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a b s t r a c t 

Line spectral estimation (LSE) with multiple measurement vector (MMV) is studied utilizing the Bayesian 

variational inference. Motivated by the recent grid-less variational line spectral estimation (VALSE) 

method, we develop the MMV VALSE (MVALSE). The MVALSE shares the advantages of the VALSE 

method, such as automatically estimating the model order, noise variance, weight variance, and provid- 

ing the uncertainty of the frequency estimates. The MVALSE can be viewed as applying the VALSE with 

single measurement vector to each snapshot, and combining the intermediate data appropriately. Fur- 

thermore, the MVALSE is developed to perform sequential estimation. Numerical results demonstrate the 

effectiveness of the MVALSE method, compared to the state-of-the-art MMV methods. 
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. Introduction 

Line spectral estimation (LSE), i.e., recovering the parameters

f a superposition of complex exponential functions is one of

he classical problems in signal processing fields [1] , which has

any applications such as channel estimation in wireless commu-

ications [2] , direction of arrival estimation in radar systems [3] ,

peech analysis and so on. Traditional methods for solving the LSE

roblem include periodogram, MUSIC, ESPRIT and maximum like-

ihood (ML) method [1] . 

In the past decades, sparse methods for LSE have been popular

ue to the development of sparse signal representation and com-

ressed sensing theory, which can be clarified into on-grid, off-grid

nd grid-less methods [4] : 

• On-grid: The on-grid method assumes that the frequencies lo-

cate on the grids. By discretizing the continuous frequency into

a finite set of grid points, the nonlinear problem can be for-

mulated as a linear problem. � 1 optimization [5] , sparse itera-

tive covariance-based estimation (SPICE) [6–8] , sparse Bayesian
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learning (SBL) [9] are main sparse methods. Compared to clas-

sical methods, the on-grid methods perform better by utilizing

the sparsity in the frequency domain. However, the frequencies

might not lie on the grids. Thus on-grid methods suffer from

grid mismatch and spectral leakage. 
• Off-grid: To overcome the grid mismatch problem, off-grid

methods gradually refine the dynamic dictionary. In [10] , a

Newtonalized orthogonal matching pursuit (NOMP) method is

proposed, where a Newton step and feedback are utilized to

refine the frequency estimation. In addition, the NOMP algo-

rithm is also extended to deal with multiple measurement

vector (MMV) [11] . In [12] , the iterative reweighted approach

(IRA) via majorization-minimization (MM) is proposed, which

effectively overcomes the grid mismatch problem and achieves

a super-resolution accuracy. Later in [13] , a prior knowledge

of the frequency distribution aided iterative reweighted algo-

rithm is proposed. A different off-grid approach is based on

the Bayesian framework and SBL [16,17] is adopted. In [14] ,

an SBL based method is proposed which jointly estimates the

grid and grid bias, while in [15] , a Newton method is proposed

to refine the frequency estimates. In [18] , variational inference

method is proposed. In [19] , maximization of the marginalized

posterior probability density function (PDF) is performed. For

all these approaches, only point estimates of the frequency are

computed in each iteration, which is similar to the classical
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ML methods. Another limitation is that these methods usually

overestimates the model order [18] . In [20] , a low complexity

superfast LSE methods are proposed based on fast Toeplitz ma-

trix inversion algorithm. 
• Grid-less: To completely overcome the grid mismatch problem,

grid-less methods which work directly with continuously pa-

rameterized dictionaries was proposed [21–28] . For the SMV

case, the atomic norm based method has been proposed in

the noiseless case [21] . In [22,23] , the atomic soft threshold-

ing (AST) method is proposed in the noisy case. Since AST

method requires knowledge of the noise variance, the gridless

SPICE (GLS) method is proposed without knowledge of noise

power [23] . In [24] , an exact discretization-free method called

sparse and parametric approach (SPA) is proposed for uniform

and sparse linear arrays, which is based on the well-established

covariance fitting criterion. In [26] , two approaches based on

atomic norm minimization and structured covariance estima-

tion are developed in the MMV case, and the benefit of includ-

ing MMV is demonstrated. To further improve the resolution of

the atomic norm based methods, enhanced matrix completion

(EMac) [29] and reweighted atomic-norm minimization (RAM)

[30] are proposed and the resolution capability is improved

numerically. These grid-less based methods involve solving a

semidefinite programming (SDP) problem [31] , whose compu-

tation complexity is prohibitively high for large-scale problems.

In [32] , by treating the frequencies as random variables, a grid-

less variational line spectral estimation (VALSE) algorithm is

proposed. This work is closely related with [32] , and details are

introduced in the ensuing subsection. 

1.1. Main contributions and comparisons to related work 

In [32] , a grid-less variational line spectral estimation algorithm

is proposed, where PDFs of the frequencies are estimated, instead

of retaining only the point estimates of the frequencies. This more

complete Bayesian approach allows to represent and operate with

the frequency uncertainty, in addition to only that of the weights.

We rigorously develop the variational Bayesian inference method

for LSE in the MMV setting, which is especially important in array

signal processing. Meanwhile, the derived MVALSE reveals close re-

lationship to the VALSE algorithm, which is suitable for parallel

processing. The prior information may be given from past expe-

rience, and is particularly useful for low SNR or few samples are

available [33] . For sequential estimation, the output of the PDF of

the frequencies from the previous observations can be employed as

the prior of the frequency, and sequential MVAL SE (Seq-MVAL SE)

is proposed. Substantial experiments are conducted to illustrate the

competitive performance of the MVALSE method and its applica-

tion to DOA problems, compared to other sparse based approaches.

1.2. Notation 

Let S ⊂ { 1 , · · · , N} be a subset of indices and |S| denote its car-

dinality. For a matrix A ∈ C 

M×N , let A : , S denote the submatrix with

the columns indexed by S, let a T 
i 

denote the i th row of A and

A S, : denote the submatrix with the rows of A indexed by S . For

a matrix J ∈ C 

N×N , let J S, S denote the submatrix by choosing both

the rows and columns of J indexed by S . Let (·) ∗S , (·) T S and (·) H S 
be the conjugate, transpose and Hermitian transpose operator of

(·) S , respectively. Let I L denote the identity matrix of dimension

L . Let || · || F denote the Frobenius norm. For a vector x , let ‖ x ‖ 0
denote the number of nonzero elements, and sometimes we let

[ x ] i or x i denote its i th element. Similarly, let [ B ] i,j or B ij denote

the ( i, j )th element of B , and let B i ,: and B :, j denote the i th row

and j th column of B , respectively. Let Re{ · } return the real part.

Let CN (x ;μ, �) denote the complex normal distribution of x with
ean μ and covariance �, and let VM (θ, μ, κ) denote the von

ises distribution of θ with mean direction μ and concentration

arameter κ . 

