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Particle smoothers in sequential geoacoustic inversion
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Sequential Bayesian methods such as particle filters have been used to track a moving source in an
unknown and space/time-evolving ocean environment. These methods treat both the source and the
ocean parameters as non-stationary unknown random variables and track them via the multivariate
posterior probability density function. Particle filters are numerical methods that can operate on
nonlinear systems with non-Gaussian probability density functions. Particle smoothers are a natural
extension to these filters. A smoother is appropriate in applications where data before and after the
time of interest are readily available. Both past and “future” measurements are exploited in smooth-
ers, whereas filters just use past measurements. Geoacoustic and source tracking is performed here
using two smoother algorithms, the forward-backward smoother and the two-filter smoother.
Smoothing is demonstrated on experimental data from both the SWellEx-96 and SW06 experiments

where the parameter uncertainty is reduced relative to just filtering alone.
© 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4807819]

PACS number(s): 43.30.Pc, 43.60.Pt, 43.60.Wy, 43.60.Jn [SED]

. INTRODUCTION

Sequential Bayesian filtering combines information on
parameter variation, a function that relates acoustic measure-
ments to unknown quantities, and a statistical model for the
random perturbations in the measurements. There have been
significant developments in sequential Bayesian methods,
especially the particle filtering (PF) techniques, in the last
decade due to both advances in theoretical signal processing
and a rapid increase in computational power.' ™

Assume data have been collected sequentially at = 1:T.
Defining y;.,=[yi, ¥2,.-., Y as the set of data vectors
observed at the first ¢ steps and x;.,=[X;, Xp,..., X,] as the
sequence of unknown state vectors, a full inversion of this
system gives the full joint posterior PDF p(x;.7|y;.;) of all
states at all times given all the data. There are numerous
Bayesian approaches that estimate the source and geoacoustic
parameters. The selection is problem specific with the state
dimension, data size, temporal/spatial rate of change being
some of the deciding factors. Typically x is assumed to be
changing very slowly, so one can assume X;.r =X and use y.r
to invert for this fixed environment. In some cases, a single
inversion where the entire dataset or several datasets are used
can be done when the total number of state parameters is
small. For this case, the number of parameters can be as high
as T x n,, where n, is the number of state parameters at each
time step depending on how the problem is formulated.

Assuming a more general framework where a
time/range-dependent environment with a large enough state
space is estimated with a dataset with large 7. In such a case,
it is not feasible to perform a large single inversion of all state
vectors X;.7 using all of the data y,.; to obtain p(x;.7]y;.7). In
such cases the hard-to-obtain full joint posterior is replaced by
some form of marginal PDF in time of the joint PDF. Since
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the data arrives sequentially, a sequential Bayesian formula-
tion can greatly simplify the problem.

The simplest approximation is performing a series of in-
dependent inversions that only give p(x,|y,) at each 7. A PF
provides p(x;|y;.) and a smoother will give p(x,]y;.r), all
marginals of the full posterior PDF."> More complicated and
computationally intensive algorithms (such as smoothers)
have posteriors closer to the full joint posterior.

A non-sequential approach estimates x, without relying
on information from previous or future measurements. For
easy identification, the term “inversion posterior PDF” is
used for the output of this case given by p(x;|y,). In a sequen-
tial problem, it is inefficient computationally to perform an
independent inversion at each time step. Moreover, the esti-
mates can fluctuate significantly from step to step.
Regardless, this is the approach that typically has been used
in geoacoustic inversion.®™'*

The second is a filtering approach where the “filtering
posterior PDF” is given in the form p(x,y,.). This is the
most frequently used form of sequential Bayesian estima-
tion. Filtering enables all previous and current measurements
to be used in estimating X,. There are numerous underwater
acoustic applications such as target localization and
tracking,'>™"” sequential geoacoustic inversion,'®?* fre-
quency tracking,” and spatial arrival time tracking.*®

Finally, the third is a smoothing approach where the
“smoothing posterior PDF” is given in the form p(x/|y;.7),
with T > . A smoother is appropriate in applications where all
the data already have been observed and are readily available.
Therefore, both past and “future” measurements are
exploited.”” The inclusion of future data improves estimation
in comparison to a one-way filtering approach by reducing the
uncertainty in the estimates. Smoothing is more computation-
ally expensive than filtering.”® However, recently proposed
particle smoothers™ have computational costs comparable to
PFs. Moreover, the propagation model calculations used in
geoacoustic inversion usually are more CPU intensive than
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are the filtering/smoothing calculations. Therefore, the effects
of extra smoothing calculations are secondary relative to the
number of propagation model calculations.

This paper applies particle smoothing techniques to
sequential geoacoustic inversion and compares the results to
previous geoacoustic inversion and PF results. Two kinds of
smoothers are considered here.>?”*® The forward-backward
smoother (FBS) runs a standard PF up to T and then turns
back and corrects the filter outputs at t=T —1,..., 1 while
going backwards. The backward correction at ¢ uses the in-
formation obtained from the future measurements, namely,
t=t+1,..., T. The two-filter smoother (TFS) runs two PFs
moving in opposite directions, one forward filter starting at
t=1 and one backward filter starting at t+=7T. Then the
results of the two filters are merged to obtain the smoothing
density. In addition to the generic TFS, a smoother that uses
auxiliary sequential importance resampling (ASIR) is also
adopted here.”” The capabilities of smoothers are studied
through processing range-independent (SW06) and range-
dependent (SWellEx-96) experiment data.

