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[1] An expression for the cross correlation of noise
between seismic stations and the 2D Green’s function is
derived assuming that noise travels as 2D surface waves.
The phase velocity is obtained directly from the noise
correlation function with a phase shift of +p/4. Mean phase
velocity dispersion curves are calculated for the TUCAN
seismic array in Costa Rica and Nicaragua from ambient
seismic noise using two independent methods, noise cross
correlation and beamforming. The noise cross correlation
and beamforming methods are compared and contrasted by
evaluating results from the TUCAN array. The results of the
two methods as applied to the TUCAN array agree within
1%, giving good confidence in the phase velocities extracted
from noise. Citation: Harmon, N., P. Gerstoft, C. A. Rychert,
G. A. Abers, M. Salas de la Cruz, and K. M. Fischer (2008), Phase
velocities from seismic noise using beamforming and cross
correlation in Costa Rica and Nicaragua, Geophys. Res. Lett., 35,
L19303, doi:10.1029/2008GL035387.

1. Introduction

[2] While group velocities are unambiguously retrieved
from stacked noise cross correlation functions (NCFs)
[Shapiro and Campillo, 2004], phase velocity estimation
is not as straight forward [Yao et al., 2006; Bensen et al.,
2007; Harmon et al., 2007; Gouedard et al., 2008; Lin et
al., 2008]. First, there is some ambiguity regarding which
Green’s function is extracted, i.e. whether the dimensionality
of the noise distribution is 1D, 2D or 3D, leading to
differences in the appropriate way to extract the Green’s
function. Second, 2D constructive interference from off
great circle paths for a given station-to-station path can
introduce a phase bias into the noise correlation function
[Snieder, 2004]. Third, there is an integer cycle uncertainty
in determining phase velocities from NCFs that typically
requires prior information about phase velocities. This is
usually determined from complimentary teleseismic surface
wave studies.
[3] Seismic noise recorded at land-based seismic stations

most likely travels as surface waves [Tanimoto, 2006;Webb,
2007]. Therefore, we develop the 2D model of noise
distribution and the relationship between the noise correla-
tion function and the Green’s function. We present the

expected phase shift from constructive interference of iso-
tropically distributed plane waves for the 2D model. Finally,
the cycle ambiguity is determined in the typical method for
the NCF phase velocity estimates by matching the phase
velocities from teleseismic phase velocity studies. However,
we demonstrate beamforming can successfully reproduce
the mean phase velocity dispersion curve derived from the
noise correlation function without the need for information
from teleseismic surface wave studies by comparing NCF
and beamforming results from the TUCAN array in Costa
Rica and Nicaragua [Abers et al., 2007]. The TUCAN array
was not optimized for a surface wave study but, as we show,
its array aperture and geometry are sufficient to validate the
beamforming method.

2. Models of Ambient Seismic Noise

[4] For two seismic stations located in a 3D isotropic
distribution of plane waves, the normalized cross spectral
density function in the frequency domain is R(w) = sin(a)/a,
a = ws/c, (Figure 1a) where s is station separation and c is
phase velocity [Cox, 1973]. In the time domain, using an
inverse Fourier transform, this noise correlation function
R(t) is a boxcar function, R(t) = H(t + s/c)!H(t! s/c) where
H is the Heaviside step function (black line in Figure 1b).
Thus, dR tð Þ

dx
$ d(t + s/c) ! d(t ! s/c). The two terms

correspond to the acausal minus the causal free-space Green’s
function. Thus, it has been suggested that the seismic Green’s
function, here theoretically a Dirac d-function, can be
extracted from noise correlation functions by taking the
negative time derivative of the causal part of the cross
correlation of the stations’ time series [Roux et al., 2005;
Sabra et al., 2005]. To recover the phase of a great circle
path plane wave a phase shift of p/2 to the NCF is needed
owing to the time derivative. In practice, often an additional
phase shift of !p/4 is needed to account for the phase lag of
a surface wave, though not needed by the 3D theory. This is
because most microseisms travel as 2D surface waves
[Tanimoto, 2006; Webb, 2007].
[5] The problem can be directly and self-consistently

represented completely in 2D. A simple model for the noise
correlation function, R, in the frequency domain for two
stations with isotropically distributed plane waves in 2D is
[Aki, 1957]:

R wð Þ ¼
Z p

!p
Aoe

iws cos qc dq; ð1Þ

where q is the azimuth with respect to the great circle path
between the two stations and A0(q) is the amplitude of the

GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L19303, doi:10.1029/2008GL035387, 2008
Click
Here

for

Full
Article

1Scripps Institution of Oceanography, La Jolla, California, USA.
2Lamont-Doherty Earth Observatory, Earth Institute at Columbia

University, Palisades, New York, USA.
3Geological Sciences, Brown University, Providence, Rhode Island,

USA.