. Problem setup 

For the line spectral model with L snapshots, the measurements

 ∈ C 

M×L consist of a superposition of K complex sinusoids cor-

upted by the additive white Gaussian noise (AWGN) U : 

 = 

K ∑ 

k =1 

a ( ̃  θk ) ̃  w 

T 
k + U , (1)

here M is the number of measurements. The complex weights

ver the L snapshots and the frequency of the k th component

re ˜ w k ∈ C 

L ×1 and respectively ˜ θk ∈ [ −π, π) . The elements of

he noise U ∈ C 

M×L are i.i.d. and U i j ∼ CN (U i j ; 0 , ν) , and a ( ̃  θk ) =
1 , e j ̃

 θk , · · · , e j(M−1) ̃  θk ] T . 

Since the number of complex sinusoids K is generally unknown,

he measurements Y is assumed to consist of a superposition of

nown N components with N > K [32] , i.e., 

 = 

N ∑ 

i =1 

a (θi ) w 

T 
i + U = AW + U , (2)

here A = [ a (θ1 ) , · · · , a (θN ) ] ∈ C 

M×N , a ( θ i ) denotes the i th column

f A , w 

T 
i 

denote the i th row of W ∈ C 

N×L . Since N > K , binary hid-

en variables s = [ s 1 , . . . , s N ] 
T are introduced with probability mass

unction p(s ;λ) = 

∏ N 
i =1 p(s i ;λ) , where s i ∈ {0, 1} and 

p(s i ;λ) = λs i (1 − λ) (1 −s i ) . (3)

e assume p(W | s ; τ ) = 

∏ N 
i =1 p(w i | s i ; τ ) , where p ( w i | s i ; τ ) is

ernoulli-Gaussian distributed 

p( w i | s i ; τ ) = (1 − s i ) δ( w i ) + s i CN ( w i ; 0 , τ I L ) , (4)

here δ( · ) is the Dirac delta distribution and τ is the variance of

he elements of w i corresponding to the active component. Eqs.

3) and (4) show that λ controls the probability of the i th compo-

ent to be active, i.e., p(s i = 1) = λ. The prior distribution p ( θ) of

he frequency θ = [ θ1 , . . . , θN ] 
T is p( θ) = 

∏ N 
i =1 p(θi ) , where p ( θ i ) is

ncoded through the von Mises distribution [34] , p. 36] 

p(θi ) = VM (θi ;μ0 ,i , κ0 ,i ) = 

1 

2 π I 0 (κ0 ,i ) 
e κ0 ,i cos (θ−μ0 ,i ) , (5)

here μ0, i and κ0, i are the mean direction and concentration pa-

ameters of the prior of the i th frequency θ i , I p ( · ) is the modi-

ed Bessel function of the first kind and the order p [34] , p. 348].

ote that κ0 ,i = 0 corresponds to the uninformative prior distribu-

ion p(θi ) = 1 / ( 2 π) [32] . 

For measurement model (2) , the likelihood p ( Y | AW ; ν) is 

p(Y | AW ;ν) = 

∏ 

i, j 

CN (Y i j ; [ AW ] i, j , ν) . (6)

et β = { ν, λ, τ } and � = { θ, W , s } be the model and estimated

arameters. Given the above statistical model, the type II maxi-

um likelihood (ML) estimation of the model parameters ˆ βML is 

ˆ 
ML = argmax 

β

∫ 
p(Y , �;β)d s d W d θ, (7)

here p(Y , �;β) ∝ p(Y | AW ;ν) 
∏ N 

i =1 p(θi ) p( w i | s i ; τ ) p(s i ;λ) . Then

he minimum mean square error (MMSE) estimate � of the
MMSE 
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arameters � is 

ˆ 
MMSE = E[ �| Y ; ˆ βML ] , (8) 

here the expectation is taken with respect to the PDF 

p( �| Y ; ˆ βML ) ∝ p(Y | AW ; ˆ νML ) 
N ∏ 

i =1 

p(θi ) p( w i | s i ; ˆ τML ) p(s i ; ˆ λML ) . (9) 

owever, computing both the ML estimate of β (7) and the MMSE

stimate of � (8) are intractable. Thus an iterative algorithm is de-

igned in the following. 

. MVALSE Algorithm 

In this section, a mean field variational Bayes method is pro-

osed to find an approximate PDF q ( �| Y ) by minimizing the

ullback-Leibler (KL) divergence KL( q ( �| Y )|| p ( �| Y )) [35] , p. 732] 

L (q ( �| Y ) || p( �| Y )) = 

∫ 
q ( �| Y ) ln 

q ( �| Y ) 

p( �| Y ) 
d θd W d s . (10) 

or any assumed PDF q ( �| Y ), the log marginal likelihood (model

vidence) ln p ( Y ; β) is [35] , pp. 732-733] 

n p( Y ;β) = KL (q ( �| Y ) || p( �| Y )) + L (q ( �| Y ) ;β) , (11) 

here 

 (q ( �| Y ) ;β) = E q ( �| Y ) 
[ 

ln 

p(Y , �;β) 
q ( �| Y ) 

] 
. (12) 

or a given data Y , ln p ( Y ; β) is a constant, thus minimizing the

L divergence is equivalent to maximizing L (q ( �| Y ) ;β) in (11) .

herefore we maximize L (q ( �| Y ) ;β) in the sequel. 

For the factored PDF q ( �| Y ), the following assumptions are

ade: 

• Given Y , the frequencies { θi } N i =1 
are mutually independent. 

• The posterior of the binary hidden variables q ( s|Y ) has all its

mass at ̂  s , i.e., q (s | Y ) = δ( s −̂ s ) . 
• Given Y and s , the frequencies and weights are independent. 

As a result, q ( �| Y ) can be factored as 

 ( �| Y ) = 

N ∏ 

i =1 

q (θi | Y ) q ( W | Y , s ) δ( s −̂ s ) . (13) 

Due to the factorization property of (13) , the frequencies θ
an be estimated from the marginal distribution q ( �| Y ) as [34] ,

p. 26] ̂ 

i = arg (E q (θi | Y ) [e 
j θi ]) , (14a) 

 

 i = E q (θi | Y ) [ a (θi )] , i ∈ { 1 , . . . , N} , (14b) 

here arg( · ) returns the angle. In Section 3.1 , q ( θ i | Y ) is ap-

roximated as a von Mises distribution. For von Mises distri-

ution VM (θ ;μ, κ) (5) , arg (E VM (θ ;μ,κ) [e 
j θ ]) = arg (e j μ

I 1 (κ) 
I 0 (κ) 

) = μ =
 VM (θ ;μ,κ) [ θ ] . Therefore, ̂ θi is also the mean direction of θ for von

ises distribution. Besides, E[e j mθ ] = e j mμI m 

(κ) /I 0 (κ) 1 

Given that q ( s | Y ) = δ( s −̂ s ) , the posterior PDF of W is 

 (W | Y ) = 

∫ 
q (W | Y , s ) δ(s −̂ s )d s = q (W | Y ;̂ s ) . (15) 
1 As I m ( κ)/ I 0 ( κ) < 1 for m ∈ 1 , · · · , M − 1 , the magnitudes of the elements of 

 q (θi | Y ) [ a (θi )] are less than 1. An alternative approach is to assume the following 

osterior PDF δ(θi − ̂ θi ) which corresponds to the point estimates of the frequen- 

ies, and let ̂  a i be a ( ̂  θi ) , which yields the VALSE-pt algorithm [32] . Numerical re- 

ults show that the performance of VALSE-pt is slightly worse than that of VALSE 

lgorithm [32] . Here we use (14b) to estimate a ( θ i ). 