The smoothers discussed here are given in the form of a
fixed-interval smoother with p(x,|y,.7), T > ¢, since in most
geoacoustic inversion applications the entire dataset is avail-
able. Even though not used in this paper, it is possible to
extend this formulation to fixed-lag smoothers with
PX|¥1.+a7), for a given time lag AT.

Il. SEQUENTIAL BAYESIAN FORMULATION

A brief summary of sequential Bayesian techniques is
provided here along with the basic terminology and defini-
tions that will be used throughout the paper. For detailed der-
ivations refer to Refs. 1, 2, and 30.

Let y, be the acoustic measurement vector at step
t=1,..., T and X, represent the state vector that include n,
parameters such as the source range, depth, and speed, array
shape parameters, ocean sound speed profile (SSP), water
depth, sediment thickness, sound speed, attenuation, and
density. A major goal is to estimate parameters in X, that
evolve sequentially with time and/or space. As data Yy,
become available, the unknown parameters forming the state
vector are estimated sequentially using the collective data
history and prior knowledge on the variation of the state.
Two equations define a state-space model,"'

Xy = ft(xt—lavf); (1)
yz = ht(xhwt)' (2)

The state equation Eq. (1), describes the transition of x,
with ¢ and assumes that states follow a first order Markov
process.'! Function f, is known and relates the state vector
at step ¢ to that at step r — 1. Variable v, is the process or state
noise with a PDF p(v,).

The measurement equation (or observation equation),
Eq. (2), relates measurements y, to state vector X, through a
known function h,. Variable w; is the measurement noise
with a PDF p(w,).

The state and measurement noise terms v, and w, can be
additive or multiplicative and are incorporated into the state
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and measurement through nonlinear functions f, and h,,
respectively. The formulation includes fully dynamic, non-
stationary cases, where in addition to the state vector x, and
data y,, functions f, and h,, and noise components v, and w,
all can change with z.

The objective of a sequential Bayesian method is to
track the variability of the multidimensional (n,-D) posterior
PDF of x,. This enables any desired statistical quantity (such
as mean, covariance, mode, maximum a posteriori estimate,
credible intervals, marginal posterior PDFs of any desired
parameter) to be computed at will.

Using Bayes theorem gives

p(xlyy,) o< p(y IX)p(Xe|y 1) 3)

where the likelihood L£(x,) =p(y,|x,) obtained from the new
data y, is combined with the prior knowledge p(x|y.,_1) to
estimate x,. It is possible to compute p(x,|y;,_1) as a func-
tion of x,_; by starting from the joint PDF p(x,, X,_1|y1.—1)
and integrating out X,_,

P(XI|Y1;171) = JP(XnXt—l |y1:,,1)dx,_1

= JP(Xr|Xz—l7Y1;f71)P(Xz—1 |y1:,,1)dx,_1.
“4)

Note that p(x,|x;_1, ¥1.,—1) = p(X,|X,_1) since, given X,_y, any
data from 1: t— 1 become irrelevant due to the first order
Markovian nature of the state vector as expressed in Eq. (1).
The filtering posterior PDF p(x,|y;.,) is then expressed as a
function of the posterior at the previous step p(X,_{|¥1./—1)
by inserting the integral form of p(x,|y.,_) back into Eq. (3),

p(xiy,,) P(Yr|xt)JP(Xr|Xt71)P(thl Vi )dx 1. (5)

Sequential Bayesian methods utilize this formulation
whereby the evolving filtering posterior PDF can be com-
puted recursively as new data y, become available.

For strongly nonlinear/non-Gaussian problems, a particle
filter (PF) is appropriate.' The non-Gaussian filtering posterior
PDFs are approximated by creating a set of i=1,..., N,
particles x;, each with weight w}, where

i Ny
Xt {Xpwt}i:l
NF
p(xily;,) =Y wid(x —x)). (6)
i=1

Hence, the purpose of a PF is to track in time ¢ these particles
and their weights as they pass through nonlinear equations
Egs. (1)—(2). The filtering posterior PDF can be constructed
at any time from the current values and weights of the par-
ticles using Eq. (6). This enables the computing of any
desired quantity such as the minimum mean square error
estimate, variance, and marginal distributions by taking inte-
grals of the posterior PDF,
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I = Jg(xf)p(xf|yl;[)dxf7 (N

where g(x,) =X, for the mean, g(x,) = (X, — ,ux)2 for the var-
iance, and g(x,) =[x, — x,(i)] for the ith element marginal
distribution.

Two types of PFs are used in this work. Sequential im-
portance resampling®> (SIR) is the most commonly used
type of PF. In addition, the auxiliary SIR* (ASIR) is also
used since the two-ASIR smoother requires the PF to be of
the ASIR type. For detailed descriptions of SIR and ASIR
see Ref. 1. Since the ASIR PF has not been used in geoa-
coustic tracking before, the ASIR PF algorithm is summar-
ized in Table III of the Appendix for completeness.

