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Based on waveguide physics, a subspace inversion approach is proposed. It is observed that the
ability to estimate a given parameter depends on its sensitivity to the acoustic wave-�eld, and
this sensitivity depends on frequency. At low frequencies it is mainly the bottom parameters
that are most sensitive and at high frequencies the geometric parameters are the most sensitive.
Thus, the parameter vector to be determined is split into two subspaces, and only part of the
data that is most in
uenced by the parameters in each subspace is used. The data sets from
the Geoacoustic Inversion Workshop (June 1997) are inverted to demonstrate the approach. In
each subspace Genetic Algorithms are used for the optimization, it provides 
exibility to search
over a wide range of parameters and also helps in selecting data sets to be used in the inversion.
During optimization, the responses from many environmental parameter sets are computed in
order to estimate the a posteriori probabilities of the model parameters. Thus the uniqueness and
uncertainty of the model parameters are assessed. Using data from several frequencies to estimate a
smaller subspace of parameters iteratively provides stability and greater accuracy in the estimated
parameters.

1. Introduction

Inversion by matched �eld processing (MFP) can be cast as a non-linear optimization

problem that uses global search methods like simulated annealing1;2 and genetic algorithms3;4

to search over the space of likely values of the unknown parameters. The ease of inversion by

MFP depends on the number of parameters to be optimized5;6. In general, the complexity of

the problem increases with the number of unknown parameters. This is due to the presence

of many local minima in the multi-dimensional parameter space which obscure the search
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for the global minimum. Here, it will be shown that it is possible to simplify the inversion

by taking into account the physical principles of interaction of the acoustic wave-�eld with

the environment. We were able to reduce the inversion into a number of problems with a

smaller subset of parameters to optimize in each case. This greatly improved the e�ciency

of the optimization as the search algorithm had a smaller subspace of parameter values to

search through for the global minimum in each of the reduced problem.

Following this introduction, our approach to performing the inversion by matched �eld

processing is described. All our inversions to estimate the parameters of the various Bench-

mark problems were performed using the SAGA inversion code7. Our use of waveguide

physics to reduce the dimensionality of the search space is outlined in Sec. 3. Solutions to

the Benchmark problems are described and compared to the true parameter values in Sec.

4.

2. Matched Field Inversion

2.1. Objective function

As usual we minimize an objective function �(m) for �nding the most likely set of

environmental parameters m. The objective function is the incoherent sum of the Bartlett

power for each frequency l = 1 : : : Nfreq. As the data contain no noise, both the observed

pl and computed data ql(m) are based on pressure vectors over the array of sensors,

� = 1�
1

Nfreq

NfreqX
l=1

jpylql(m)j2

jplj2jql(m)j2
; (2.1)

where y is the complex transpose. The calculated replica is computed using the OASES

wavenumber integration code8;9 as the forward model.

2.2. Genetic algorithms

The global search method used for the optimization is genetic algorithms (GA). The

basic principle of GA is simple: From all possible parameter vectors, an initial population

of q members is randomly selected. The \�tness" of each member is computed on the basis

of the value of the objective function. Based on the �tness of the members a set of \parents"

are selected and through a randomization process a set of \children" is produced. These

children replace the least �t of the original population and the process iterates to evolve

into an overall more �t population. A detailed description of genetic algorithms and their

application to parameter estimation is given in Gerstoft3.

The GA search parameters were selected as follows. The population size was set to 64,

the reproduction size was 0.5, the crossover probability was 0.8 and the mutation probability

was 0.05. The number of iterations was 1000 for each of the 10 independent populations

speci�ed. Hence a total of 104 forward models were performed for each selected frequency

in the optimization. For each unknown parameter to be estimated, its search space was

quantized into 128 increments.
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2.3. Subspace inversion

In a subspace approach to inversion, see e.g. 10;11, the total parameter vectorm is divided

into a number of subsets of parameters denoted by A, B, C,: : : etc.

m = [mT
A;m

T
B;m

T
C ; : : :]

T ; (2.2)

where T is the transpose. The number of subsets and the dimensionality of each subset is

problem dependent. In a subspace approach, the parameters in each subset are optimized

independently. The advantage of a subspace approach is that the possible search space

becomes smaller in each iteration, and it is thus easier to retrieve the relevant parameters.