n  

Y  

i  

r  

g  

M  

l

or the given posterior PDF q ( W | Y ), the mean and covariance of

he weights are estimated as ̂ 

 i = E q ( W | Y ) [ w i ] , (16a) 

 

 i, j = E q ( W | Y ) [ w i w 

H 
j ] − ̂ w i ̂  w 

H 
j , i, j ∈ { 1 , . . . , N} . (16b) 

Let S be the set of indices of the non-zero components of s ,

.e., 

 = { i | 1 ≤ i ≤ N, s i = 1 } . 
nalogously, ̂ S is defined based on ̂

 s . The model order is estimated

s the cardinality of ̂ S , i.e., ̂ 

 = | ̂  S | . 
ccording to (2) , the noise-free signal is reconstructed as 

 

 = 

∑ 

i ∈ ̂  S ̂

 a i ̂  w 

T 
i . 

Maximizing L (q ( �| Y )) with respect to all the factors is also

ntractable. Similar to the Gauss-Seidel method [36] , L is opti-

ized over each factor q ( θ i | Y ), i = 1 , . . . , N and q ( W, s|Y ) sepa-

ately with the others being fixed. Let z = (θ1 , . . . , θN , (W , s )) be

he set of all latent variables. Maximizing L (q ( �| Y ) ;β) (12) with

espect to the posterior approximation q ( z d | Y ) of each latent vari-

ble z d , d = 1 , . . . , N + 1 yields [35] , pp. 735, Eq. (21.25)] 

n q (z d | Y ) = E q ( z \ z d | Y ) [ ln p(Y , z )] + const , (17) 

here the expectation is with respect to all the variables z except

 d and the constant ensures normalization of the PDF. In the fol-

owing, we detail the procedures. 

.1. Inferring the frequencies 

For each i = 1 , . . . , N, we maximize L with respect to the factor

 ( θ i | Y ). For i / ∈ S, we have q (θi | Y ) = p(θi ) . According to (17) , for

 ∈ S, the optimal factor q ( θ i | Y ) can be calculated as 

n q (θi | Y ) = E q (z \ θi | Y ) 
[
ln p(Y , �;β) 

]
+ const . (18) 

n Appendix A.1 , it is shown that 

 (θi | Y ) ∝ p(θi ) ︸ ︷︷ ︸ 
(a ) 

exp ( Re { ηH 
i a (θi ) } ) ︸ ︷︷ ︸ 

(b) 

, (19) 

here the complex vector ηi is given by 

i = 

2 

ν

( 

Y −
∑ 

j∈ ̂  S \{ i } ̂
 a j ̂  w 

T 
j 

) 

̂ w 

∗
i −

2 

ν

∑ 

j∈ ̂  S \{ i } 
tr ( ̂  C j,i ) ̂  a j (20) 

or i ∈ 

̂ S , and ηi = 0 otherwise, which is consistent with the re-

ults in [32] for the SMV case. In order to obtain the approxi-

ate posterior distribution of W , as shown in the next subsection,

14b) needs to be computed. While it is hard to obtain the analyt-

cal results for the PDF (19) , heuristic 2 from [32] is used to obtain

 von Mises approximation. For the second frequency, the prior can

e similarly chosen from the set { p(θi ) } N i =1 
with the first selected

rior being removed. For the other frequencies, the steps follow

imilarly. 

It is worth noting that for the prior distribution (5) , when

0, i tends to infinity, p(θi ) = δ( θi − μ0 ,i ) . Consequently, the sig-

al model (2) is a sum over deterministic frequencies μ0, i , i.e.,

 = 

∑ N 
i =1 a (μ0 ,i ) w 

T 
i 

+ U . Thus, in this case, the MVALSE algorithm

s a complete grid based method. When κ0 ,i = 0 , p(θi ) = 

1 
2 π cor-

esponding to the uninformative prior, the MVALSE is a complete

rid-less based method. Thus, by varying κ0, i , the prior of the

VALSE algorithm provides a trade-off between on-grid and grid-

ess methods. 
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3.2. Inferring the weights and support 

Next q (θi | Y ) , i = 1 , . . . , N are fixed and L is maximized w.r.t.

q ( W, s | Y ). Define the matrices J and H as 

J i j = 

{
M, i = j ̂ a H 

i ̂
 a j , i 	 = j 

, i, j ∈ { 1 , 2 , · · · , N} , (21a)

H = ̂

 A 

H Y . (21b)

According to (17) , q ( W, s | Y ) can be calculated as 

ln q (W , s | Y ) = E q (z \ ( W ,s ) | Y ) 
[
ln p(Y , �;β) 

]
+ const 

= E q ( θ| Y ) 

[ 

N ∑ 

i =1 

ln p(s i ) + ln p( W | s ) + ln p(Y | θ, W ) 

] 

+ const 

= || s || 0 ln 

λ

1 − λ
+ || s || 0 L ln 

1 

πτ
− 1 

τ
tr (W S, : W 

H 
S, : ) 

+ 

2 

ν
Re { tr (W 

H 
S, : H S, : ) } − 1 

ν
tr (W 

H 
S, : J S, S W S, : ) + const 

= tr 
(
(W S, : − ̂ W S, : ) 

H ̂ C 

−1 
S, 0 (W S, : − ̂ W S, : ) 

)
+ const , (22)

where ̂ W S, : = ν−1 ̂ C S, 0 H S, : , (23a)

 C S, 0 = 

(
J S, S 
ν

+ 

I |S| 
τ

)−1 

. (23b)

From (13) , the posterior approximation q ( W, s | Y ) can be fac-

tored as the product of q ( W | Y, s ) and δ(s −̂ s ) . According to the

formulation of (22) , for a given ̂

 s , q ( W | Y ) is a complex Gaussian

distribution, i.e., 

q (W | Y ;̂ s ) = 

1 

(π || ̂ s || 0 det ( ̂  C ̂ S , 0 )) 
L 

× exp 

[ 
−tr 

(
(W ̂ S , : − ̂ W ̂ S , : ) 

H ̂ C 

−1 ̂ S , 0 (W ̂ S , : − ̂ W ̂ S , : ) 
)] ∏ 

i 	∈ ̂  S 

δ(w i ) (24)

= 

L ∏ 

l=1 

CN (w ̂ S ,l ; ̂ w ̂ S ,l , ̂
 C ̂ S , 0 ) 

∏ 

i 	∈ ̂  S 

δ(w i,l ) . (25)

From (25) , it can be seen that each column of W ̂ S , : is independent

and is a complex Gaussian distribution. This is convenient for par-

allel execution, as described in Section 4 . 