Consistent with our previous work,** SIR type filters are
used as the base PFs. These filters are more sensitive to out-
liers and impoverishment issues. It is possible to implement
PFs such as a regularized PF' or a Markov chain Monte
Carlo (MCMC) PF similar to the one in Ref. 21 that can han-
dle better the problem of outliers and the impoverishment
issue. Except for the two-ASIR smoother,” generic FBS and
TES implementations™® can be implemented with any type
of PF.

lll. SMOOTHING

An overview of the smoothers used in this paper is pro-
vided here. The basic philosophy and differences between
existing smoothing algorithms>*’~*° are summarized along
with how they can be implemented in a geoacoustic inver-
sion setting.

In geoacoustics, the measurements usually involve a
source or receiver moving along a pre-determined path for a
fixed time-interval. Often, the whole observation data set
yi.r or at least some future data y.,, a7 is available for analy-
sis. To use the entire dataset, a fixed-interval smoother is
adopted here.

In this approach, time is made to go both forward and
backward while maintaining the physical relationships
between measurements and model parameters. The ability to
use “future” data y, .7 in addition to y,., improves the esti-
mates and their uncertainties relative to a PF. The smoothing
posterior PDF p(x,|y,.;) for t=1,..., T is the marginal in
time of the joint posterior PDF p(x;.7]y,.7) and techniques
that obtain p(x,|y;.7) are termed smoothing algorithms.5 28

Kalman smoothers can be used under linear/Gaussian
assumptions for the state and measurement equations, Eqs.
(1)—(2). For nonlinear/non-Gaussian systems, such as most
geoacoustic inversion cases, numerical particle smoothers
can be used. These are implemented with the same basic phi-
losophy as the PF where the smoothing density is repre-
sented by N,, smoothing particles xﬁ‘T and their weights W§|T
as a weighted sum,

: i i N
ng = {Xt\T7Wt\T}i:pl7 3)
N,
p(xly,.r) = ZW;\Té(XT = X;r)- €))
=1
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It is possible to divide smoothers into two broad catego-
ries: forward-backward (FBS) and two-filter (TFES)
smoothers.>?

A. Forward-backward smoother

The geoacoustic FBS is based on a classical forward-
running PF for 7= 1,..., T that gives the set {xi, w'}.", repre-
senting the filtering density p(x,y;.). Hence, it readily
can be implemented on the existing geoacoustic PF
results.”’**** The algorithm runs a backward correction
which updates the weights of the forward PF particles
wi — wj, so that they represent the smoothing PDF
p(X,]y1.7)- No new smoothing particles are created.®

The integral that needs to be solved sequentially in a
FBS is given by expressing the smoothing density in terms
of the filtering density. Similar to Eq. (4) it is possible to
express p(x,|yi.7) as a function of x,,; by starting from the
joint PDF p(x,, X4 1|y1.7) and integrating out X, ,

P(XI|Y1;T) = JP(Xt|Xr+1 ) Y1;t)P(Xr+l |Y1;T)dxt+l . (10)

The smoothing density then can be obtained by comput-
ing the integral in Eq. (10). This results in®>

N,
Py, ;) = Zw;‘Té(x,—xi), (11)
i1
) » Wip(X/ xi )
W;‘T — Z N 2 t+1| 1) W;+1‘T7 (12)

n

J=1 j
wip (X [x7)
=1

where WiT|T = wi.. This is a backward recursion starting from
t=T and going back in time, estimating the integral by cor-
recting the filter weights using the “future” information.
Hence, to compute the smoothing density, all we need to do
is to replace the filtering weight wi with the new smoothing
weight Wﬁ\r given by Eq. (12) for each particle x!. This basic
mechanism of the FBS is shown in Fig. 1(a). Since the FBS
uses the same particles as the forward PF, i.e., xﬁ‘T = xﬁ, only
the weights are updated. Hence, if the initial forward PF par-
ticle cloud {xﬁ}iv:’l poorly corresponds to the smoothing
PDF, the FBS will suffer.

B. Two-filter smoother

Another way of writing the smoothing density is to use
Bayes’ rule instead of the integral formulation of the FBS,

pelyir) = p(Xel¥ 1 1Yer) 13)

:P(XI|YI:t71)p(Yt:T|Xt) (14)
P(Yerl¥iii)

o8 p(xl‘yl:ffl) p(yI:T|XI‘) . (15)
———— N——

forward PF x backward inf. filter
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Forward PF
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Forward PF
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Backward PF

4

«

(i, @}
Forward-backward smoother:

{xszaT}

Two-filter smoother:
{iiv w;\T}

forward particles, smoothed weights backward particles, smoothed weights

The first part of the equation is given by a forward PF.
The second term is called the backward information filter’
which can be replaced by an equivalent backward PF
denoted by p(-). This is done using Bayes’ rule, p(y,;|x)
o< p(Xi|Yy.r) /P (X).

Following Ref. 5, the smoothing PDF can be computed
by running a backward PF in addition to the forward PF and
using both to compute Eq. (15),

p(xiyy.r) = ZWAT —X1),s (16)
wi Ny
— N x 17
’\T p(x J—Zl — lp r‘ (17)

The TFS uses the particles obtained by the backward PF,
ie., Xz\r = f(i and only the weights are recalculated.’ This ba-
sic mechamsm of the TFS i 1s shown in Fig. 1(b). Thus, if the
backward PF cloud {X;},”; poorly corresponds to the
smoothing PDF, the TFS w111 suffer.

