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[1] This paper uses sequential Bayesian techniques such as particle filters and smoothers
to track in time both the non-volcanic tremor (NVT) source location on the plate interface
and the angle of arrival via horizontal phase slowness. Sequential Bayesian techniques
enable tracking of evolving geophysical parameters via sequential tremor observations.
These techniques provide a formulation where the geophysical parameters that characterize
dynamic, non-stationary processes are continuously estimated as new data become
available. In addition to the optimal solution, particle filters and smoothers can calculate
the underlying probability densities for the desired parameters, providing the uncertainties
in the estimates. The tremor tracking has been performed using array beamforming. Here it
is demonstrated that the uncertainties both in the NVT source location estimates and
phase slowness estimates are reduced using a particle filter compared to just using a
beamformer based inversion. Particle smoothers further reduces the uncertainty, giving
the best performance out of the three methods used here.
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1. Introduction

[2] Non-volcanic tremor (NVT) was discovered a decade
ago by Obara [2002] and Rogers and Dragert [2003] and is
characterized by low amplitudes, lack of high frequencies,
emerging onsets, and duration of minutes to days. NVT is
mostly observed near megathrust earthquake source areas,
suggesting that a detailed understanding of these may help
characterizing catastrophic events [Ghosh et al., 2012;
Obara, 2011]. The lack of strong impulsive phases across
the array makes classic seismic methods less fruitful, but a
frequency domain approach with longer observation time
combined with sequential estimation is a good alternative.
Seismic non-volcanic tremor (NVT) is a continuous noise
appearing at regular intervals of around 14 months in
Cascadia, WA [Obara, 2002; Rogers and Dragert, 2003;
Peng and Gomberg, 2010; Ghosh et al., 2010a; Vidale and
Houston, 2012]. In Cascadia, the Juan de Fuca plate is
underthrusting below the North American plate, see Figure 1.
Near the surface, the two plates are locked and, as the Juan de
Fuca plate moves east, the North American plate is also
dragged east. At regular intervals, seismic tremor is observed
and simultaneously it can be observed with GPS that the
North American plate is moving west. It is believed that the
tremor originates from the plate boundary some 30 km below
surface where the plates are not strongly locked.

[3] In addition to the currently obtained data, Bayesian
sequential techniques enable us to use the previous data to
infer the properties of NVT. This is done by combining
the information extracted from the sequential data via an
environmental evolution model. Here we use particle filters
(PF) and smoothers to track the evolving horizontal phase
speed and the uncertainty in the estimates. Particle methods
are Bayesian sequential techniques that can deal with non-
linear, non-Gaussian measurement and environmental evo-
lution equations. The basic idea is that particles are vectors
that represent the values of unknown parameters and each
particle is a potential solution at a given time. The set of
particles in the PF can be used to obtain the PDF/uncertainty
in the estimates. This fluid set of particles flow through time
and adapt to take into account the new likelihood obtained
by the newly collected data. In addition, smoothers enable
the algorithm to come back and correct the estimates at t0 for
data collected at t > t0.
[4] This paper starts with an introduction to the PFs in

section 2, including the state space formulation, Monte Carlo
integration, and importance sampling. It then proceeds by
explaining the PF used in this work; the auxiliary sequential
importance sampling (ASIR) particle filter. In section 3,
smoothing is introduced with derivations of three particle
smoothers given. Section 4 deals with the application of
these techniques on the NVT data from Cascadia. First,
the NVT is tracked using a conventional beamformer [Zhang
et al., 2011], then using the ASIR PF, and finally by two
different particle smoothers. Both horizontal slowness and
source location are tracked.