For a given data set and environmental model, a model covariance matrix can be intro-

duced

Cm = E[(m� �m)(m� �m)T] =

0
BBBB@

CAA CAB CAC

CBA CBB CBC

CCA CCB CCC

. . .

1
CCCCA

: (2.3)

For a subspace method to work well it is required that the o� diagonal covariance matrices

be neglected relative to the diagonal matrices. Previously, we attempted to use a subspace

approach by inverting for each parameter type (sound speed, attenuation, density) sepa-

rately. However, this did not work and it is expected to be due to the large correlation

between di�erent parameter types. In the present approach, the number of subspaces and

the ordering of parameters in subspaces is determined based on the observed data such that

the o� diagonal covariance matrices are small.

2.4. Convergence

Three indicators are used to determine the quality of the estimate. Due to the non-

uniqueness of the inversion it is not guaranteed that the correct solution is found even when

all the three criteria are satis�ed.

a)Value of objective function. For a good match the objective function should approach a

certain value. In particular, for the present inversion, where the parameterization is known

a priori, it is known that � � 0 indicates a good match.

b) Plotting of the data and replica with the best match. A visual comparison of the data

and replica can often identify problems in the inversion. Often the same data are used when

comparing the match; but also data that have not been used in the inversion could be used.

c) A posteriori distributions. The purpose of the inversion is to determine a set of

parameters and thus it is important to have an indication of how well each parameter

has been determined. Based on the obtained samples during the inversion, statistics of

the convergence for each parameter are computed. Using a Bayesian framework this can

be interpreted as a Monte Carlo integration of the likelihood function12. However, often

the likelihood function is not available and then a practical weighting of the objective

function is performed to give an estimate of the a posteriori distributions3;13. Due to this

ad hoc weighting, the a posteriori probability should be interpreted with care. The relative
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importance of the parameters in the same inversion is precise, but the interpretation and

comparison of inversion results based on di�erent data or approaches should be carried out

with care.

3. Inversion Strategy

3.1. Selection of Data as Observation

The data set14 provided as observation in each of the test cases is extensive. It covers

over 200 frequencies from 25 to 500 Hz at 5 ranges from 1 to 5 km for an array of 100

receivers. Our choice of propagation code for the forward modelling is limited to what is

available in the current version of SAGA, which includes the normal mode code SNAP15, the

full wavenumber integration code OASES8;9 and broadband normal mode code ORCA16;17.

Since OASES is also an appropriate model for the elastic problem EL, we decided to use

OASES as the forward model to compute the replica acoustic �elds.

A major constraint in matched �eld processing is computational time. Being a full-wave

model, OASES is computationally more intensive than many other acoustic propagation

codes based on normal mode theory. Since OASES computes the replicas at each range

by stepping out in range, data at longer ranges would require more computational time.

As thousands of replica acoustic �elds are computed in each case, it is essential to limit

the computation to small ranges. In all the test cases that we worked on, data at the

closest range of 1 km were used in the objective function. Moreover, some of the unknown

parameters were most sensitive to data at this range compared to any of the other ranges

provided.

3.2. Interaction of Wave�elds with the Environment

The interaction of the acoustic wave-�eld with the environment depends much upon

its frequency. The CAL environment from the Inversion Workshop is shown in Fig. 1.

The sound speed pro�le in the water column is downward refracting. This enhances the

interaction of acoustic wave-�elds with the sediment and bottom. There is a positive sound

speed gradient in the sediment. The range vs depth transmission loss contour for acoustic

wave-�elds of frequencies 25 and 199 Hz were computed by OASES and is illustrated in

Fig. 2. With regard to interaction of the acoustic wave-�eld with the sediment and bottom,

it is evident that low frequency wave-�elds propagate substantially through the sediment

and bottom. High frequency wave-�elds on the other hand have negligible penetration into

the sediment and bottom due to high attenuation. This implies that high frequency data

would be insensitive to the properties of the bottom and deeper layers of the sediment. It

is the properties of the sediment close to the water-sediment interface that are important

for high frequencies. Figure 3a shows the Bartlett4 power vs bottom sound speed for the

data at 1 km range from the CAL environment at the two frequencies of 25 and 199 Hz.

We see that the Bartlett power variation is almost negligible at the higher frequency due

to its insensitivity to the bottom sound speed.
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Figure 1: The CAL environment from the Inversion Workshop.