To calculate q ( W | Y ), ̂  s has to be given. Plugging the postulated

PDF q ( �| Y ) (13) in (12) , one has 

ln Z( ̂  s ) � L (q ( θ, W , s | Y ) ;̂ s ) = E q ( θ, W , s | Y ) 
[ 

ln 

p(Y , θ, W , s ;̂  s ) 
q ( θ, W , s | Y ;̂  s ) 

] 
= E q ( θ, W , s | Y ) 

[ 

N ∑ 

i =1 

ln p(s i ) + ln p(W | s ) + ln p(Y | θ, W ) 

− ln q (W | Y ) 

] 

+ const 

= −L ln det 

(
J ̂ S , ̂  S + 

ν

τ
I | ̂  S | 

)
+ || ̂  s || 0 ln 

λ

1 − λ

+ ν−1 tr 

(
H 

H ̂ S , : (J ̂ S + 

ν

τ
I | ̂  S | ) −1 H ̂ S , : 

)
+ || ̂  s || 0 L ln 

ν

τ
+ const . (26)

Thus ̂  s should be chosen to maximize ln Z( ̂  s ) (26) . 
The computation cost of enumerative method to find the glob-

lly optimal binary sequence s of (26) is O (2 N ), which is impracti-

al for typical values of N . Here a greedy iterative search strategy

imilar to [32] is proposed. For a given ̂

 s , we update it as follows:

or each k = 1 , · · · , N, calculate 
k = ln Z( ̂  s k ) − ln Z( ̂  s ) , where ̂ s k

s the same as ̂  s except that the k th element of ̂  s is flipped. Let

 max = argmax 
k 


k . If 
k max 
> 0 , we update ̂  s with the k max th el-

ment flipped, and ̂

 s is updated, otherwise ̂  s is kept, and the al-

orithm is terminated. In fact, 
k can be easily calculated and the

etails are provided in Appendix A.2 . 

Since each step increases the objective function (which is

ounded) and s can take a finite number of values (at most 2 N ),

he method converges in a finite number of steps to some local

ptimum. If deactive is not allowed and 

ˆ s 0 is initialized as 0 N ,

hen it can be proved that finding a local maximum of ln Z( ̂  s ) costs

nly O ( ̂  K ) steps. In general, numerical experiments show that O ( ̂  K )

teps is often enough to find the local optimum. 

.3. Estimating the model parameters 

After updating the frequencies and weights, the model parame-

ers β = { ν, λ, τ } are estimated via maximizing the lower bound

 (q ( �| Y ) ;β) for fixed q ( �| Y ). In Appendix A.3 , it is shown that 

 (q ( θ, W , s | Y ) ;β) = E q ( θ, W , s | Y ) 
[ 

ln 

p( Y , θ, W , s ;β) 
q ( θ, W , s | Y ) 

] 
= − 1 

ν

[|| Y − ̂ A : , ̂  S ̂
 W ̂ S , : || 2 F + L tr (J ̂ S , ̂  S ̂

 C ̂ S , 0 ) 
]

− 1 

τ
[ tr ( ̂  W ̂ S , : ̂

 W 

H ̂ S , : ) + L tr ( ̂  C ̂ S , 0 )] 

+ || ̂  s || 0 ( ln 

λ

1 − λ
− L ln τ ) + N ln (1 − λ) − ML ln ν + const . 

(27)

etting ∂L 
∂ν

= 0 , ∂L 
∂λ

= 0 , ∂L 
∂τ

= 0 , we have 

 ν = || Y − ̂ A : , ̂  S ̂
 W ̂ S , : || 2 F / ( ML ) + tr (J ̂ S , ̂  S ̂

 C ̂ S , 0 ) /M 

+ 

∑ 

i ∈ ̂  S 

L ∑ 

l=1 

| ̂  W il | 2 (1 − || ̂  a i || 2 2 /M) /L, 

 = 

|| ̂  s || 0 
N 

, ̂ τ = 

tr ( ̂  W ̂ S , : ̂
 W 

H ̂ S , : ) + L tr ( ̂  C ̂ S , 0 ) 

L || ̂  s || 0 . (28)

.4. The MVALSE algorithm 

Now the details of updating the assumed posterior q ( θ, W, s | Y )

ave been given and summarized in Algorithm 1 . For the proposed

lgorithm 1 Outline of MVALSE algorithm with MMV setting. 

nput: Signal matrix Y 

utput: The model order estimate ̂ K , frequencies estimate
 ̂ S , complex weights estimate ̂ W ̂ S , : and reconstructed signal
 

 

1: Initialize ̂  ν, ̂  λ, ̂  τ and q θi | Y , i ∈ { 1 , · · · , N} ; compute ̂  a i 
2: repeat 

3: Update ̂  s , ̂  W ̂ S , : and ̂

 C ̂ S , 0 (Sec.3.2) 

4: Update ̂  ν , ̂  λ, ̂ τ (28) 

5: Update ηi and ̂

 a i for all i ∈ 

̂ S (Sec.3.1) 

6: until stopping criterion is satisfied 

7: return 

̂ K , ̂  θ̂ S , 
̂ W ̂ S , : and ̂

 X 

lgorithm, the initialization is important for the performance of the

lgorithm. The schemes that we initialize ̂  ν, ̂  λ, ̂  τ and q ( θ i | Y ), i ∈ {1,

��, N } are below. 



J. Zhu, Q. Zhang and P. Gerstoft et al. / Signal Processing 161 (2019) 155–164 159 

 

b

n  

a  

a  

γ  

q

q

(  

c

a  

i  

u  

o  

i  

b

 

s  

t  

m  

a  

s  

c  

O  

c  

f  

i  

P  

c  

c  

O  

c

4

 

r  

p  

(

η

w  

l  

s  

u  

t  

L  

w  

i  

t  

w  

m  

u  

c




T




w  

i  

l  

r  

t  

c  

(  

a

ν̂

A  

u  ∑
 

o

5

 

o  

[  

t  

t  

i  

fi  

p  

q  

M  

S  

M

A

I

O  

θ̂  

X̂

 

 

6

 

t

 

l  

p

N  

f  
First, initialize q ( θ1 | Y ) as q ( θ1 | Y ) ∝ exp ( 
|| Y H a (θ1 ) || 2 2 

νM 

) , which can

e simplified as the form similar to (19) : By defining M 

′ = { m −
 | m, n ∈ { 0 , 1 , · · · , M − 1 } , m > n } with cardinality M 

′ = M − 1

nd a ′ : [ −π, π) → C 

M 

′ 
, θ → a ′ (θ ) � (e j θm | m ∈ M 

′ ) T . Obviously

 (θ ) = [1 ; a ′ (θ )] . For each t = 1 , · · · , M 

′ , by constructing γ t as

t = 

1 
M 

∑ 

(k,l) ∈T t Y k, : Y 

H 
l, : 

with T t = { (k, l) | 1 ≤ k, l ≤ M, m k − m l = t} ,
 ( θ1 | Y ) can be re-expressed as 

 ( θ1 | Y ) ∝ exp 

(
Re 

{ 

2 

ν
γ H a ′ (θ1 ) 