This problem has been addressed in a recently proposed
TES that uses the ASIR PF as both the forward and back-
ward PFs.?” This two-ASIR smoother given in Fig. 1(c) not
only computes new smoothing weights w; T but also draws
new smoothing particles xt‘T The two-ASIR smoother has
been shown to reduce the parameter uncertainty relative to
other smoothing algorithms in a non-volcanic tremor source
tracking problem.*® The two-ASIR algorithm is summarized
in Table IV of the Appendix.

C. Practical considerations for a geoacoustic
smoother

The primary concern with implementing a geoacoustic
smoother is the computational cost. In a geoacoustic inver-
sion context there are two sources of added complexity.

The first is the number of additional smoothing calcula-
tions required. Classical FBS or TFS algorithms require a
large number of smoothing calculations, typically on the
order of N7, O(N;). Therefore, the demand on CPU time for
inversions will grow rapidly with increasing N,. However,
there have been significant improvements in particle smooth-
ing in the last decade both in terms of efficiency and accu-
racy. Recently proposed FBS and TFS algorithms such as

974  J. Acoust. Soc. Am., Vol. 134, No. 2, August 2013

Forward PF

Backward PF

® >t
t, {iiawZ\T} FIG. 1. Diagram that shows how smooth-
ing weights and particles are selected for:
(a) Generic FBS, (b) generic TFS, and (c)

(Kir D} two-ASIR smoother.

Two-ASIR smoother:
x5 wyr}

smoothed particles and weights

those discussed in Refs. 28 and 29 can operate with an order
of complexity of O(N,,) under the right conditions.

The second and the more important factor in a sequen-
tial geoacoustic inversion setting is the effect of smoothing
on the number of forward model runs. In geoacoustic track-
ing, each forward PF particle is generated using a propaga-
tion model such as a parabolic equation or a normal mode
model. Hence, the most CPU intensive part of the process is
the propagation model computation for each particle.
Anytime a new particle is created the forward model is run
to compute its likelihood. In FBS, the backward correction
uses the same particles as the forward PF so there are no
additional propagation model calculations. The classical
TFES has twice the forward model computational cost of the
FBS since it is composed of two PFs. Unlike classical
smoothers, the two-ASIR smoother samples its own smooth-
ing particles. Hence the forward, backward, and smoothing
particles created for the two-ASIR smoother requires three
times the number of propagation model runs of the FBS. For
strongly range-dependent geoacoustic inversions that use
propagation models with intense CPU calculations, this can
be a disadvantage.

In geoacoustic smoothing, the total computational cost
is a combination of the two factors discussed above with the
smoothing computations usually less demanding than the
propagation model calculations. Different smoothers will be
faster depending on the propagation model chosen.

IV. STATE EQUATION AND THE LIKELIHOOD
FORMULATION

The state equation is formed from two blocks—a source
and an environmental parameter block. In the source block,
three source parameters (i.e., source depth, range, and radial
speed) are grouped as s, = [z 7 vs];. Using a constant
velocity (CV) track model for the source, the state model for
the source block becomes

Zs l 0 0 ZS
rs| = [0 1 At T
v |, 00 1 o],
1 O2
At s
+lo = %], (18)
2 Val,
0 At
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where vi and v§ are random variables representing the varia-
tion in source depth and acceleration, respectively.' This
results in a vector-matrix form,

s: = F’s,_; + B*v;. (19)

Assuming that the environmental parameters m, change
much slower than Ar, the time between successive measure-
ments, the full state equation for the state vector X,

=[s, m,] is given by

ER O R | =

The PF and smoothers used for both SW06>* and SWellEx-
96%° data sets have the same state space form given here,
just some of the individual parameters are different.

The analyses of both data sets also use the same likeli-
hood formulation based on the Bartlett objective function
that is coherent across the array and incoherent across
frequency. Assume d(x,, f;) is the acoustic field vector
one would predict for the state x, at each frequency f;, calcu-
lated using an acoustic propagation model. Defining the
cross spectral density matrix for the jth frequency C;
=El[y«(f) yk(}j-)H], the likelihood expression is written as

=1

d(x,/)"Cid(x..f)
d(x,,fj)Hd(xt,ﬁ) ,

¢i(x;) =tr C; — 22)

where tr is the trace operation, 1, and ny, are the number of
frequencies and array elements, respectively, and ¢, repre-
sents the Bartlett objective function. For a detailed deriva-
tion see Ref. 20.

The quasi-range-independent SW06 data is analyzed
using an ASIR framework. Filtering/smoothing posterior
PDFs and computational costs of an ASIR type PF, FBS, and
TES (as a two-ASIR TES) in a geoacoustic inversion setting
are calculated and a performance comparison is made in
terms of RMS error reduction.

Filtering also is compared to smoothing with the range-
dependent SWellEx-96 data, this time in a SIR framework.
The ASIR framework is not used here since the filters
assume a range-independent geoacoustic parameter variabili-
ty model in their state equations, Eq. (20), while in fact there
is a strong range dependence (water depth dropping from
260 m to 90 m after 30 filter time steps). For the PF to per-
form well in this case, the process noise needs to be
increased to compensate for the model variation mismatch.
A drawback of ASIR is that it performs worse than SIR in
the presence of large process noise.' If an ASIR type filter
and smoother is to be run in this case, one way of reducing
the process noise would be to reduce the time between time
steps from their current 1 min and hence increase the number
of time steps. Alternatively, the rate of change of the envi-
ronmental parameters can be included as new parameters in
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the state equation. Here, we use a SIR type PF and FBS
instead to demonstrate a reduction in uncertainty of the pa-
rameter estimates in the SWellEx-96 data.