2. Basics of Particle Filters

[5] Let yt be the measurement vector (for example, signal
along a seismic array) at step t and xt represent the state
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vector (for example, time-varying slowness in x- and y-
directions that can be used to give the angle of arrival or
longitude and latitude of the tremor source on the slab),
where t = 1, …, T. The state vector dimension nx could be
known and fixed or unknown and varying with t. A major
goal is to estimate parameters in xt that evolve sequentially
with time or space. As data yt become available, the
unknown parameters forming the state vector are estimated
sequentially using the collective data history and prior
knowledge on evolution of the state. Two equations define a
state-space model:

xt ¼ f t xt"1; vtð Þ ð1Þ

yt ¼ ht xt;wtð Þ ð2Þ

[6] The state equation (1), describes the evolution or
transition of xt with t and assumes that states follow a first
order Markov process. Function ft is known and relates the
state vector at step t to that at step t-1. Variable vt is the
process or state noise and has a known PDF p(vt). This noise
term represents the error between the modeled temporal
evolution of the parameters and the real evolution. It dictates
how much the PF should trust the evolution model and
enables the PF to adapt to changing conditions. The larger
the state noise is, the better the PF is at tracking sudden
changes. The drawback is that the estimates become noisier
since a larger noise is injected into the state-space model.
[7] The measurement equation (or observation equation),

(2), relates measurements yt to state vector xt through a
known function ht. Variable wt is the measurement noise
with a PDF p(wt).
[8] The state and measurement noise terms vt and wt can

be additive, multiplicative, or incorporated in the state and
measurement through functions of ft and ht, respectively.
The formulation includes fully dynamic, non-stationary
cases, where in addition to the state vector xt and data yt,
functions ft and ht, and noise components vt and wt can all
change with t.
[9] The objective of a sequential Bayesian technique is to

track the evolution of the multidimensional (nx-D) posterior

PDF of xt. This enables any desired statistical quantity
(such as mean, covariance, mode, maximum a posteriori
estimate, credible intervals, marginal posterior PDFs of
any desired parameter) to be computed at will. In cases with
non-Gaussian, high-dimensional PDFs, this computation is
not easy and requires more advanced methods as we will
see. Assume data have been collected sequentially at
t = 1 : T. Defining y1:t = [y1, y2, …, yt] as the set of data
observed at the first t steps and x1:t = [x1, x2, …, xt] as the
sequence of unknown state vectors, the desired posterior
PDF definition for each problem type is given as:
[10] 1. p(xt|yt); inversion. Used in non-sequential Bayesian

estimation. The estimate of xt does not use information from
previous or future measurements. In a sequential problem it
is computationally inefficient to perform each inversion
independently with t. Moreover, the estimates can fluctuate
significantly from step to step since all the information
available at t is not utilized. This is typically used in seismic
inversion [Mosegaard and Tarantola, 1995; Sambridge and
Mosegaard, 2002; Zollo et al., 2002; Pasyanos et al., 2006;
Lancieri and Zollo, 2008; Bodin and Sambridge, 2009;
Hauser et al., 2011]. A good review paper about Bayesian
theory in seismics is given in Mosegaard [2011].
[11] 2. p(xt|y1:t); filter: The most frequently used form

of sequential Bayesian estimation. Filtering enables all the
previous and current measurements to be used in estimating
xt. Some geophysical applications where a sequential
approach has been adapted are geodesy, where a Kalman
filter (KF) was used [Segall and Matthews, 1997], seismic
strains [Llenos and McGuire, 2011] using an extended KF
(EKF), passive seismic monitoring [Baziw, 2005] and geoa-
coustic inversion [Yardim et al., 2010] where particle filters
(PF) were employed. PF for meteorology data assimilation
problems were recently reviewed in van Leeuwen [2009].
Reflector tracking can also be solved as a sequential esti-
mation problem by using range as the evolving index [Nicoli
et al., 2002].
[12] 3. p(xt|y1:T); smoother. A smoother is appropriate in

applications where all data have already been observed
and are readily available. Therefore, both past and “future”
measurements can be exploited. Smoothing is computa-
tionally more expensive than filtering. Although inclusion
of future data improves estimation in comparison to a one-
way filtering approach, the increase in computational cost
sometimes makes smoothing less desirable than filtering.
However, recently proposed particle smoothers have com-
putational costs comparable to PFs, which may result in
more extensive use of smoothers.
[13] Note that the state vector xt at each t constitutes of

new random variables whose statistics are different due to
the non-stationary nature of the geophysical process. This
means the full posterior PDF is p(x1:t, y1:t). Hence, the pos-
terior PDFs mentioned above are actually marginal PDFs of
this full PDF. Using Bayes theorem and the Markov prop-
erty gives

p xt jy1:tð Þ ∝ p ytjxtð Þp xt jy1:t"1ð Þ; ð3Þ

where the likelihood L xtð Þ ¼ p ytjxtð Þ obtained from the new
data yt is combined with the prior knowledge p(xt|y1:t"1) to
estimate xt. It is possible to compute p(xt|y1:t"1) as a function