} )
. (29) 

Then 

ˆ a 1 = E[ a (θ1 )] can be calculated. Since J 1 = M and H 1 

21) can be calculated. According to (23b) and (23a) , ˆ w 1 is cal-

ulated. Then we update q ( θ2 | Y ) ∝ exp ( 
|| Y H 

1 
a ( θ2 ) || 2 2 
νM 

) with Y 1 = Y −
ˆ 
 1 ̂  w 

T 
1 
. Following the previous steps, q ( θ i | Y ), ˆ a i and 

ˆ w i are all initial-

zed. As for the model parameters β, γ = [ γ1 , · · · , γM−1 ] 
T ∈ C 

M−1 is

sed to build a Toeplitz estimate of E[ YY 

H ]. Let L ̂  ν be the average

f the lower quarter of the eigenvalues of that matrix, and ˆ τ is

nitialized as ˆ τ = ( tr [ Y 

H Y ] /M − L ̂  ν) / ( ̂ λN) , where the active proba-

ility λ is initialized as ˆ λ = 0 . 5 . 

The complexity of MVALSE algorithm is dominated by the two

teps [32] : the maximization of ln Z ( s ) and the approximations of

he posterior PDF q ( θ | Y ) by mixtures of von Mises PDFs. For the

aximization of ln Z ( s ), if S is initialized such that | ̂  S | = 0 and de-

ctivation is not allowed, it can be proved that the greedy iterative

earch strategy needs at most N steps to converge. For the general

ase where deactive is allowed, numerical experiments show that

 ( N ) steps is enough to converge. For each step, the computational

omplexity is O (N 

2 + NL ) due to the matrix multiplication. There-

ore, the computational complexity is O (N 

4 + N 

3 L ) . For the approx-

mations of the posterior PDF q ( θ | Y ) by mixtures of von Mises

DFs, the Heuristic 2 method [32] , Section IV.D] is adopted and the

omputational complexity is O (N 

2 M + M 

2 N + N 

2 L + MNL ) . In con-

lusion, the dominant computational complexity of the MVALSE is

 [(N 

4 + N 

3 L ) × T ] with T being the number of iterations as M is

lose to N . 

. MVALSE With parallel processing 

The MVALSE Algorithm 1 is compared with the VALSE algo-

ithm [32] . The MMV is decoupled as L SMVs. For each SMV, we

erform the VALSE algorithm and obtain ηi,l according to [32] , Eq.

17) ] for the l th snapshot, i.e., 

i,l = 

2 

ν

( 

y l −
∑ 

j∈ ̂  S \{ i } ̂
 a j [ ̂  w 

T 
j ] l 

) 

[ ̂  w 

∗
i ] l −

2 

ν

∑ 

j∈ ̂  S \{ i } 
[ ̂  C j,i ] l,l ̂  a j , (30) 

here [ ̂  C j,i ] l,l denotes the ( l, l )th element of ̂  C j,i , [ ̂  w 

T 
j 
] l denotes the

 th element of ̂ w 

T 
j 
. From (20) , ηi is the sum of ηi,l for all the snap-

hots, i.e., ηi = 

∑ L 
l=1 ηi,l , and now each ηi,l is updated as ηi . We

se ηi to obtain estimates ̂ θi and 

̂ a i [32] . In addition, we update

he weights and their covariance (23) by applying the SMV VALSE.

et ̂ w 

T ̂ S ,l be the estimated weights of the l th snapshot, the whole

eight matrix ̂ W ̂ S , : (23) can be constructed as [ ̂  w 

T ̂ S , 1 ; · · · ; ̂ w 

T ̂ S ,L ] . It

s worth noting that Eq. (25) reveals that for different snapshots,

he weight vectors are uncorrelated. Besides, the covariance of the

eights for each snapshot is the same, which means that the com-

on covariance of the weight can be fed to the SMV VALSE. For

pdating S under the active case, according to [32] , Eq. (40)], the

hanges 
k,l for the l th snapshot is 

k,l = ln 

v k 
τ

+ 

| [ u k ] l | 2 
v 

+ ln 

λ

1 − λ
. (31) 
k t  
hus (39) can also be expressed as 

k = 

L ∑ 

l=1 


k,l − (L − 1) ln 

λ

1 − λ
, (32) 

hich can be viewed as a sum of the results 
k,l from the VALSE

n SMVs, minus an additional constant term (L − 1) ln 

λ
1 −λ

. Simi-

arly, for the deactive case, (42) can be viewed as a sum of the

esults ( Eq. (44) in [32] ) from the VALSE in SMVs, plus an addi-

ional constant term (L − 1) ln 

λ
1 −λ

. The additional constant terms

an not be neglected because we need to determine the sign of

39) and (42) to update S . For the l th snapshot, running the VALSE

lgorithm yields the model parameters estimates 

 l = || y l − ̂ A ̂ S [ ̂
 W ̂ S , : ] : ,l || 2 /M + tr (J ̂ S , ̂  S ̂

 C ̂ S , 0 ) /M 

+ 

∑ 

i ∈ ̂  S 

| ̂  w il | 2 (1 − || ̂  a i || 2 2 /M) , 

̂ τl = 

‖ [ ̂  W ̂ S , : ] : ,l ‖ 

2 + tr ( ̂  C ̂ S , 0 ) 

|| ̂  s || 0 . (33) 

ccording to (28) , model parameters estimates ̂ ν and 

̂ τ are

pdated as the average of their respective estimates, i.e., ̂ ν =
 L 
l=1 ̂

 νl /L and 

̂ τ = 

∑ L 
l=1 ̂

 τl /L, where ̂ νl and 

̂ τl denote the estimate

f the l th SMV VALSE, and ̂

 λ can be naturally estimated. 

. MVALSE For sequential estimation (Seq-MVALSE) 

The previous MVALSE algorithm is designed to process a batch

f data. In fact, MVALSE is very suitable for sequential estimation

38] . We develop the Seq-MVALSE algorithm for sequential estima-

ion, which is very natural as MVALSE outputs conjugate priors of

he frequency. Suppose that the whole data Y = [ Y g 1 , Y g 2 , · · · , Y g G ]

s partitioned into G groups, where g 1 + g 2 + · · · + g G = L . For the

rst group with data Y g 1 , we perform the MVALSE and obtain the

osterior PDF of the frequencies. Then the posterior PDF of the fre-

uencies can be viewed as the prior of the frequencies, and the

VALSE is performed with data Y g 2 . Following the previous steps,

eq-MVALSE can be obtained for sequential estimation. The Seq-

VALSE is summarized as Algorithm 2 . 

lgorithm 2 Outline of Seq-MVALSE. 

nput: Signal matrix Y = [ Y g 1 , Y g 2 , · · · , Y g G ] 

utput: The model order estimate ̂ K , frequencies estimate
 ̂ S , complex weights estimate ̂ W ̂ S , : and reconstructed signal
 

 

1: Initialize ̂  ν, ̂  λ, ̂  τ and q θi | Y g 1 , i ∈ { 1 , · · · , N} ; compute ̂  a i 

2: for j = 1 , · · · , G do 

3: Run the MVALSE algorithm with data Y g j , and output the

posterior PDF p( θ| Y g j ) . 