Since smoothers use more information relative to filters,
they tend to reduce the uncertainty in the parameter esti-
mates. As always with Bayesian geoacoustic inversion meth-
ods, the calculated uncertainty in the parameter estimates is
a direct function of the accuracy of the state and observation
models given in Egs. (1)—~(2). Unaccounted-for errors (e.g.,
simplified geoacoustic models, propagation model errors,
etc.) will affect the quality of the inversion results including
the uncertainties.

The performance metrics for comparing the filter and
smoothers are

b Ne e e 1/2
RTAMS(i) = {ZZM} .23

= = (l2 — 1 + 1)Np

I RTAMSPF - RTAMSsmoother (2 4)
mprov. =
P RTAMSpr ’

where X/ (i) is the ith parameter at time index 7 for the jth par-
ticle, X,(7) is either the true value or the estimator mean of
the parameter depending on whether a direct measurement is
available or not. RTAMS is the root time averaged mean
square error’ calculated for the interval [¢,,7,], and Eq. (24)
is used to calculate the performance improvement of a
smoother with respect to the PF.

V. DEMONSTRATION OF SMOOTHING WITH SW06
DATA

Both FBS and TFS are tested on data collected in a rela-
tively constant water depth, from an area northwest of the
shelfbreak during the SW06 Experiment. The smoothers are
compared not only to each other but also to a PF solution.

A. SW06 experiment

In the selected track, the geoacoustic parameters do not
vary much. The largest variation in the environmental pa-
rameters comes from the water column SSP which is known
to fluctuate significantly with time. Data were collected on
28 August 2006 (JD240), 00:50-01:20 UTC. The source
location, bathymetry, array parameters, and the seabed prop-
erties are assumed unknown. The R/V Knorr approached the
fixed vertical array at a speed of 5 knots while towing a
source at 25-30m depth and emitting a multitone comb at
frequencies 303, 403, 503, 703, 953 Hz. The last 10 min sec-
tion of the track ranging from 3.7 to 1.7 km is used. The data
from this track also were analyzed in Refs. 37 and 38.

The received time-series was split into snapshots with
50% overlap and converted to the frequency domain using a
2" point FFT. The data cross-spectral density matrices
(CSDMs) were computed as the outer products of 7 snap-
shots representing a time epoch of 20 s spread across 50 m in
range, hence 30 time steps for a track length of 10 min.

The environment model given in Fig. 2 is used for each
range. For this case, the sediment sound speed is taken as a
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FIG. 2. Geoacoustic model used for both SW06 and SWellEx-96 environ-
ments in the PF, FBS, and TFS.

constant with Acy,;=0. An empirical orthogonal function
(EOF) analysis of the SSP was carried out using 16 CTD
measurements along the 80m isobath track from JD239
19:17 to JD243 20:16 UTC giving a mean profile together
with the first 3 EOFs (accounting for 90% of the variance in
ocean SSP).”” The SSP is tracked by tracking the EOF coef-
ficients. Since the track mostly is flat and range-independent,
the normal mode code SNAP*® is used. Hence, the range-
independent effective seabed model and SSP are tracked to-
gether with the moving ship parameters. The state consists
of 12 parameters including source depth, range, and speed,
VLA tilt, first array depth, water depth, sediment thickness,
sediment top and bottom layer sound speeds, and the EOF
coefficients for the water column SSP. Density and attenua-
tion are held fixed.

B. Filtering and smoothing results

Here the same settings, prior PDFs, state, and measure-
ment noise statistics as the ones reported in Ref. 22 are used
to initialize the filters and smoothers. First an ASIR PF is
used to track the source and the environment. This is fol-
lowed by a FBS that used the previous ASIR result and per-
formed a backward correction to obtain the smoothing
posterior PDF. Finally, a TFS in the form of a two-ASIR
smoother is implemented, where in addition to the forward
ASIR PF, a backward ASIR PF is run and the results of these
two PFs are merged according to the algorithm given in the
Appendix.

RTAMS is calculated starting from #; =2min so that
the initial variation will not affect the performance calcula-
tions. The PF, FBS, and the two-ASIR smoother results are
shown in Figs. 3-5, respectively, along with a comparison of
their performance metrics in Table I.

Along the 10 min trajectory, the source depth oscillates
between 27 and 31 m while the source gets closer from 3.7
to 1.7 km. All three algorithms were able to track the source
parameters successfully. Other source parameters such as the
source range are also tracked well.

Water depth fluctuates between 81 and 78 m along the
path*® with the water depth at 81 m at the start of the track
and gets slightly shallower on average as the ship moves
towards the VLA. The effective range-independent water
depth PDF also supports this. Both smoothers give almost
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FIG. 3. (Color online) SW06 ASIR-type PF results: Variation of 1-D mar-
ginal filtering posterior PDFs for source and sediment parameters, and the
EOF coefficients for water column SSP. (+) represents GPS range and
depth sensor measurements.

identical RTAMS and improvement percentages of a little
over 50%.

The changing water column SSP is obtained through
tracking the three EOF coefficients. The fluctuations in the
EOF coefficients and their effects on the SSP itself is ana-
lyzed in the next section.