Figure 1. Non-volcanic tremor and structure of the Casca-
dia subduction zone.
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of xt"1 by starting from the joint PDF p(xt, xt"1|y1:t"1) and
integrating out xt"1:

p xtjy1:t"1ð Þ ¼
Z

p xt; xt"1jy1:t"1ð Þdxt"1;

p xtjy1:t"1ð Þ ¼
Z

p xtjxt"1; y1:t"1ð Þp xt"1jy1:t"1ð Þdxt"1:
ð4Þ

Note that p(xt|xt"1, y1:t"1) = p(xt|xt"1) since, given xt"1, any
data from 1 : t " 1 become irrelevant. The posterior PDF p
(xt|y1:t) is then expressed as a function of the posterior at
the previous step p(xt"1|y1:t"1) by inserting the integral form
of p(xt|y1:t"1) back into (3):

p xtjy1:tð Þ ∝ p ytjxtð Þ
Z

p xt jxt"1ð Þp xt"1jy1:t"1ð Þdxt"1: ð5Þ

Sequential Bayesian techniques utilize this formulation
whereby the evolving posterior PDF can be computed
recursively as new data yt become available. See Ristic et al.
[2004] and Yardim et al. [2011] for a full derivation starting
with the full posterior PDF p(x1:t, y1:t) and prior p(x0). The
posterior PDFs are approximated by creating a set of
i = 1, … Np particles xt

i, each with weight wt
i, where

ct : xit;w
i
t

! "Np

i¼1

p xtjy1:tð Þ ≅
XNp

i¼1

w i
t d xt " xit
# $

:
ð6Þ

[14] Sequential Bayesian techniques use importance sam-
pling (IS) and Monte Carlo (MC) integration to compute and
propagate the posterior PDF. The IS is a method employed
to compute expectations with respect to one density using
random samples drawn from another. Assume that we want
to compute an integral I =

R
f(x)dx. One way of computing I

is using samplers [Ó Ruanaidh and Fitzgerald, 1996] after
assuming x is a random variable with PDF q(x). It is possible
to rewrite I in the form of an expectation:

I ≡
Z

X

f xð Þ
q xð Þ

% &
q xð Þdx ¼ Eq

f xð Þ
q xð Þ

' (
: ð7Þ

The integral can now be computed numerically via IS, by
drawing Np independent and identically distributed x sam-
ples from the sampling or proposal density q(x):

xi
! "Np

i¼1 % q xð Þ ð8Þ

I ≈
1
Np

XNp

i¼1

w xi
# $

; where w xi
# $

¼ f xið Þ
q xið Þ ð9Þ

is called the importance weight. The IS converges to the
true value with diminishing error variance as the number
of particles drawn from q(x) increases. The variance is
[Ó Ruanaidh and Fitzgerald, 1996]:

Varq bI
) *

¼ Eq
f xð Þ
q xð Þ

% &2
" I2

( )

=Np: ð10Þ

The variance in the estimate is minimum if q(x) is propor-
tional to f(x) and increases as q(x) deviates from the latter.
Using IS requires the selection of a balanced q(x): as easy to
sample from as possible without sacrificing the accuracy of
the method.
[15] Equation (5) can be numerically calculated using IS