4: Set p( θ| Y g j ) as the prior distribution of the next data group.

5: end for 

6: Return 

̂ K , ̂  θ̂ S , 
̂ W ̂ S , : and ̂

 X 

. Numerical simulation 

In this section, substantial numerical simulations are performed

o substantiate the MVALSE algorithm. 

For the signal generation, the frequencies are generated as fol-

ows unless stated otherwise: First, K distributions are uniformly

icked from N von Mises distributions (5) with μ0 ,i = (2 i − 1 −
) / (N + 1) π and κ0 ,i = 10 3 , i = 1 , · · · , N without replacement. The

requencies { θi } K i =1 
are generated from the selected von Mises dis-

ribution and the minimum wrap-around distance is greater than
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Fig. 1. The posterior PDF of the frequencies generated by MVALSE for M = N = 20 and SNR = 10 dB. 

Fig. 2. Performance of algorithms versus SNR for M = 20 and L = 8 . 
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θ = 

2 π
N . The elements of W are drawn i.i.d. from CN (1 , 0 . 1) .

Other parameters are: K = 3 , N = 20 . The standard deviation of

the von Mises distribution ≈ 1 / 
√ 

κ0 ,i ≈ 0 . 0316 and the distance be-

tween the adjacent frequencies is μ0 ,i +1 − μ0 ,i = 0 . 3 ≤ 2 π/N. Thus

the MVALSE with prior is almost a grid based method. 

We define signal-to-noise ratio (SNR) as SNR �
20 log (|| A ( ̃  θ) ̃  W 

T || F / || ̃  U || F ) and the normalized mean square

error (NMSE) of ̂ X and MSE of ̂ θ are NMSE ( ̂  X ) � 20 log (|| ̂  X −
A ( ̃  θ) ̃  W 

T || F / || A ( ̃  θ) ̃  W 

T || F ) and MSE ( ̂  θ) � 20 log (|| ̂  θ −˜ θ|| 2 ) , the cor-

rect model order estimated probability P( ̂  K = K) are adopted

as the performance metrics. The MSE of the frequency is

calculated only when both the model order is correctly es-

timated and MSE ( ̂  θ) ≤ 0 (dB). The Algorithm 1 stops when

|| ̂  X 

(t−1) − ̂ X 

(t) || F / || ̂  X 

(t−1) || F < 10 −5 or t > 50 0 0, where t is the

number of iteration. 

As for performance comparison, the SPA method [24] , the

atomic norm minimization algorithm proposed in [26] called AST-

SDP, the Newtonized orthogonal matching pursuit (NOMP) method

[10,11] and the Cramér-Rao bound (CRB) derived in [11] are chosen.

For the SPA approach, the denoised covariance matrix is obtained

firstly and the MUSIC method is used to avoid frequency splitting

phenomenon, where the MUSIC method is provided by MATLAB

rootmusic and the optimal sliding window W is empirically found,

 = 12 . For the NOMP method, the termination condition is set

such that the probability of model order overestimate is 1% [11] .

All results are averaged over 10 3 Monte Carlo (MC) trials unless

stated otherwise. 

At first, we apply MVALSE to obtain the posterior PDF of the

frequencies, see Fig. 1 . It can be seen that as the number of snap-

shots increases, the posterior PDFs become more concentrated, i.e.,

the uncertainties becomes smaller. 

t

.1. Performance of MVALSE 

In this section, the performance of MVALSE algorithm is evalu-

ted by varying SNR, the number of snapshots L or the number of

bservations M . 

.1.1. Estimation with varied SNR 

The performance in terms of model order estimation accuracy

nd frequency estimation error by varying SNR is presented in

ig. 2 . In Fig. 2 (a), as the SNR increase, NMSE ( ̂  X ) decreases. When

NR ≥ 5 dB, NMSE ( ̂  X ) are almost identical for all the algorithms.

t can be seen that utilizing the prior information improves the

erformance of the VALSE algorithm. In Fig. 2 (b), the MVALSE

lgorithm achieves the highest probability of correct model order

stimation, compared with NOMP and SPA algorithms. For the

requency estimation error, it is seen that MVALSE with prior

pproaches the CRB firstly. The MSE of frequency of the K aware

PA is larger than that of K unaware SPA. The reason is that the

SE of frequency is averaged only when both the model order is

orrect and MSE ( ̂  θ) ≤ 0 (dB), which makes the MSE of frequency

f the K unaware SPA algorithm lower. 

.1.2. Estimation with varied L 

In this subsection, we examine the estimation performance by

arying the number of snapshots L , see Fig. 3 . In Fig. 3 (a), as the

umber of snapshots L increases, NMSE ( ̂  X ) decreases and finally

ecomes stable. pFrom Fig. 3 (b) and (c), we can see that when

 ≥ 3, the NOMP algorithm achieves the highest probability of cor-

ect model order estimation, while its NMSE is higher than that of

oth MVALSE with prior and K aware SPA methods. For the fre-

uency estimation error in Fig. 3 (c), all the algorithms approach to

he CRLB as L increases. 
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Fig. 3. Performance of algorithms versus snapshots L for SNR = 2 dB and M = 30 . 

Fig. 4. Performance of algorithms versus M for SNR = 0 dB and L = 8 . 

Fig. 5. Performances of MVALSE, MAVLSE with true prior, MVALSE with mismatched prior for L = 8 , K = 3 and M = 20 . 

Fig. 6. Performance of MVALSE for sequential estimation versus SNR for L = 8 and M = 20 . 
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Fig. 7. NMSE of frequency estimation of MVALSE for sequential estimation by vary- 

ing L . We set SNR = 10 dB and the number of measurements M = 20 . 
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6.1.3. Estimation with varied m 

The performance is examined by varying the number of mea-

surements per snapshots, see Fig. 4 . Note that AST-SDP are not

presented for the poor performance. In Fig. 4 (a) and (b), MVALSE

achieves the best performance. As for the performance in terms of

frequency estimation error, MVALSE with prior is lower than CRB

in Fig. 4 (c). In 4 (b), the model order probability of all the algo-

rithms are close to 1 except the K aware SPA algorithm for M ≥ 20.

Meanwhile, MVALSE and NOMP also works well and asymptoti-

cally approach the CRB. 

6.1.4. MVALSE With mismatched prior 

This subsection investigates the mismatched case, i.e., MVALSE

utilizing the prior which is not matched with the signal gener-

ated prior. The true κ0, i is κ0 ,i = 10 3 , while the MVALSE with

mismatched prior uses κmis ,i = 10 4 . Fig. 5 shows that MAVSLE

with mismatched prior has some performance degradation, while

MVALSE with true prior has some performance improvement,

compared to the MVALSE with uninformative prior. 

6.2. Sequential estimation 

The performance of Seq-MVALSE is evaluated with number of

snapshots L = 8 . The snapshots are uniformly partitioned into G

groups ( G is 1, 4, or 8). Note that for G = 1 , we perform MVALSE.