0.01 1 2 3 4 5

2

100

200

CAL,  F= 25.0Hz,  SD= 20.0m

Range (km)

D
ep

th
 (

m
)

0 1 2 3 4 5

CAL,  F= 199.0Hz,  SD= 20.0m

Range (km)

-75

-72

-69

-66

-63

-60

-57

-54

-51

-48

-45

-42

Figure 2: Case CAL: Transmission loss contours for a source depth of 20 m



6 Purnima et al.

1600 1700 1800 1900 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bottom Sound Speed (m/s)

P
ow

er

a)

800 900 1000 1100 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Range (m)

b)

Figure 3: Case CAL: The variation in Bartlett power vs (a) bottom sound speed and (b)
range using an array of 100 receivers. The frequencies are 25 Hz (solid line) and 199 Hz
(dashed-dotted line). The observed data are at a range of 1 km.

From Fig. 2, it is also apparent that the variation of propagation loss with range and

depth is greater at the higher frequencies. The Bartlett power variation with range for the

same set of data at the two frequencies of 25 and 199 Hz is shown in Fig. 3b. The higher

frequency is more sensitive to the variation in the source range.

We can conclude that wave-�elds of varying frequencies have di�ering sensitivities to

the environment and geometric parameters. In inversion problems with unknowns in both

the source position and the sea bottom properties, it is essential to use a combination of

both high and low frequency data as observation in the objective function. High frequencies

allow estimation of the source position with greater accuracy while the lower frequencies

provide reliable estimates of the sea bottom parameters.

3.3. Subspace Approach to Inversion

We make use of the varying sensitivities of the wave-�elds at various frequencies to

reduce the inversion problem into a sequence of smaller inversions with fewer unknowns to

estimate at each stage.

The parameters to be estimated in the Benchmark problems were broadly separated into

those that are sensitive to high and low frequency wave-�elds. An inversion sequence was

adopted that used the high and low frequencies in separate runs to estimate a smaller subset

of parameters in an iterative manner until a good match was obtained with the observed

data. Figure 4 illustrates the iterative-subspace strategy that we employed.
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- to obtain estimate of the sediment and bottom parameters

- to get an overall intial estimate of the environment
One or more low frequencies to estimate all the unknowns.

Low Frequency Inversion

High Frequency Biased

Several High frequencies and few low frequencies.
- to obtain estimate of source position and water depth

Low Frequency Biased

Several Low frequencies and few high frequencies.

Figure 4: Scheme to implement the iterative-subspace approach to inversion which uses
multiple frequencies in separate inversion runs. A smaller subset of parameters are estimated
in each run.

We start o� the iteration using low frequency data in the inversion to estimate all the

unknowns. The main objective here is to have an overall feel for the environment and to

obtain approximate estimates of the sediment and bottom parameters. The next step is a

high frequency biased run to estimate the source position and water depth. Since the higher

frequencies do not sample much of the bottom, the estimates of the bottom properties now

are not expected to change much from those derived from the �rst stage of the iteration.

Having estimated the source position and the water depth, we now invert for the properties

of the sediment and bottom with a low frequency biased run. Here we use several low

frequencies to probe the sediment and bottom. As shown in Sec. 3.2, the low frequencies

are less sensitive to variations in the source range and depth. Therefore those geometric

parameters estimated in the high frequency biased stage are not modi�ed much. At this

stage, we compare the �tness that we have achieved between the observed data and the

predicted acoustic �eld from the inverted environment. If a good match is obtained (see

Sec. 2.4) for the acoustic �eld over the frequency interval from 25 to 500 Hz, we stop the

iteration. Otherwise, we repeat the high and low frequency biased steps in the inversion

strategy. This loop continues till a good match is obtained.

4. Solution of the Test Cases

We worked on the following Benchmark cases from the Workshop; SD, WA and EL. SD
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and WA use the same parameterization of the environment as in the CAL case (see Fig. 1).

In the SD case, there were 6 unknown parameters: sediment thickness, sediment density,

top and bottom sediment sound speeds, bottom density and sound speed. For the case

WA, there were 9 unknown parameters. In addition to the ones for the SD case, the source

depth and range and the water depth were not known. For both SD and WA, data for three

realizations of the environment were provided. These are denoted by A, B and C. The three

environments of test case WA were estimated using the subspace approach to inversion. One

inversion loop was used for environment B and multiple loops for environments A and C.