[Ristic et al., 2004]. The most popular PF implementation
is called sequential importance resampling (SIR) [Gordon
et al., 1993; Doucet et al., 2000; Gilks and Berzuini,
2001]. A single iteration of a SIR algorithm is illustrated in
Yardim et al. [2011, Figure 5] for a PF with Np = 10. A
cylinder with height proportional to the weight represents
each particle. At the prediction stage new particles are created
from the particles representing the PDF of the previous step,
p(xt"1|y1:t"1). The likelihood is calculated for each of these
new particles using new data yt. Resampling follows this
update stage, where a new set of particles is formed from the
previous one. The larger the weight of a particle, the more
new particles it generates during resampling [Doucet et al.,
2001]. A typical SIR type PF will consist of these three
sections:
[16] Predict: This stage starts with the cloud of equal

weight particles from the previous step {xt"1
i }i=1

Np , and creates
a new set of predictions for the current step {xt|t"1

i }i=1
Np by

sampling from the transitional density p(xt|xt"1). This is done
by propagating each xt"1

i through the state equation (1)
together with a random realization from vt.
[17] Update: Note that wt"1

i = 1/Np for all i because of
resampling at step k-1. Having measured yt, the weight of
each particle is computed and normalized:

wi
t ¼

p ytjxitjt"1

) *

XNp

i¼1

p ytjxitjt"1

) * ; ð11Þ

where p(yt|xt|t"1
i ) is the likelihood function defined by the

measurement equation (equation (2)), which includes sta-
tistical behavior of errors in the data. The weights of
equation (11) are used in equation (6) for expressing the
posterior PDF p(xt|y1:t).
[18] Resample: New particles {xt|t

j , wt
j = 1/Np}j=1

Np are
drawn from a discrete approximation to density p(xt|y1:t)
obtained at the update stage. All particle weights are now
equal to 1/Np.
[19] The SIR algorithm has been successfully used to track

similar environmental problems such as tracking of the
atmospheric properties using electromagnetics [Yardim et al.,
2008] and tracking of geoacoustic and ocean properties using
acoustics [Yardim et al., 2010]. Here we use a slightly
modified version of SIR called auxiliary SIR (ASIR) pro-
posed by Pitt and Shephard [1999]. ASIR solves some of the
weaknesses of SIR by using a better sampling density. The
details and filter comparisons can be found in Pitt and
Shephard [1999] and Ristic et al. [2004]. ASIR uses a func-
tion mti to represent xt. Commonly used functions are
mti = E[xt|xt"1

i ] or a sample from mti % p(xt|xt"1
i ). The ASIR

algorithm is given in Table 1.
[20] An advantage of sequential Bayesian methods over

classical inversion is the reduction in the number of particles
needed. In classical Bayesian inversion, the whole search
space needs to be explored. However, in sequential Bayesian
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filtering the state vector is assumed to follow the state
equation. Thus, utilizing the information from the prior step
and the known evolution of the states enables a focused
search in the state space. Hence, the PF requires a smaller
number of particles at each step.The number of particles
for the filtering process to successfully estimate posterior
p(xt|y1:t) is problem-dependent. There are four main factors
that determine Np.
[21] The first one is the problem complexity. Non-

linearities in the state and measurement equations, com-
plexity of the underlying posterior PDF, errors in the state
and measurement equations, and desired filter output impact
the selection of Np. It takes fewer particles to track the
median/MAP than the marginal PDF. Highly non-Gaussian,
long tailed, peaked, multi-modal PDFs require a large
number of particles. If the state xt evolution differs from the
evolution in equation (1), the actual state will deviate from
predicted xt|t"1. A larger Np is then needed for tracking.
[22] The second one is the accuracy in track estimates.

Increasing the number of particles initially provides a large
performance improvement in a PF. It has been shown
in Crisan and Doucet [2002] that the error is of the order

of O N"1
p

) *
. However, after a problem dependent Np is

reached, the performance stays relatively flat and increasing
the computational cost provides only marginal benefits. An
example in geoacoustic tracking is given in Yardim et al.
[2009].
[23] The third one is the dimension nx of the state vector.

Ideal MC integration is independent of the state dimension
for Np statistically independent particles. However, for
sequential filtering the resampling stage creates multiple
copies of high likelihood particles, making Np tightly related
to the number of state variables [Bengtsson et al., 2008].
The problem is further complicated by the fact that the
importance density in SIR determines convergence. A good
sampling density results in Np increasing linearly with nx
[Daum and Huang, 2003]. The required Np increases expo-
nentially with nx when the importance density is poorly
chosen (often referred to as ‘the curse of dimensionality’).