We set K = 3 , M = 20 and N = 20 . 

Two numerical experiments are conducted to investigate the

performance. For the first numerical experiment in Fig. 6 , the SNR
Fig. 8. Performance of MVALSE algorithm for DOA estimation. We set SNR = 10 dB, t
s varied. As the SNR increases, the performances of all algorithms

mprove. In addition, comparing with MVALSE, Seq-MVALSE has

ome performance degradation. As G decreases, the performances

f Seq-MVALSE improve. For the second numerical experiment in

ig. 7 , the performance is investigated with the whole number of

napshots fixed as 8. It can be seen that the algorithm improves

s the data arrives. For the fixed number of snapshots, the perfor-

ance of Seq-MVALSE algorithm improves as G decreases. 

.3. Application: DOA estimation 

The performance of MVALSE for DOA estimation is evaluated

n this experiment. Let φ ∈ R 

K denote the DOAs. For the DOA es-

imation problem where K narrow band far-field signals imping-

ng onto an M -element uniform linear array (ULA) with half wave-

ength spacing, i.e., d = λ/ 2 , the DOA estimation problem can be

ormulated as the LSE with θ = 

2 πd 
λ

sin ( φ) = πsin ( φ) . We gener-

te the frequencies θ such that the DOAs are [ −2 , 5 , 12] ◦. We set

 = 40 , L = 20 and K = 3 . Since EPUMA outperforms many sub-

pace based DOA estimators, especially for small sample scenar-

os [37] , we compare the MVALSE with EPUMA. Similar to [37] ,

he root MSE (RMSE) RMSE � 

√ ∑ K 
i =1 ( ̂

 φi −φi ) 
2 is used to characterize the

erformance of the algorithms, where ˆ φ denotes the output of the

lgorithm. 

Fig. 8 shows that MVALSE performs better than EPUMA. Both

lgorithms approach the CRB as SNR increases. 

. Conclusion 

The MVALSE algorithm is developed to jointly estimate the

requencies and weight coefficients for MMV. The MVALSE esti-

ates the posterior PDF of the frequencies. The performance of

he MVALSE method with von Mises prior PDFs for the frequen-

ies is studied. It is also shown that the derived MVALSE is closely

elated to the VALSE algorithm, which is suitable for parallel pro-

essing. Furthermore, the MVALSE is extended to perform sequen-

ial estimation. Substantial experiments are conducted to illustrate

he competitive performance of the MVALSE method and its appli-

ation to DOA problems, compared to other approaches. 
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ppendix A 

.1. Derivation of q ( θ i | Y ) 

Substituting (14) and (16) in (18) , ln q ( θ i | Y ) is obtained as 

ln q (θi | Y ) = E q (z \ θi | Y ) [ ln p(Y , �)] + const 

= E q (z \ θi | Y ) [ ln (p( θ) p(s ) p( W | s ) p(Y | θ, W ))] + const 

= E q (z \ θi | Y ) 

[ 

N ∑ 

j=1 

ln p(θ j ) + 

N ∑ 

j=1 

ln p(s j ) + ln p( W | s ) + ln p(Y | θ, W ) 

]
+ const 

= ln p(θi ) + E q (z \ θi | Y ) [ ν
−1 || Y − A : , ̂  S W ̂ S , : || 2 F 

] + const 

= ln p(θi ) + 2 ν−1 Re 
{̂ w 

T 
i Y 

H a (θi ) 
}

− 2 ν−1 Re 

{ 

E q (z \ θi | Y ) 
[ 
( w 

T 
i W 

H ̂ S \{ i } , : A 

H 
: , ̂  S \{ i } ) a (θi ) 

] } 

+ const 

a = ln p(θi ) + Re 
{
ηH 

i a (θi ) 
}
, (34) 

here 
a = utilizes (16) , and the complex vector ηi is given in (20) .

hus q ( θ i | Y ) is obtained in (19) . 

.2. Finding a local maximum of ln Z ( s ) 

Finding the globally optimal binary sequence s of (26) is hard

n general. As a result, a greedy iterative search strategy is adopted

32] . We proceed as follows: In the p th iteration, we obtain the k th

est sequence t k by flipping the k th element of s ( p ) . Then we cal-

ulate 
(p) 
k 

= ln Z(t k ) − ln Z(s (p) ) for each k = 1 , · · · , N. If 
(p) 
k 

< 0

olds for all k we terminate the algorithm and set ̂  s = s (p) , else we

hoose the t k corresponding to the maximum 
(p) 
k 

as s (p+1) in the

ext iteration. 

When k 	∈ S, that is, s k = 0 , we activate the k th component of s

y setting s 
′ 
k 

= 1 . Now, S ′ = S ∪ { k } . 

k = ln Z(s ′ ) − ln Z(s ) 

= L 

(
ln det 

(
J S, S + 

ν

τ
I |S| 

)
−ln det 

(
J S ′ , S ′ + 

ν

τ
I |S ′ | 

))
+ ln 

λ

1 −λ
+L ln 

ν

τ

+ ν−1 tr 

(
H 

H 
S ′ , : 

(
J S ′ , S ′ + 

ν

τ
I |S ′ | 

)−1 

H S ′ , : −H 

H 
S, : 

(
J S, S + 

ν

τ
I |S| 

)−1 

H S, : 

)
. 

(35) 

et j k = J S,k denote the k th column of J S, S and h 

T 
k 

= H k, : denote the

 th row of H . Generally, j k and j T 
k 

should be inserted into the k th

olumn and k th row of J S , respectively, and M is inserted into ( k,

 )th of J S, S to obtain J S ′ , S ′ . By using the block-matrix determinant

ormula, one has 

n det (J S ′ , S ′ + 

ν

τ
I |S ′ | ) = ln det 

(
J S, S + 

ν

τ
I |S| 

)
+ ln 

(
M+ 

ν

τ
−j H k 

(
J S, S + 

ν

τ
I |S| 

)−1 

j k 

)
. (36) 
imilarly, h 

T 
k 

is inserted into the k th row of H S, : . By the block-wise

atrix inversion formula, one has 

tr 

[
H 

H 
S ′ , : 

(
J S ′ , S ′ + 

ν

τ
I |S ′ | 

)−1 

H S ′ , : 

]
= tr 

[
H 

H 
S, : 

(
J S, S + 

ν

τ
I |S| 

)−1 

H S, : 

]
+ ν

u 

H 
k 

u k 

v k 
, (37) 

here 

v k = ν

(
M + 

ν

τ
− j H k 

(
J S, S + 

ν

τ
I |S| 

)−1 

j k 

)−1 

, 

 k = ν−1 v k 

(
h 

∗
k − H 

H 
S, : 

(
J S, S + 

ν

τ
I |S| 

)−1 

j k 

)
. (38) 

nserting (36) and (37) into (35) , 
k can be simplified as 

k = L ln 

v k 
τ

+ 

u 

H 
k 

u k 

v k 
+ ln 

λ

1 − λ
. (39) 

iven that s is changed into s ′ , the mean 

̂ W 

′ 
S ′ , : and covariance ̂  C S ′ , 0 

f the weights can be updated from (23) , i.e., 

 