The subspace method of inversion will be illustrated in the Sec. 4.1 for case WA, realization

B. For SD and EL, since the source position and water depth are known, we have used

a single run at low frequencies to estimate all the unknowns parameters. It is possible

to improve the estimates obtained for SD by using the subspace approach. This will be

elaborated in Sec. 4.2.

4.1. WA, unknown source position and environment

For the test case WA, there were nine unknown parameters which include the source

position, water depth, sediment and bottom properties. The parameters for environment

B were estimated following the iterative scheme that implements the subspace approach

to inversion. As mentioned previously, we started the inversion by using data at several

low frequencies to obtain approximate estimates of the nine unknown parameters. Next,

the estimates for the sediment and bottom were �xed at the deduced values. For the

high frequency inversion, we used data at 199 Hz only. The parameters that in
uence

high frequency propagation were optimized. They are the source position, water depth,

compressional speed and density of the sea 
oor. Figure 5 shows the marginal probability

density distribution for the various parameters. The peak of the distribution for the source

range and depth and the water depth coincides with the true parameter values indicating

a successful inversion. The estimate for the speed at the top of the sediment is also close

to the true value. The distribution for the sediment density, however, is scattered. Figure

6a and 6b show the Bartlett power plots for the speed at the top of the sediment and the

sediment density respectively. At 199 Hz, the sediment speed is a more sensitive parameter

than the sediment density as it a�ects the acoustic �eld more signi�cantly. Therefore the

sediment speed at the surface can be estimated more precisely.

With the source position and water depth accurately known, we invert for the remaining

parameters using a low frequency biased run with data at 25, 35 and 50 Hz. The sur�cial

sediment properties are included as variables here as any error in the surface sediment sound

speed a�ects the estimation of the sound speed deeper in the sediment and in the bottom.

Figure 7 shows the marginal probability density distribution for the sediment and bottom

properties. The estimate for the sediment speed at the top of the sediment now coincides

with the true value. The estimates for the sediment thickness and the speed at the bottom

of the sediment are slightly o� the true values. Figure 8 shows the ambiguity surface, at

25 and 199 Hz, for the sediment thickness and speed at the bottom of the sediment. There

is a band of values for the sediment speed and thickness for the environment that leads to
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Figure 5: Case WAB: Marginal probability density distribution for the high frequency biased
run. The solid line indicated by the arrow are the true values of these parameters.
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Figure 6: Case WAB: Bartlett power vs (a) sound speed at the top of the sediment and (b)
sediment density for the two frequencies, 25 Hz (solid line) and 199 Hz (dashed line).
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Figure 7: Case WAB: Marginal probability density distribution for the parameters a�ected
by low frequencies. These results are for the low frequency biased run.

pressure �elds with strong correlation to the observed data. This suggests that perhaps the

sound speed gradient in the sediment is a more relevant parameter to invert for than the

precise depth and sound speed values.

Figure 9 shows the match in the magnitude of the acoustic pressure from the inverted

environment with the actual pressure �eld of WAB. The match obtained is good even at

the higher frequencies of 300 and 500 Hz which were not used in the inversion. For the

data used in the inversion, the objective function value �, obtained was of the order of 10�3

which is very small (see Sec. 2.4a).

The iterative-subspace inversion strategy employed here is a simple extension of a similar

scheme used by Siedenburg et. al. In the Workshop problems, the presence of a gradient in

the sediment layer suggests that a low frequency probe (25 Hz) be used �rst, followed by

an inversion at 199 Hz to obtain the sediment properties. In Siedenburg et. al.6, the lack

of a gradient in the sediment allows a high frequency inversion to be done �rst to obtain

sur�cial sediment properties. This is then followed by a low frequency inversion to derive

the bottom properties.

4.2. Comparison between Subspace Approach and Global Inversion

For problem SD, the geometric parameters and water depth are known. The objective is
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Parameter True Estimated nor. sd.
Value Subspace Global Subspace Global

Sediment Thickness (m) 22.4678 22.5 19.6 0.011 0.03
Sediment Speed, top (m/s) 1565.12 1565.4 1572.1 0.0005 0.03
Sediment Speed, bot (m/s) 1743.14 1742.9 1708.6 0.02 0.05
Sediment layer Density (g/cm3) 1.75528 1.755 1.667 0.011 0.10
Basement layer Speed (m/s) 1757.69 1758.6 1758.2 0.004 0.03
Basement layer Density (g/cm3) 1.83349 1.840 1.616 0.08 0.03
Fitness 4�10�5 10�2