Note that the NVT source tracking is a low-dimensional,
nonlinear problem suitable for PFs. Many geophysics pro-
blems deal with a large number of unknown parameters.
This will result in an increase in Np. An alternative to the PF
in these cases would be using an ensemble Kalman filter
(EnKF) [Evensen, 2003] designed specifically for large
dimensional tracking problems. The trade-off is that the
PDFs propagated in EnKF have to be Gaussian due to the
underlying Kalman framework, limiting their use in highly
nonlinear problems.
[24] Finally, an upper limit for Np is determined by the

maximum number of particles that can be processed with
limited computational resources, which is important espe-
cially for real-time filters. It is possible to have filters with
adaptive Np schemes [Fox, 2003]. Coupling PFs with error
metrics, the sample size can be adapted depending on the
error estimate. Such an implementation is particularly
important during the initial steps, when there is a limited
amount of information. To address the significant uncer-
tainty, a large number of particles can be sampled, with the
cloud size decreasing in subsequent steps.

3. Particle Smoothers

[25] Often in geophysics, the whole observation data set
y1:T is available for analysis. Then all the data can be used to
extract the PDF p(xt|y1:T) for t = 1, …, T. In this approach,
time is made to go both forward and backward while
maintaining the physical relationships between measure-
ments and model parameters. The ability to use “future” data
yt+1:T in addition to y1:t improves the estimates and their
uncertainty. The techniques that obtain p(xt|y1:T) are termed
smoothing algorithms.
[26] Under linear/Gaussian assumptions for the state and

measurement equations (1) and (2) implementing a smoother
is a straightforward extension to the Kalman filter. Just like
in a KF, a Kalman smoother is an efficient, fast algorithm.
For the nonlinear/non-Gaussian systems numerical particle
smoothers are used. These work with the same basic phi-
losophy as a PF; they represent the smoothing density using
a set of Np smoothing particles xt|T

i and their weights wt |T
i :

cS
t ¼ xitjT ;w

i
tjT

n oNp

i¼1
ð12Þ

p xtjy1:Tð Þ ¼
XNp

i¼1

wi
tjTd xt " xitjT

) *
ð13Þ

A basic smoother formulation is developed by Kitagawa
[1996]. This is a filtering formulation which estimates the
joint PDF p(x1:t |y1:t) from p(x1:t"1|y1:t"1). After the filter is
run to time T, p(xt|y1:T) is obtained as the marginal of the
joint density. However, this method only gives accurate fil-
tering results p(xt |y1:t), since successive resampling creates a
smoothing degeneracy for p(xt |y1:T) when t ≪ T, with an
exponentially increasing error for large T-t [Chopin, 2004].
For large T-t, there is only one particle with significant
weight representing the smoothing density. To prevent this,
more accurate smoothing techniques have been developed.
Almost all smoothers fall into one of these two categories:
[27] 1. A forward-backward smoother (FBS) runs a for-

ward PF for t = 1, …, T. This gives the set {xt
i , wt

i}i=1
Np

Table 1. ASIR PF [Pitt and Shephard, 1999]

Step Description

Resample Calculate mt
i

Compute and normalize bti

bi
t ¼

pðyt jmi
tÞwi

t"1

PNp

i¼1

pðyt jmi
tÞwi

t"1

Resample new particles xt"1
ji with indices ji

from the old particles xt"1
i using bti

{mti, bt
i}i=1
Np ↦ {ji}i=1

Np

Predict Sample new Np particles at t
{xt

i}i=1
Np % p(xt|xt"1

ji ) given {xt"1
ji }i=1

Np

using xt
i = ft(xt"1

ji , vt
i) i = 1, …, Np

where vt
i are samples from the state noise PDF.