The sediment sound speed stays between 1580 and
1605 m/s, sediment thickness 17-22 m, and the bottom sound
speed 1690-1750m/s, respectively, along the track. Even
though detailed range-dependent ground truth measurements
do not exist, the results compare favorably with previous
studies that inverted data from the same area with an average
Cseq OF 1599 m/s in Ref. 38 (1604 m/s in Ref. 37), hy,, of 21.1
(24) m, and ¢, of 1740 (1739) m/s. Sediment thickness is
consistent with other studies where the R-reflector is found
to be around 20m below the seafloor.**™* Previous stud-

- 13,1444 . .
ies also reported similar sediment sound speed results.
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FIG. 4. (Color online) SW06 ASIR-type FBS results: Variation of
1-D marginal smoothing posterior PDFs for source and sediment parame-
ters, and the EOF coefficients for water column SSP. (+) represents GPS
range and depth sensor measurements.
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FIG. 5. (Color online) SW06 TFS results (two-ASIR smoother): Variation
of 1-D marginal smoothing posterior PDFs for source and sediment parame-
ters, and the EOF coefficients for water column SSP. (4) represents GPS
range and depth sensor measurements.

The two-ASIR smoother has significant improvement
over the FBS in estimating sediment and bottom sound
speed. The improvements in the sediment thickness and
the EOF coefficients are less pronounced. As expected, the
PDFs of the PF given in Fig. 3 show a larger uncertainty
compared to smoothing PDFs in Figs. 4 and 5 due to the
fact that the PF uses less information to estimate the pa-
rameters sequentially. Both smoothers do well in terms of
error variance reduction with the FBS and TFS giving an
average of 47% and 62% improvement over the PF,
respectively.

Filter convergence is an important and complex issue. It
is important to use a PF with sufficient particles that con-
verged to its filtering density p(x,y;.) before running a
smoother on it. For the SIR type PFs, the resampling stage
creates multiple copies of high likelihood particles. This
results in a N, value tightly related to the number of state
variables.*> Moreover, the importance density in SIR also
affects convergence. A good sampling density*® results in N,
increasing linearly with n, but N, increases exponentially
with n, when the importance density is poorly chosen. A
practical approach is used here to determine N,. A prelimi-
nary set of PFs with increasing number of N,’s are run and
the outputs are compared. N, is then obtained when the
change in the PF results drop below a threshold. A detailed
convergence discussion on sequential Monte Carlo methods
can be found in Ref. 47.

TABLE I. SWO06 Filter-smoother comparison.

C. Sound speed profile estimation

The marginal filtering/smoothing posterior PDFs for the
water column SSP are obtained from the marginal posterior
of the three EOF coefficients. The SSP measurement at the
track location is not available but three close measurements
at locations SW30, SW31, and Shark (Fig. 2 in Ref. 22) at
the time of the experiment confirm the rapid SSP variation in
the region. The maximum a posteriori (MAP) PF SSP esti-
mates at four different times along the track given in Fig.
6(a) (relative to the time-averaged MAP PF SSP solution) fit
within the variation measured at the discrete depths of the
sensors. The marginal SSP posteriors are compared in Figs.
6(b)-6(e). In most cases, the result is a sharper smoothing
posterior PDF with the two-ASIR smoother performing bet-
ter then the FBS. The largest improvements are at the depths
of 15-20m and 30-35 m.

The standard deviation (STD) of the water column
sound speed as a function of depth and time are given in
Fig. 7 to quantify the uncertainty in estimates obtained via
filtering/smoothing. All three algorithms show larger STD
between 7 and 9 min where the value can be in excess of
3.5m/s for the PF. The average STD between 15 and 40 m
deep for =1 — 10min is 1.2, 0.8, and 0.5m/s for the PF,
FBS, and the two-ASIR smoother, respectively.

D. Projection of environmental uncertainty
into transmission loss

Finally, the filtering/smoothing environmental posterior
PDFs are used to predict a parameter-of-interest such as the
transmission loss (TL) over a given range in Fig. 8. This is
done by integrating over the source parameters of the multi-
dimensional posterior PDF and then using this marginal PDF
that statistically characterizes the environment in TL calcula-
tions. The TL is then computed for all the particles (each
representing a possible environment) to construct the TL
PDF. Figure 8 is obtained using z,=30m, z,=35m,
f=300Hz using the environmental posterior PDF at
t =8 min.

Again the smoothers outperform the PF. Note that the
TL obtained from the filtering posterior PDF is usually
multi-peaked and typically has a spread of 5-10dB for the
peak and 20-25dB for the trough, similar to the values
obtained in Refs. 48 and 49. In contrast, the smoothing algo-
rithms seem to have a sharper peak in most cases [Figs. 8(d)
and 8(e)]. Thus, inclusion of future data helps the smoother
eliminate one or more of the peaks seen in the filtering poste-
rior PDFs.