Table 1: Case SDA: Mean values of the environment properties estimated using the subspace
and global inversion approaches. The associated standard deviation of each estimate by the
two approaches have been normalized by the search interval. Fitness refers to the objective
function value, � that has been achieved.

to estimate the properties of the sediment and bottom. We employed global inversion using

data at several low and intermediate frequencies to estimate all six parameters for the three

environments of SD. Good matches of the predicted acoustic �eld to the data were obtained

for environments SDB and SDC. However, in the case of SDA, the acoustic �elds from the

forward model using the inverted environments showed a poor match to the data. We tried

to improve on the estimates for the environment SDA using the iterative inversion scheme

based on the subspace approach. The high and low frequency data were used separately to

estimate a smaller subset of parameters at each instance. The sur�cial sediment properties

were estimated in the high frequency runs. The sediment thickness, speed at the sediment

bottom, and the bottom properties were estimated in the low frequency biased run. Table

1 compares the estimates obtained from global inversion and iterative-subspace inversion

with the true values for each parameter. The estimates are obtained from the mean of the a

posteriori distribution13 for each parameter. Data at the same number of frequencies were

used in the global and iterative-subspace inversions, namely, 25, 35, 50, 100 and 199 Hz.
We note that the parameter estimates obtained using the iterative-subspace inversion scheme are

in good agreement with the true values. However, the estimates using the global inversion do not
perform as well. This is somewhat counter-intuitive since global inversion uses all the information
from both high and low frequencies at the same time. We believe the poor solutions to be attributed
to insu�cient sampling of the parameter space. Due to practical constraints on computational
time, each inversion was restricted to only 10,000 forward model runs. However, with a 128 point
discretization of the search interval for each parameter, we have a total of 1286 model vectors in a
global inversion run. Thus only a small fraction of the model vectors are tested. In addition, it is also
likely that in the global inversion runs, due to the complexity of the objective function surface, a 128
point sampling of the search interval may be insu�cient and that the optimization strategy actually
gets trapped in a local minima. On the other hand, if a more exhaustive search is performed, it is
probable that the estimates from the global inversion can be improved. This however would require
too much CPU time for the inversion.

4.3. EL, Elastic Problem

For environments with shear in the sediment and bottom, the e�ect of this shear on acoustic
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Figure 10: The EL environment, realization B from the Inversion Workshop.

propagation depends not only on the magnitude of the shear speeds in the sediment and bottom,
but also on the proximity of the source to the water-sediment interface. For environment ELB (see
Fig. 10), the transmission loss versus range for a receiver at a depth of 99 m and a source at depths
of 20 and 99 m are shown in Figures 11a and 11b respectively. We note that when the source is
close to the sediment, the e�ects of shear are more apparent, particularly at ranges close to the
source. When the source is at 20 m depth, it is too far from the sediment to excite shear waves.
Consequently, even though the sediment and bottom may support shear, the e�ects of shear become
negligible with regard to the wave-�eld in the water column.

Figure 12 shows the integrand plot for a receiver at a depth of 99 m in environment ELB
at a source frequency of 25 Hz. We note that to compute the �eld for a source at 99 m, the
wavenumber integration must be carried out to larger wavenumbers than that for a source at 20 m.
For the expected shear speeds in problem ELB, we expect to compute the replica acoustic �elds by
integrating out to wavenumbers of at least 1.5/m, corresponding to a shear speed of about 100 m/s
to include the shear wave. However, from Figure 12, we note that with the source at 20 m depth,
we need only integrate out to less than 0.38/m for each frequency which corresponds to a larger
horizontal wave speed. We will not obtain the shear wave, but the shear sound speed will increase
the attenuation of the P-waves and thus they will have an e�ect on the propagation18. Therefore it
is still possible to obtain estimates of the shear wave speed. However, if also the P-wave attenuation
in the sediment was unknown then it is questionable if it is possible to determine the shear sound
speed.

A comparison of the inversion times with 10,000 forward model runs indicate that the computa-
tion time is reduced from 6 to 2 hours when integrating only out to wavenumbers of 0.38/m. Table 2
shows the excellent agreement between the estimated parameters and the true values. Here, a better
understanding of the physics has resulted in cost savings in the computation time for the inversions.