 S ′ , 0 = ν(J S ′ , S ′ + 

ν

τ
I |S ′ | ) −1 , (40a) 

̂ 

 

′ 
S ′ , : = ν−1 ̂ C 

′ 
S ′ , 0 H S ′ , : . (40b) 

In fact, the matrix inversion can be avoided when updatinĝ 

 

′ 
S ′ , : and ̂

 C S ′ , 0 . It can be shown that 

 

 S ′ , 0 = 

(̂ C 

′ 
S ′ \ k, 0 

̂ c ′ 
k, 0 ̂ c ′ H 

k, 0 
̂ C ′ 

kk, 0 

)
= ν

( 

J S, S + 

ν
τ I |S| j k 

j H 
k 

M + 

ν
τ

) −1 

= ν

( 

ν̂ C 

−1 
S, 0 

j k 
j H 
k 

M + 

ν
τ

) −1 

= 

(̂ C S, 0 + 

v k 
ν2 ̂

 C S, 0 j k j 
H 
k ̂

 C S, 0 − v k 
ν
̂ C S, 0 j k 

− v k 
ν j H 

k ̂
 C S, 0 v k 

)
. (41) 

urthermore, the weight ̂ W 

′ 
S ′ , : is updated as 

̂ 

 

′ 
S ′ , : = 

(̂ W 

′ 
S ′ \ k, : ̂ w 

′ T 
k 

)
= ν−1 

(̂ C 

′ 
S ′ \ k, 0 

̂ c ′ 
k, 0 ̂ c ′ H 

k, 0 
̂ C ′ 

kk, 0 

)(
H S ′ \ k, : 

h 

T 
k 

)
= 

(̂ W S, : − ν−1 ̂ C S, 0 j k u 

H 
k 

u 

H 
k 

)
. 

t can be seen that after activating the k th component, the poste-

ior mean and variance of w k are u k and v k I L , respectively. 

For the deactive case with s k = 1 , s ′ 
k 

= 0 and S ′ = S\{ k } , 
k =
n Z(s ′ ) − ln Z(s ) is the negative of (39) , i.e., 

k = −L ln 

v k 
τ

− u 

H 
k 

u k 

v k 
− ln 

λ

1 − λ
. (42) 

imilar to (41) , the posterior mean and covariance update equation

rom S ′ to S case can be rewritten as ̂ C 

′ 
S ′ , 0 + 

v k 
ν2 ̂

 C 

′ 
S ′ , 0 j k j 

H 
k ̂

 C 

′ 
S ′ , 0 − v k 

ν
̂ C 

′ 
S ′ , 0 j k 

− v k 
ν j H 

k ̂
 C 

′ 
S ′ , 0 v k 

)
= 

(̂ C S\ k, 0 ̂ c k, 0 ̂ c H 
k, 0 

̂ C kk, 0 

)
(43) 

̂ W 

′ 
S ′ , : − ν−1 ̂ C 

′ 
S ′ , 0 j k u 

H 
k 

u 

H 
k 

)
= 

(̂ W S\ k , : ̂ w 

T 
k 

)
, (44) 

here ̂ c k, 0 denotes the column of ̂ C S, 0 corresponding to the k th

omponent. According to (43) and (44) , one has 

 

 

′ 
S ′ , 0 + 

v k 
ν2 ̂

 C 

′ 
S ′ , 0 j k j 

H 
k ̂

 C 

′ 
S ′ , 0 = ̂

 C S\ k, 0 , (45a) 
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−v k 
ν

̂ C 

′ 
S ′ , 0 j k = ̂

 c k, 0 (45b)

v k = ̂

 C kk, 0 , (45c)

̂ W 

′ 
S ′ , : − ν−1 ̂ C 

′ 
S ′ , 0 j k u 

H 
k = 

̂ W S\ k , : , (45d)

u 

H 
k = 

̂ w 

T 
k . (45e)

Thus, ̂ C 

′ 
S ′ , 0 can be updated by substituting (45b) and (45c) in

(45a) , i.e., 

 C 

′ 
S ′ , 0 = ̂

 C S\ k, 0 −
v k 
ν2 ̂

 C 

′ 
S ′ , 0 j k j 

H 
k ̂

 C 

′ 
S ′ , 0 = ̂

 C S\ k, 0 −
̂ c k, 0 ̂  c H 

k, 0 ̂ C kk, 0 

. (46)

Similarly, ̂ W 

′ 
S ′ , : can be updated by substituting (45b) and (45e) in

(45d) , i.e., 

̂ W 

′ 
S ′ , : = ν−1 ̂ C 

′ 
S ′ , 0 j k u 

H 
k + 

̂ W S\ k , : = 

̂ W S\ k , : −
̂ c k, 0 ̂ C kk, 0 ̂

 w 

T 
k . (47)

According to v k = ̂

 C kk, 0 (45c) and u 

H 
k 

= ̂

 w 

T 
k 

(45e) , 
k (42) can be

simplified as 


k = −L ln ̂

 C kk, 0 

τ
− w 

H 
k 

w k ̂ C kk, 0 

− ln 

λ

1 − λ
. (48)

A.3. Estimation of model parameters 

Plugging the postulated PDF (13) in (12) , one has 

L (q ( θ, W , s | Y ) ;β) = E q ( θ, W , s | Y ) 
[ 

ln 

p( Y , θ, W , s ;β) 
q ( θ, W , s | Y ) 

] 
= E q ( θ, W , S | Y ) 

[ 

N ∑ 

i =1 

ln p(s i ) + ln p( W | s ) + ln p(Y | θ, W ) 

] 

+ const 

= || ̂  s || 0 ln λ − || ̂  s || 0 ln (1 − λ) + || ̂  s || 0 L ln 

1 

πτ

− E q ( W | Y ) 
[ 

1 

τ
tr (W ̂ S , : W 

H ̂ S , : ) 
] 

+ const 

+ ML ln 

1 

πν
− 1 

ν
tr (Y 

H Y ) + 

2 

ν
Re { tr ( ̂  W 

H ̂ S , : H ̂ S , : ) } 

− 1 

ν
E q ( W | Y ) [ tr (W 

H ̂ S , : J ̂ S , ̂  S W ̂ S , : )] . 

Substituting E q ( W | Y ) [ tr (W ̂ S , : W 

H ̂ S , : )] = tr ( ̂  W 

H ̂ S , : ̂
 W ̂ S , : ) + L tr ( ̂  C ̂ S , 0 ) and 

E q ( W | Y ) [ tr (W 

H ̂ S , : J ̂ S , ̂  S W ̂ S , : )] = tr (J ̂ S , ̂  S ( ̂
 W ̂ S , : ̂

 W 

H ̂ S , : + L ̂  C ̂ S , 0 )) in the

above equation, L (q ( θ, W , s | Y ) ;β) is obtained as (27) . 
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