Parameter g (M) z, (m) wd (m) Ngeq (M) Cyeq (M/S) Chor (M/S) SSP EOF, EOF, EOF; Avg.
RTAMSpr 23.5 0.5 0.4 24 4.6 7.3 34 2.6 4.1 -
RTAMSEggs 8.9 0.4 0.2 0.8 2.9 4.8 2.1 1.3 1.6 -
RTAMStyo-aASIR 12.1 0.2 0.2 0.5 1.9 2.2 1.5 1.2 1.1 -
FBS % improv. 62 20 55 66 36 34 37 49 61 47
Two-ASIR % improv. 48 58 54 78 65 70 57 54 74 62
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FIG. 6. (Color online) SW06 SSP results: (a) Variation of SSP relative to
the time-averaged MAP PF SSP. MAP water column SSPs at r=2.5, 5, 7.5,
and 10 min plotted together. Horizontal lines represent the range of sound
speed values measured within 20 min of the track at various depths and loca-
tions. (b) Filtering/smoothing posterior PDFs of the SSP at # =5 min plotted
together. FBS and TFS results are shifted for easy comparison. Solid lines
represent the 95% credibility intervals. Horizontal marginal cuts at depths
(c) 13 m, (d) 24 m, and (e¢) 35 m for all three methods.

Both smoothers try to obtain the same smoothing PDF,
but there are sometimes differences between the smoothers
with the same number of particles. Note that the TES
smoothing particles are selected specifically to represent
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FIG. 7. (Color online) SW06 SSP results: Standard deviation (in m/s) for
the sound speed estimates at all depths along the track for (a) PF, (b) FBS,
and (c) TFS.
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z,=35m, f=300Hz and =8 min: The posterior PDF of TL vs range for
(a) PF, (b) FBS, and (c¢) TFS. Horizontal marginal cut at ranges of (c)
4500 m (trough) and (d) 6700 m (peak) for all three methods.

the smoothing PDF whereas FBS uses filtering particles.
This creates the same problem encountered in classical im-
portance sampling (IS): the larger the difference between the
sampling IS density from the true underlying PDF, the larger
the error in the IS estimate is going to be.’® Smoothing and
filtering particle sets can also differ in situations where the
observations after time ¢ provide significant information
about the state x,. In these cases, the TFS can “substantially
outperform” the FBS.>'

VI. DEMONSTRATION OF SMOOTHING WITH
SWellEx-96 data

Filtering also is compared to smoothing using the acous-
tic data collected during the Shallow Water evaluation cell
Experiment (SWellEx-96).>% First a SIR type PF is run simi-
lar to the one reported in Ref. 20, and then a FBS backward
correction is done on the SIR PF particles.

A. SWellEx-96 experiment

The experiment was conducted in May 1996 off the coast
of San Diego, CA, near Point Loma. A 118m VLA was
deployed from R/P FLIP in 216.5 m deep water north of Loma
Canyon. Event S9 is selected here since the track is perpendicu-
lar to bathymetric lines giving the highest rate of change of
environment as ship moves into shallower water.”® The source
was towed at 2.6 m/s at a depth of 55 m. The transmission was
a comb signal composed of 13 frequencies from 49 to 388 Hz.
The water column sound speed profile was obtained by conduc-
tivity-temperature-depth (CTD) measurements. Cross-spectral
density matrices (CSDMs) are estimated for each frequency at

Yardim et al.: Particle smoothers
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FIG. 9. (Color online) SWellEx-96 SIR-type PF results: Variation of 1-D
marginal filtering posterior PDFs for sediment parameters. Lines represent
the measured water depth and environmental parameters extracted from the
Bachman profile (Refs. 20 and 53). The marginal PDFs with 5 time step
increments also are plotted on the right.

each inversion/track step (13 CSDMs in total for each 1 min
section). The CSDMs are computed with snapshots of 8192
point FFTs with 50% overlap between successive FFTs. The
state consists of source depth, range, and speed, VLA tilt, water
depth, sediment thickness, sediment top layer sound speed, and
the slope of the sound speed in the sediment.

The environmental variation at the moving source loca-
tion is shown in Ref. 20. Although the propagation is range-
dependent, the environmental parameters change gradually
between the source and the receiver. Thus, the adiabatic nor-
mal mode model SNAPRD’* is used. This assumes all
energy in a given mode at source location transfers to the
corresponding mode at the VLA environment, neglecting
cross-coupling terms.”® The gradual range dependence is
incorporated by calculating the mode functions at the source
and receiver locations and linearly interpolating the wave
numbers along the track. The environmental model given in
Fig. 2 is adopted at the location of source and VLA. The
environment at the fixed VLA location is assumed known
and the environment at the moving source location is
tracked.

B. Filtering and smoothing results

The results are given in Figs. 9 and 10 for the PF and
FBS, respectively, and summarized in Table I. Ground truth at
the location of the moving ship is given by fitting Bachman’s
results for the SWellEx-96 region™ to the environmental
model shown in Fig. 2 (see Appendix of Ref. 20).

TABLE II. SWellEx-96 Filter-smoother comparison.

Parameter wd (m) Ngeq (M) Cyoq (M/S) % (1/s) Avg.
RTAMSpr 12.1 16.8 21.7 0.3 -
RTAMSEggs 9.3 15.6 18.3 0.2 -
FBS % improv. 23 7 16 10 14
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The results show that, even thought the water depth
changes from 260 to 100 m, the gradual slope enables the ad-
iabatic normal mode based propagation model to compute
the acoustic field adequately. There is an increased uncer-
tainty in the parameters as water depth drops which may be
due to secondary effects such as 3-D acoustic propagation
and increasing errors in the adiabatic assumption.

All the parameters generally follow Bachman’s ground
truth results. Increases in both the sediment thickness and sedi-
ment sound speed are captured well. Both the PF and FBS are
able to capture the rapidly decreasing water depth even though
their state equations assumed a constant environment between
the time steps. However, there is a larger amount of uncer-
tainty compared to the previous example. A contributing factor
is the increased state noise that allows the PF and smoother to
continue tracking this rapidly evolving environment.