Update Compute the likelihood p(yt|xt
i) for each xt

i.
Normalize the weights:

wi
t ¼

p yt jxitð Þ=p yt jm
ji
tð Þ

PNp

i¼1

p yt jxitð Þ=p yt jm
ji
tð Þ

The posterior PDF is approximated by

p xt jy1:tð Þ ≈
PNp

i¼1
wi
td xt " xit
# $
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representing the filtering density p(xt|y1:t). The algorithm
then runs a backward correction which updates the weights
of the forward PF particles wt

i → wt |T
i so that they represent

the smoothing PDF p(xt|y1:T). Note that the forward PF
particles are used as smoothing particles in (12), xt |T

i = xt
i

[Doucet et al., 2000].
[28] A full density sampler that uses a modified FBS

algorithm is proposed by Godsill et al. [2004] to draw
samples from p(x1:T |y1:T).
[29] 2. A two-filter smoother includes two indepen-

dently running filters. The forward PF is initialized at t = 0
with p(x0) and runs for t = 1, …, T, resulting in {xt

i, wt
i}i=1
Np .

Similarly, the backward PF is initialized at t = T + 1 with
~p xTþ1ð Þ, running backwards to t = 0 where ~p 'ð Þ represents
PDFs related tothe backward PF giving ~xit; ~w

i
t

! "Np

i¼1 . These
two sets of particles and their weights are then used to com-
pute new smoothing weights wt|T

i . Note that the backward PF
particles are used as smoothing particles in (12), xitjT ¼ ~xit
[Briers et al., 2010].
[30] Recently, a two-filter smoother that use ASIR as both

forward and backward PFs is proposed. This two-ASIR
smoother not only computes new smoothing weights wt|T

i but
also new smoothing particles xt|T

i .
[31] Often only the track of the maximum a posteriori

(MAP) estimate is needed and then the much faster MAP
smoother in Godsill et al. [2001] can be used. MAP
smoother runs a forward PF and uses the particles xt

i to
construct a grid of possible values in time. Afterwards a
Viterbi algorithm is run on top of this forward PF to obtain
the most probable state trajectory along the grid, effectively
giving the MAP of p(x1:T |y1:T).
[32] A problem with particle smoothers is their large

computational cost, typically on the order of Np
2, O(Np

2).
However, there have been significant improvements in par-
ticle smoothing in the last decade both in terms of efficiency
and accuracy. Recently proposed forward-backward and
two-filter based smoothers such as Klaas et al. [2006] and
Fearnhead et al. [2010] operate with an order of complexity
of O(Np).

3.1. Forward-Backward Smoother
[33] The integral that needs to be solved sequentially in a

FBS is given by expressing the smoothing density in terms
of the filtering density [Doucet et al., 2000]. Similar to (4) it
is possible to express p(xt|y1:T) as a function of xt+1 by
starting from the joint PDF p(xt , xt+1|y1:T) and integrating
out xt+1:

p xt jy1:Tð Þ ¼
Z

p xt; xtþ1jy1:Tð Þdxtþ1; ð14Þ

¼
Z

p xtjxtþ1; y1:tð Þp xtþ1jy1:Tð Þdxtþ1: ð15Þ

Using Bayes’ rule, the first term in (15) is given by

p xtjxtþ1; y1:tð Þ ¼ p xtþ1jxt; y1:tð Þp xtjy1:tð Þ
p xtþ1jy1:tð Þ ; ð16Þ

¼ p xtþ1jxtð Þp xtjy1:tð ÞR
p xtþ1jxtð Þp xtjy1:tð Þdxt

: ð17Þ

Inserting this back into (15) and taking the p(xt|y1:t) term out
of the integral we arrive at

p xtjy1:Tð Þ ¼ p xt jy1:tð Þ
Z

p xtþ1jxtð Þp xtþ1jy1:Tð ÞR
p xtþ1jxtð Þp xtjy1:tð Þdxt

dxtþ1: ð18Þ

The integral in the denominator of (18) is computed using IS
equation (9) and the forward PF set {xt

k, wt
k}k=1

Np :

Z
p xtþ1jxtð Þp xtjy1:tð Þdxt ≅

XNp

k¼1

wk
t p xtþ1jxkt
# $

: ð19Þ

Then, the outer integral is computed using IS from {xt+1
j ,

wt+1
j }j=1

Np and (19) as
Z

p xtþ1jxtð Þp xtþ1jy1:Tð ÞR
p xtþ1jxtð Þp xtjy1:tð Þdxt

dxtþ1

≅
XNp

j¼1

w j
tþ1jTp x j

tþ1jxt
# $

XNp

k¼1
wk
t p x j

tþ1jxkt
# $ :