Copyright 2008 by the American Geophysical Union.
0094-8276/08/2008GL035387$05.00

L19303 1 of 6

http://dx.doi.org/10.1029/2008GL035387


plane wave at each azimuth. A similar model could be
obtained using point sources [Snieder, 2004].
[6] Integrating equation (1) assuming A0 = 1/2p yields a

cross spectral density function R(w) = J0(ws/c) where J0 is
the zeroth-order Bessel function of the first kind [Aki,
1957]. The inverse Fourier transform of J0(ws/c), or the
noise correlation function, is:

R tð Þ ¼
1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2a ! t2
p for t & s

c

"

"

"

"

"

"

0 otherwise

;

8

>

<

>

:

ð2Þ

where ta = s/c is the great axis arrival time.
[7] For a 2D medium, the Green’s function, G, for a

scalar wave equation is given by [Sanchez-Sesma and
Campillo, 2006]:

G wð Þ ¼ 1

4im
H

2ð Þ
0 ws=cð Þ ¼ 1

4im
J0 ws=cð Þ ! iY0 ws=cð Þð Þ; ð3Þ

where m is the shear modulus and H0 is the zeroth-order
Hankel function of the second kind, and Y0 is the-zeroth
order Bessel function of the second kind. In the time domain
(t ' 0)

G tð Þ ¼
1

2pm
ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 ! t2a
p for t ' s

c

0 otherwise

8

>

<

>

:

ð4Þ

[8] In 2D, the NCF and Green’s functions have a ‘‘tail’’
on the impulse (grey and black dashed lines, respectively in
Figure 1b). The ‘‘tail’’ on the 2D Green’s function extends
to infinity, and results in a +p/4 phase shift for surface
waves relative to a plane wave in the far field [Aki and
Richards, 2002]. However, the ‘‘causal’’ NCF is used for
determining phase velocity. For the one-sided causal noise
correlation function Rc

Rc wð Þ ¼
Z

p
2

!p
2

A0e
!iws cos qc dq ð5Þ

Rewriting the Hankel function [Abramowitz and Stegun,
1965]

H
2ð Þ

0 zð Þ ¼ 1

p

Z

p=2

!p=2

exp iz cos qð Þdqþ 2i

p

Z

1

0

exp !z sinhfð Þdf ð6Þ

into equation (5) gives (A0 = 1/2p)

Rc wð Þ ¼ 1

2
H

2ð Þ
0

ws
c

# $

! i

p

Z
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sinhf
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Figure 1. (a) Cross spectral density functions and (b) time domain correlation functions for 3D (black),
2D (gray) noise distribution of plane waves and the causal and acausal 2D Green’s Function (dashed
black). The travel time between the two stations is 33 s. (c) Station locations (red triangles) and
topography (from ETOPO2) of the TUCAN array. The time series show the normalized bandpass filtered
(5–33 s) NCF between stations (d) IRZU–N11, (e) B4–N11, and (f) N1–N13. Positive lags correspond
to waves traveling from N11 and N13.
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[9] From equation (7), Rc(w) is proportional to iG(w) plus
an imaginary-valued power series similar to Sanchez-Sesma
and Campillo [2006]. The power series decays faster than
the Hankel function so that in the far field, the NCF gives a
!p/4 phase shift relative to a great circle path plane wave.
To correct the NCF to the Green’s function (multiplication
by i in frequency domain) gives a +p/2 phase shift. The
phase shift from the far field Green’s function to a great
circle path plane wave is !p/4. Thus, the total phase shift is
p/2–p/4 = +p/4 to correct the causal NCF to the great circle
path plane wave. Note, that approaches that take the time
derivative [Yao et al., 2006, Lin et al., 2008], multiplying
with iw in frequency domain (a +p/2 shift), and then apply
the !p/4 phase shift result in the same correction.

3. Phase Velocity From NCF

[10] We determined phase velocities using 593 days (July
2004 to March 2006) of station to station NCF for the
vertical components of the 49 stations of the TUCAN
seismic array (Figure 1c) using a method similar to Harmon
et al. [2007]. Variations from Harmon et al. [2007] include
removing the instrument responses from the signals
(TUCAN contains different sensor types), decimation to 1
s sampling, a RMS clipping scheme for the daily time series
[Sabra et al., 2005] and signal whitening by normalizing the
Fourier coefficients by their respective magnitude, both to
create a single broadband NCF. Then we cross correlated
hourly time series segments for all station pairs and stacked
the resulting correlograms. The NCF phase dispersion was
determined by unwrapping the phase of the stacked NCF
and applying a p/4 correction. We determined the cycle
ambiguity by matching the average phase velocity deter-
mined from teleseismic events at 20 s period. The mean
teleseismic phase velocity estimates were determined using
the method of Yang and Forsyth [2006], with 95 events with
good azimuthal coverage. We calculate the mean phase
dispersion curve and its standard error of the mean by
station-to-station distance-weighted averaging. A station-
to-station NCF phase velocity estimate was used to calcu-
late the mean phase dispersion curve if 1) the NCF had
signal to noise ratio >10, 2) the average of the phase
velocity from all the )4 month NCF stacks had a standard
deviation of <0.1 km/s and 3) the station-to-station path was
greater than 3l after Lin et al. [2008]. Distance weighting
was chosen since longer paths should be more representa-
tive of average structure. For 15–29 s periods, the tele-
seismic and NCF mean phase velocity estimates were
within 1%, except at 18 s where they were within 2%.

