerd0 dB to—100 dB, i.e., 100 eigenvectors, respectively, have been included in the pro-
twice the change in diagonal loading 0 dB), which will be cessing. In particular, Fig. 9(b) indicates that the first 20 eigen-
discussed below. The idea is to apply a diagonal loading that/isctors do not represent all the discrete sources as compared
minimal but sufficient for matrix inversion, allowing the WNCto Fig. 9(d) containing 100 eigenvectors, while the best perfor-
processor to obtain an optimal diagonal loading level subjectrigance in Fig. 9(c), with 50 eigenvectors, confirms the number
the WNG constraint (WNG= —2 dB). of significant eigenvalues mentioned above. Note the apparent

Clearly, Fig. 8(c) and (d) demonstrates the effectivenessiofprovementin the SNR [e.g., from 15 dB in Fig. 9(d) to 26 dB
the null-broadening approach over (a) and (b), while the beafos the weak target at = —0.7] since the noise-floor level is
are broader than Fig. 8(a) and (b). In particular, the WNC préuirther suppressed by excluding the noise components, despite
cessing in Fig. 8(d) shows the best performance in the preseacgight reduction in the signal power.
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Fig. 9. (a) The eigenvalues of the original covariance rpﬁi(«:ircles) with K = 20 snapshots and the tapered malRix(crosses) for aiv = 128 element

array. Plots (b)—(d) show the WNC processing results WRitwvhere the number of eigenvectors included in the processing are 20, 50, and 100, respectively. In
particular, (b) indicates that the first 20 eigenvectors do not represent all of the discrete sources as compared to (d), containing 100 eieteviztogs), with

50 significant eigenvectors, shows an improvement in the apparent SNR because the noise floor level is further down by excluding the noiseseigenvecto

C. Effect of Diagonal Loading constraint, turning back to the MVDR processing. We also note

Fig. 10 illustrates the effect of the reference (minimum) levéiiat the output power with MVDR (dotted and dashed lines)
of diagonal loading on the bias for WNC processing with th_ger_nonstrgtes that the bias is independent of steering angle, as
first 50 eigenvectors: (&) = —30 dB; (b) e = —20 dB: |nd|c§ted in [1]. However, the WNC depends strongly on the
and (c)e = 0 dB. Fig. 10(d) displays the power of signal aSt€€ring angle.

u = —0.7 (circles) and the noise (diamonds) as a function of the

reference diagonal-loading level where the signal power Usifg Beampattern and Null Width

MVDR processing (squares) is superimposed for comparison

and the noise power (diamonds) is the same for both WNC and~ig. 11 displays the beampattern for WNC processing when
MVDR processing. Foe < —10 dB, the noise power (dia- steered in the direction of the weakest target at —0.7. The
monds) is reduced arbitrarily by the reference level of diagonddshed and solid lines show the results with the origfnaind
loadinge with a slope of 2. On the other hand, the WNC signahe tapered, respectively. Source positions over the= 20
power (circles) remains the same because the WNC processingpshots are denoted by not the actual level. For conve-
increases the diagonal loading from the reference level untihiience, the dashed curve is displaced by 15 dB. Note the null
satisfies the WNG constraint WN& —2 dB in (4). The actual broadening achieved witR with respect to the average side-
level of diagonal loading obtainedds ~ —10 dB. As a result, lobe level, especially around the stronger moving interferer at
we can increase the dynamic range arbitrarily by using a refer-= —0.4. These beampatterns explain why Fig. 8(d) detects
ence diagonal-loading< —10 dB with the WNC processing. the weak target while Fig. 8(b) does not.

The slope of 2 is derived in the Appendix, which applies when In our example, ovelX = 20 snapshots the two moving
the diagonal loading is much smaller than the smallest eigessurces (40 and 25 dB) traversBd = 0.056 and 0.15, occu-
value. The 50th smallest eigenvalue is abebtdB in Fig. 9(a), pying 3 and 9 resolution cells, respectively. We have used the
which is well above: = —10 dB. As e continues to increase value ofiW,; = 0.013, corresponding approximately to a reso-
(i.e., e > —10 dB), the slope of both signal and noise aplution cell size\/L = 0.016 as discussed in Section IV. Fig. 11
proaches 1, as described in the Appendix. The increase in #®ws that we obtain an effective null width &Bf.z = 0.1
reference level of diagonal loading abave: —10 dB deprives around the strong moving interfererat —0.4, which is about
the WNC processing of its sensitivity controlled by the WNQ@O times larger than the null width employ#@d,, .
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Fig. 11. Adaptive beampattern for WNC when steered in the direction of t 9
weakest target ai = —0.7. The dashed and solid lines show the result witl tinction of the input SNR for the taperdi (solid) and originak (dashed).

the originalR and tapered®,, respectively. For convenience, the dashed curve
is displaced by 15 dB. Source positions overfie= 20 snapshots are denoted

by *, not the actual level. Note the null broadening obtained Rittespecially . . . .
around the strong moving source (= —0.4), with respect to the average over 200 independent trials as a function of the input SNR of

sidelobe level. the weakest target at = —0.7. The performance metric is the

probability of detecting( Pp) the weakest target [see Fig. 8(b)

and (d)], when using a high threshdl&r ~ 0). Fig. 12 shows

that the null-broadening approach wikh has a significantly
The examples so far were based on single trials. Ndvetter performance than the case vﬂiihAIthough not shown

we characterize the performance of the null-broadening methogkre, all of the remaining sources are always detected in the