4.4. Summary of Solutions

Our estimate of the parameters for the other realizations of environments SD, WA and EL are
provided in Tables 3 to 5. Our approach to solving these test cases uses either iterative-subspace
inversion or global inversion. The precise method used is speci�ed in each case.
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Figure 11: Propagation loss vs range for a receiver at 99 m for source depths of 20 m
(left) and 99 m (right). The solid line is for the environment ELB. The dashed line is
the propagation loss expected in an environment similar to EL but without shear in the
sediment and bottom.

Figure 12: Case ELB: Integrand plots for a receiver at a depth of 99 m at a source frequency
of 25 Hz. The source depths are 20 m (solid line) and 99 m (dotted line).
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Parameter True Estimated
Value Mean nor. sd.

Sediment Thickness (m) 75.5999 75.7 0.001
Sediment P-wave Speed (m/s) 1697.81 1698.0 0.0005
Sediment S-wave Speed (m/s) 134.347 117 0.09
Sediment layer Density (g=cm3) 1.88254 1.872 0.05
Basement P-wave Speed (m/s) 1839.85 1837.0 0.001
Basement S-wave Speed (m/s) 214.316 218 0.03
Basement layer Density (g=cm3) 2.14580 2.170 0.05
Fitness 8�10�5

Table 2: Case ELB: Inversion results for the various properties.

5. Discussion and Conclusion

The complexities of problems in MFP can be simpli�ed by a careful study of the physical prin-
ciples of interaction that underly the propagation of acoustic wave-�elds in a given environment. In
Sec. 3.2, we have shown that the frequency of the acoustic wave-�eld determines the interaction of
the wave-�eld with various components of the environment, for example, high frequencies are greatly
in
uenced by the sur�cial sediment properties. The properties of the basement on the other hand
have negligible impact on the propagation of high frequencies in an environment where the sediment
thickness is more than a few meters. This information was incorporated into the iterative-subspace
inversion strategy in which data were selected based on the frequency, to deduce the relevant pa-
rameters. This reduced the dimensionality of the search space in each iteration due to the fewer
parameters to be estimated at each stage. The algorithms were able to focus on the solution with-
out getting trapped in the local minima which tends to increase in general with the the number of
unknown parameters.

One disadvantage of the subspace method is that by restricting the parameter combinations, it
might be more di�cult to �nd the global solution. But when the subspaces are found based on
physical principles, this is not expected to be the case.

For a wave-�eld of �xed frequency, the di�erent properties of a given component of the environ-
ment have varying degree of in
uence on the propagation of the wave-�elds. As mentioned in Sec.
4.1, the sediment density has less impact on the acoustic wave-�eld than the sediment sound speed.
Therefore we expect the sediment density to be less precisely estimated as compared to the sound
speed.

The geometry of measurement of the observed data in
uences the relative importance of various
parameters. For instance, we saw in Sec. 4.2 that the depth of the source determines the extent to
which the shear waves are excited in the sediment and bottom. Even if an environment supports
the propagation of shear waves, we may not be able to generate shear waves of su�cient intensity to
a�ect the overall sound propagation if the source is too far away from the water-sediment interface.
These considerations should be factored into the inversion as they a�ects the computational time
required for the inversion.
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Table 4: Case WA: Inversion results for realizations A and C using iterative-subspace in-
version. Case WAB has been analysed in Sec. 4.1.

ELA ELC
Parameter True Estimated True Estimated

Value Mean nor. sd. Value Mean nor. sd.
Sediment Thickness (m) 55.1365 55.0 0.013 34.8417 35.9 0.003
Sediment P-wave Speed (m/s) 1669.35 1669.8 0.005 1674.78 1677.6 0.005
Sediment S-wave Speed (m/s) 130.630 155.7 0.13 180.148 273.2 0.07
Sediment layer Density (g/cm3) 1.85324 1.867 0.09 1.83790 1.951 0.06
Basement P-wave Speed (m/s) 1728.47 1727.4 0.009 1747.80 1748.8 0.002
Basement S-wave Speed (m/s) 406.911 385.7 0.12 438.752 450 0.04
Basement layer Density (g/cm3) 2.06771 2.064 0.3 2.05498 2.126 0.16
Fitness 1�10�4 5�10�5

Table 5: Case EL: Inversion results for realizations A and C using global inversion. Case
ELB is repoted in Table 2.
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