4. Phase Velocity From Beamforming

[11] The beamforming method inverts the phase infor-
mation from a seismic array for short time series for the best
fitting phase slowness and back azimuth of a plane wave.
The beamforming method uses the spatial correlation at all
stations of the phase information with a given plane wave to
find the average phase velocity within the array. In contrast,
phase velocity estimates from the NCF determine the phase
delay between individual station pairs of a known distance
from long time series. The NCF requires time periods of
several days or longer to generate reasonable estimates of

the noise distribution [Stehly et al., 2006] while the beam-
forming method can resolve phase velocity and source
azimuth on time scales as short as 10 min. [Gerstoft et
al., 2006].
[12] Beamforming was performed following Gerstoft et

al. [2006] and Gerstoft and Tanimoto [2007]. The data for
each day was split into 512-s time series, which were then
clipped, normalized, and Fourier transformed. For each
frequency, we kept the phase of the signal. At each
frequency, we estimated a complex-valued vector v(w, ti)
containing the response from the 49 stations used in the
TUCAN array, where ti refers to the start time of the Fourier
transform.
[13] The cross-spectral density matrix C is given by

hvvTi, where the brackets indicate temporal averaging over
all ti for each day. The plane wave response for the seismic
array is given by p(w, c, q, r) = exp(iw(re)/c), where r
describes the coordinates of the array relative to the mean
coordinates and e contains the directional cosines of the plane
wave. The beamformer output is given by: b(w, c, q, t) = p(w,
c, q)TC(w, t)p(w, c, q).
[14] We searched for the maximum beamformer output,

corresponding to the best fitting plane wave, over slowness
(1/c) from 0.00–0.40 s/km (2.5–1 km/s) and every 2!
from 0–360! azimuth for each day. To calculate the mean
phase velocity dispersion curve we determine the velocity
corresponding to the maximum beamformer output for each
day and period, and use the beamformer output as the
weights for the average and the weighted standard error of
the mean.

5. Results and Discussion

[15] For station-to-station paths perpendicular to the
Pacific coast, the NCFs are dominated by 6–10 s micro-
seisms coming from the coast. This can be seen by com-
paring NCFs with comparable path lengths and different
orientations such as N1–N13 and B4–N11 (Figures 1f and
1e). A high frequency signal owing to the Pacific micro-
seisms is seen at negative lag (from southwest) for the path
perpendicular to the Pacific coast whereas no high
frequency signal is seen at positive lag for this path
(Figure 1f) or for positive and negative lags of the coast
parallel paths (Figures 1d and 1e). The amplitudes and
frequency contents of the NCFs suggest that the noise
distribution changes with period.
[16] For periods between 10–22 s, the beamformer

output in Figure 2a there is a nearly continuous ring
maximum with surface wave slownesses, suggesting surface
waves dominate the signal in this period range, which is
consistent with the 2D model of noise distribution. If the
noise were distributed uniformly in the Earth (3D assump-
tion) with no beamformer aliasing, we would expect to see a
maximum in the beamformer output at all azimuths and for
all slownesses from 0.00 s/km to the best fitting slowness of
a surface wave (Figure 2a). Above 18 s period there is little
signal from the Pacific (180–240!), while in the secondary
microseism band (6–10 s period) the dominant source
direction is 180–240! azimuth with little energy coming
from other directions, which is consistent with what was
observed in the NCF. Point sources may contribute to the
apparent azimuthal coverage by smearing energy across
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azimuths, but have little effect on the accuracy of the
beamformer phase velocities. Although not possible here,
azimuthal anisotropy might be recovered from the beam-
former output.
[17] For periods greater than 6 s, both NCF and beam-

former average phase velocity estimates are within error of
each other (Figure 3). For the best-resolved periods (7–20 s),
the phase velocity from beamforming agrees within 1% with
the NCF estimates. The agreement is best in this band
because this is where the microseisms are strongest (see
Figure 2a). Below 6 s period, the agreement between the
two estimates begins to erode due to aliasing as the beam-
former output no longer resolves any coherent surface
waves and the errors in the NCF estimates increase. The
NCF estimate is more stable due to the inherent averaging in
the frequency domain caused by windowing in the time
domain. Note, that the errors statistics for beamforming are
based on all data, whereas the NCF are based on the best
data.
[18] The station geometry requirements for the two