The PDFs of the PF given in Fig. 9 show a larger uncer-
tainty compared to smoothing PDFs in Fig. 10. However, the
average FBS improvement is 14% (Table II), lower than
those of the previous example. The only parameter that has
over 20% improvement is the water depth track. Note how
running a PF forward and doing a backward correction
affects the PDFs. For example, compare the marginal filter-
ing posterior PDF cuts of hy,; at t=15 to the FBS results
where the PF results have a peak at the wrong value. Once a
backward correction is run on the same PF results, the MAP
solutions perfectly coincide with the ground truth.

Vil. CONCLUSIONS

The concept of smoothing in sequential geoacoustic
inversion has been discussed. The difference between a
filter that uses previous data obtained up to and including
the current time, and a smoother that uses data from the
entire dataset (including future data) was explained.
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Two main smoothing frameworks were compared, the
forward-backward and the two-filter smoothers, including
a modified two-filter smoother with reduced number of
computations (the two-ASIR smoother). The filters and
smoothers were used to process both SW06 and SWellEx-
96 data. The results showed that both smoothing algo-
rithms reduced uncertainties in both the environmental and
source parameters. In general, the two-filter smoothers per-
formed better than the forward-backward smoothers but
the computational cost of the two-filter smoother also is
higher.

The results showed that the uncertainty in the geoacous-
tic parameter estimates can be reduced using smoothers. It is
important to keep in mind that there are numerous underly-
ing acoustic and environmental assumptions in all geoacous-
tic inversion techniques such as simplified environmental
models and their range dependencies, the assumptions used
in the propagation models, and receiving array characteriza-
tion (e.g., channel gains). None of these are incorporated
into the inversion algorithms and will result in errors unac-
counted for in the posterior PDFs.
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APPENDIX: ASIR FILTER AND SMOOTHERS

The ASIR is a modified version of the standard SIR
where the resampling stage is moved before the prediction
stage for improved performance. Another difference in
ASIR is that it uses a function g/ that represents X,.
Commonly used functions are ui = E[x,|x!_,] or a sample
from u ~ p(x;|x!_,). Once a suitable g is selected the ASIR
performs resampling, prediction, and update at each ¢ as
shown in Table III.

TABLE III. ASIR PF (Ref. 33).

Resample

Calculate y!

Compute and normalize fi fi = (y’lﬂi’)
Zp(y,lﬂr) -

Resample new particles x{; , with indices j, from the old particles x/_, using !
i pitNy AN

{un BriZi—Aiitiy

Predict

Sample new N, particles at ¢

(X1 ~ p(xlx ) given {x)}1%, using {x[} = £(x].¥) i =1,....N,
where v, are samples from the state noise PDF.

Update
Compute the likelihood p(y,|x!) for each x!

p(y.[x0) / p(y, i)
Zp(y,lx /p(y,lul)

Normalize the weights: w! =

Np . .
The posterior PDF is approximated by p(x,|y,,) = > wio(x, — x})
i=1

The two-ASIR smoother given in Ref. 29 is a modified
TFS that specifically enables sampling new particles repre-
senting the smoothing den51ty This smoother uses forward
ASIR results {x/_, w_ 1} 7, at t—1 and backward ASIR
results at {X/, wM}fv1 at 141 to sample a new set of
smoothing particles {x,}iv1 that correspond to the underly-
ing smoothing PDF as shown in Fig. 1(c).

Following the ASIR algorithm given above, Sec. III,
and defining (7) as the quantities related to smoothing, the
two-ASIR smoother needs the following inputs:

o0 i ki .

(1) An ASIR weight BU*) = i, obtained from the
f, values of the forward and backward ASIRs (see
Table III); A

(2) Some function i =f(x/ |,X\ ) for the jth particle
of the forward PF and kth particle of the backward
PF;

(3) A suitable sampling density for the prediction stage
~ (i ki
q(rx ¥ Xo)-

The smoothing weight then can be computed as*

W O(P(’ZHX;Q)P(YJ’ZD p(x z+1|X) W) 1Wr+1 /p(X I+l)
Q(X”xﬁl—lﬂyﬂit-"‘—l)ﬁiiﬁt

(AD)

The two-ASIR smoother is summarized in Table IV.

TABLE IV. Two-ASIR particle smoother (Ref. 29).

Forward ASIR

Compute and store {x/, w', ﬁ;}ivz’l forr=1,....,T
N, .

plulyi) = 2 wiolx —x)

Backward ASIR

<i i BN
Compute and store {X}, w;, §,},”, for t=T, ..., 1

EZ

PXily,r) = oW, "(Xr - i;)

i
Resample
To sample a smoothing particle X; at time ¢
Resample new forward PF particles x| with indices j; from the old particles

. . o N, N

x;_y using B {x(_y, B} 2=kl
Resample new backward particles )Zf;l with indices k; from the old particles
i . mii RN, N,
Xy using B {X0, B, 12— {ki b2y
Predict

Using the forward particle at # — 1, backward particle at 4 1, and the current
measurement y, obtain smoothing particle

i N, i
X3 Nq(X” — Y X z+1)

Update

Compute w! from Eq. (A1) — normalize w! =

\‘2

pxdy,r) = 2w, 5(X - i;)
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