E: 12. Probability of detection of the weakest targetiat=" —0.7 as a

E. Performance Analysis
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creases the usable number of snapshots. At the same time, it in-
creases the number of degrees of freedom, providing effective
nulling of the moving interferers. Thus, the null-broadening ap-
proach can improve the detection of weak signals usually ob-
o scured by power spreading of the strong moving interferers. In
addition, the significant bias introduced in adaptive processing
with a small number of snapshots can be exploited by robust
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- APPENDIX
= POWER OUTPUT VERSUSDIAGONAL LOADING
[
©0.3F . . . .
': This appendix derives the quadratic dependence of the
= * MVDR power output on the diagonal-loading level for a
'80_2_ ,;' \ i covariance matriR less than full rank in a snapshot-deficient
“8 + A (;\ problem when the diagonal loading is much smaller than the
o ' ¥ eigenvalues oR.
0.1+ Consider the eigen-decompositionRfwith a dimensionV
for a snapshot-deficient problem witki < N snapshots
’ ° K
P15 110 —105 100 95 90 -85 —80 R=S" Ayl 15
Output Power (dB) Z; ViV (15)

(b)
where )\;, v; denotes théth largest eigenvalue and eigenvec-
Fig. 13. Probability densities of the signal plus noise (circles and solid linédrs, respectively. Then the inverseRf with diagonal-loading

and the noise alone (crosses and dashed line) for an input SNR10 dB: ; P
(a) taperedk and (b) originalR., €, can be written explicitly as [24]

K
null-broadening approach. However, detection of the weakest R+el ' =¢t lI - Z ()\4 _T_ 6) ViVI] ‘ (16)
target withR does not necessarily mean that we can detect all of = ‘
the other sources, even with an increase in SNR, indicating tlﬁ}bstituting this expression into (1), we obtain the MVDR
we simply do not have enough DOF to detect all of the sourc&,%ight vector
given the number of snapshots. When we plot the probability of

detecting all of the sources rather than the single weakest target, K

the solid line remains the same, while the dashed line gets much s— > ﬂi(VjS)Vi

worse. w(s) = ’L=1K (17)
To specify the performance more completely, Fig. 13 shows Is|2 = 3 ﬂi|vjs|2

the probability densities of the signal plus noise (circles) and i=1

the noise alone (crosses) from the 200 independent trials when . .

the input SNR= —10 dB. Fig. 13(a) shows that the probability’1erefi = Ai/(Ai + ¢) ands is a steering vector.

of false alarmPr is almost zero due to separation between the The output power is

signal-plus-noise and noise-alone densities. On the other hand, K

Fig. 13(b) shows that there is significant overlap between them, S Nilvis|2(1 = ;)2

such that the probabilities of detectidty and false alarnPr P(s) = wRw = i=1 5 (18)

depend on the threshold. For instance, when we che88adB , & 12

as a thresholdPp is less than 0.2 foPr ~ 0. Isl* ~ 1;1 Filvis|
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Definingy; = \;/(\i+¢€)?, we can rewrite the above expression [15] C. H. Gierull, “Performance analysis of fast projections of the
as Hung-Turner type for adaptive beamforminignal Processvol. 50,
pp. 17-28, 1996.

K [16] H. Cox, “Resolving power and sensitivity to mismatch of optimum array
Z i |V,Ts|2 processors,J. Acous. Soc. Amewol. 54, no. 3, pp. 771-785, 1973.
2 i=1 ’ [17] J. S. Kim, W. S. Hodgkiss, W. A. Kuperman, and H. C. Song, “Null-
P(S) =€ = 2| - (19) broadening in a waveguideJ: Acous. Soc. Amewrol. 112, no. 1, pp.
2 ToTal2 189-197, 2002.
|S| Z; [31|vis| [18] G. A. Grachev, “Theory of acoustic field invariants in layered wave-

guide,” Acoust. Phys.wvol. 39, no. 1, pp. 33-35, 1993.
. . . [19] R. A. Horn and C. R. Johnsoifippics in Matrix Analysis New York:
Whene is much smaller than the smallest eigenvalye (i.e., Cambridge Univ. Press, 1091

e < Ag), the effect ofe that appears along with; in both  [20] J. Capon and N. R. Goodman, “Probability distributions for estima-
B; and~y; will be negligible. In this case, the output powEr tors of the frequency wavenumber spectruRdc. IEEE vol. 58, pp.

; . : N 5 1785-1786, Oct. 1970.
changes quadratically with the diagonal-loadinge., P o ¢ D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions, Fourier

resulting in a slope of 2 on a decibel scale. This result confirms ~ analysis and uncertaintyBell Syst. Tech. Jvol. 40, pp. 43—64, 1961.
that the bias is independent of the steering vestas indicated [22] H. L. Van TreesDetection, Estimation and Modulation Theory, Part
in [1] 1. New York: Wiley, 1970, pp. 192-194.
2 . [23] A.B. Baggeroer, W. A. Kuperman, and H. Schmidt, “Matched field pro-
With € > A, however, only the eigenvalues comparable to cessing: Source localization in correlated noise as an optimum parameter

€, 1.e.,\; = ¢, will influence the power”. Theny; « e !and estimation problem,J. Acous. Soc. Amewol. 83, no. 2, pp. 571-578,
2 inli ; i ; 1988.
whene” is multiplied with-; inthe num_era_ltor, we end Up_WIth a [24] H. Cox and R. Pitre, “Robust DMR and multi-rate adaptive beam-
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