methods are different. The NCF method requires only
2 stations. Beamforming, on the other hand, requires an
array of stations. We choose NCF station spacing to be at
least 3l at 20 s period to avoid near field effects and to
allow distinct phases to emerge [Bensen et al., 2007]. Data
selection requirements of the NCF limit the number of
station pairs to 270 out of 1149 at 20 s. For beamforming
array aperture larger than 1l is required to resolve the
longest periods of interest and station spacing <l/2 to

prevent spatial aliasing at shortest periods for a regularly
spaced array, but for irregular arrays it can be relaxed
somewhat. For the TUCAN array which consists mainly
of two regularly-spaced line arrays pointing southwest,

Figure 2. (a) Azimuth vs. phase slowness plots of 593-day stack of beamformer output (dB) of the
TUCAN array for 7, 10, 15, 18, 20 and 22 s period. Slowness is the radial distance on the polar plots from
0.00–0.4 s/km. (b) Velocity model for 10 s period NCF with station locations (circles).

Figure 3. Phase velocity estimates from beamforming
(solid black line) with 3* standard error of the mean (grey
region), noise correlation methods (circles) with 3*
standard error of the mean bars and teleseismic phase
velocity estimates (open squares) with 3* standard error of
the mean.
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beamforming aliasing manifests itself as a straight-line
beamformer output (perpendicular to the line array direc-
tions) rather than a point for sources coming from the
southwest, as shown in the 7 s band in Figure 2a. For
shorter periods, the beamformer aliasing becomes more
severe making it difficult to extract phase velocities. In
the 7–20 s bands, the phase slowness can be resolved but
aliasing does contribute to the errors in the phase slowness
estimates. Overall, the aliasing at the periods of interest, 7–
20 s, is minor while it dominates at periods less than 7 s.
[19] Additional sources of error in the average phase

velocity estimates include measurement error of the phase,
heterogeneous earth structure and heterogeneous source
distribution. Measurement error for both methods is smaller
at short periods owing to the shorter time length of the
phase. Errors due to earth structure can be assessed through
the reduction of the variance from tomographic inversion of
the NCF phase velocities for 2D velocity structure. At 10 s
period (Figure 2b), our velocity model has maximum
heterogeneities of ±10% of the mean of 3.17 km/s, resulting
in a 78% variance reduction of the data.
[20] To assess error due to heterogeneous structure and

source distribution in the beamformer estimates we calcu-
lated the predicted beamformer output for the 2D NCF
phase velocity model at 10 s period (Figure 2b) assuming a
uniform velocity (3.17 km/s) outside the array for distant
events (>5000 km) with 0–360! back azimuths. We use the
2D Rayleigh phase sensitivity kernels of Zhou et al. [2004]
to calculate the predicted phase for the model. For all
azimuths, best fitting phase velocities are within 2% of
the uniform velocity. While for a narrow range of back
azimuths, like Figure 2a, 7 s period, the velocities are within
1%, mirroring the decrease in the beamformer errors we
observe below 9 s period. Beamformer estimates are stable
(Figure 3) since they represent a wave propagation average
across the entire array. At 10 s in Figure 2a, the peak is
resolvable but broader compared to longer periods, which
could be a result of decorrelation owing to velocity hetero-
geneity or less microseism energy at that period. This
broadening contributes to the slight increase in error for the
beamformer estimates for the 9–14 s periods in Figure 3.
[21] Heterogeneous noise distributions can create a sys-

tematic error in the phase velocity estimate requiring a
phase shift other than p/4 for the NCF, which may explain
some of the difference between the NCF and teleseismic
estimates. Therefore, the quality of the phase velocity
estimates for both methods should be considered in con-
junction with the noise distribution. Similarly, the noise
distribution might be useful for empirically determining the
correct phase shift for the NCF.

6. Conclusions

[22] 1. We derive a relationship between the NCF and 2D
Green’s function for a 2D noise distribution and show that
extraction of unbiased phase velocities from the NCF
requires a p/4 phase shift. The good agreement between
the NCF beamformer and teleseismic velocities suggests to
first order that our model holds for real earth structure.
[23] 2. Beamformer output provides valuable information

about noise distribution through time. We show that from

7–20 s period seismic noise in clipped seismograms for
18 months of data is dominated by surface waves and is
consistent with a 2D model of noise distribution, having
good azimuthal coverage from 10–22 s period.
[24] 3. Beamforming provides an accurate, independent

estimate of the mean phase velocity dispersion across a
seismic array that is within 1% of NCF and teleseismic
estimates. Thus, beamforming can potentially resolve the
cycle ambiguity in NCF phase velocity estimates without a
complimentary teleseismic study.
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