ð20Þ

Inserting (6) and (20) into (18), the smoothing density is
obtained as:

p xtjy1:Tð Þ ≅
XNp

i¼1

w i
tjTd xt " xit

# $
; ð21Þ

wi
tjT ¼

XNp

j¼1

wi
t p x j

tþ1jxit
# $

XNp

k¼1
w k
t p x j

tþ1jxkt
# $w

j
tþ1jT : ð22Þ

where wT |T
i = wT

i . This is computed using recursion from
t = T and going back in time, estimating the integral as an
IS by correcting the filter weights using the “future”
information. Hence, to compute the smoothing density, all
we need to do is to compute the new smoothing weight
designated by wt|T

i for each particle xt
i by scaling the old

weight wt
i.

[34] The smoothing algorithm uses the particles of the
forward PF as the smoothing particles, i.e. xt|Ti = xt

i, and only
the weights are updated. Hence, if the forward PF particle
cloud {xt

i}i=1
Np poorly corresponds to the smoothing PDF, the

forward-backward method will suffer.

3.2. Two-Filter Smoother
[35] Another way of writing the smoothing density is

using Bayes’ theorem instead of the integral formulation of
the forward-backward filter:

p xtjy1:Tð Þ ¼ p xtjy1:t"1; yt:Tð Þ ð23Þ

¼ p xtjy1:t"1ð Þp yt:T jxtð Þ
p yt:T jy1:t"1ð Þ ð24Þ

∝ p xtjy1:t"1ð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl} p yt:T jxtð Þ|fflfflfflfflffl{zfflfflfflfflffl} :

forward PF ( backward inf :filter ð25Þ

The first part of the equation is given by a forward PF. The
latter term is in an unconventional p(y|x) form. This
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“density” is called the backward information filter [Briers
et al., 2010]. The term p yt:T jxtð Þ is a likelihood function
which is not a proper probability density; its value is not
bounded and sampling methods cannot be used to compute it.
The trick employed here replaces the backward information
filter estimation problem with an equivalent backward PF.
[36] This is done by introducing an artificial prior ~p xtð Þ

and using Bayes’ theorem

~p xtjyt:Tð Þ ∝ p yt:T jxtð Þ~p xtð Þ; ð26Þ

p yt:T jxtð Þ ∝
~p xtjyt:Tð Þ
~p xtð Þ ; ð27Þ

to obtain the equivalent backward PF ~p xtjyt:Tð Þ, ensuring a
finite integral. Symbol ~p 'ð Þ is used to represent a backward
PF. The prior ~p xtð Þ can be selected as any function, however,
as in all IS computations, poor selection of ~p xtð Þ affects
accuracy.
[37] Replacing the backward information filter with its

backward PF equivalent form using (27) and writing the
forward prediction density in its sequential form derived
in (4), we get

p xt jy1:Tð Þ ∝
~p xt jyt:Tð Þ
~p xtð Þ

Z
p xtjxt"1ð Þp xt"1jy1:t"1ð Þdxt"1: ð28Þ

The integral is computed using IS equation (9) and the for-
ward PF particles {xt"1

j , wt"1
j }j=1

Np as

Z
p xtjxt"1ð Þp xt"1jy1:t"1ð Þdxt"1 ≅

XNp

j¼1

w j
t"1p xtjx j

t"1

# $
: ð29Þ

We now run a PF backwards in time starting from t = T " 1
with a prior density ~p xTð Þ. Since the PF runs backwards, the
posterior PDF is of the form ~p xtjyt:Tð Þ . The backward PF
creates the backward particles and weights ~xit; ~w

i
t

! "Np

i¼1. The
backward posterior can then be written as:

~p xtjyt:Tð Þ ≅
XNp

i¼1

~wi
td xt " ~xit
# $

: ð30Þ

Inserting (29) and (30) into (28) and rearranging we get:

p xtjy1:Tð Þ ≅ 1
~p xtð Þ

XNp

i¼1

~wi
td xt " ~xit
# $XNp

j¼1

w j
t"1p xtjx j

t"1

# $
; ð31Þ

p xtjy1:Tð Þ ≅
XNp

i¼1

wi
tjTd xt " ~xit

# $
; ð32Þ

wi
tjT ¼ ~wi

t

~p ~xit
# $

XNp

j¼1

w j
t"1p ~xitjx

j
t"1

# $
: ð33Þ

The two-filter smoother uses the particles obtained by the
backward filter, i.e. xitjT ¼ ~xit . Therefore, similarly to the for-
ward-backward smoother, only the weights are recalculated.

Thus, if the backward PF cloud ~xit
! "Np

i¼1 poorly

corresponds to the smoothing PDF, the two-filter method
becomes problematic.
3.2.1. Two-ASIR Smoother
[38] Both classical smoothers presented above use the fil-

tering particles that may not be appropriate to represent the
smoothing density. This problem can be avoided by using a
modified two-filter smoother given by Fearnhead et al.
[2010] that enables us to specifically sample new particles
representing the smoothing density. Since the method
requires forward and backward ASIR filters to run, it is
referred to as the two-ASIR smoother. This smoother uses
forward ASIR results {xt"1

i , wt"1
i }i=1

Np at t " 1 and backward
ASIR results at ~xitþ1; ~w

i
tþ1

! "Np

i¼1 at t + 1 to sample a new set of

smoothing particles !xit
! "Np

i¼1 that correspond to the underlying
smoothing PDF. Let’s start by rewriting the backward
information filter as

p yt:T jxtð Þ ∝ p ytjxtð Þp ytþ1:T jxt
# $

; ð34Þ

Using almost an identical derivation given for (4) with the
exception of the integral being on xt+1 instead of xt"1, the
second term in (34) is expressed as:

p ytþ1:T jxt
# $

¼
Z

p xtþ1jxtð Þp ytþ1:T jxtþ1
# $

dxtþ1: ð35Þ

Replacing the information filter p(yt+1 : T |xt+1) at t + 1 using
(27) gives

p ytþ1:T jxt
# $

∝
Z

p xtþ1jxtð Þ
~p xtþ1jytþ1:T

# $

~p xtþ1ð Þ
dxtþ1; ð36Þ

p yt:T jxtð Þ ∝ p ytjxtð Þ
Z

p xtþ1jxtð Þ
~p xtþ1jytþ1:T

# $

~p xtþ1ð Þ
dxtþ1; ð37Þ

Inserting these back into (25) and rearranging the terms in the
form of an integral for than can be computed by the IS
equation (9), we have:

p xtjy1:Tð Þ ∝
Z

p xtjxt"1ð Þp ytjxtð Þp xtþ1jxtð Þ

( p xt"1jy1:t"1ð Þ
~p xtþ1jytþ1:T

# $

~p xtþ1ð Þ dxt"1dxtþ1:

ð38Þ

[39] To compute this integral we need to define a set of
ASIR parameters. Following Fearnhead et al. [2010] and
defining !'ð Þ as the parameters related to smoothing, we need
to select:
[40] 1. an ASIR weight !b j;kð Þ

t ,
[41] 2. some ASIR function !mi

t ¼ f xjit"1; ~x
ki
tþ1

# $
for the jth

particle of forward PF and kth particle of backward PF,
[42] 3. prediction stage IS density !q !mi

tjx
ji
t"1; yt; ~x

ki
tþ1

# $
.

[43] Note that the set !mi
t forms a good representation for

the smoothing density at t; we use those as the smoothing
particles !xit ¼ !mi

t . Moreover, having both forward and
backward filters as ASIR allows to approximate the

smoothing !b j;kð Þ
t ≅ bji

t
~b
ki
t [Fearnhead et al., 2010]. This

approximation reduces the method complexity to O(Np).
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With these definitions, we can now compute the integral
in (38) using IS:

p xtjy1:Tð Þ≅
XNp

i¼1

!wi
tjT d xt " !xit

# $
; ð39Þ

!wi
tjT ∝

p !xitjx
ji
t"1

) *
p ytj!xit
# $

p ~xkitþ1j!xit
# $

w ji
t"1~w

ki
tþ1=~p ~xkitþ1

# $

!q !xitjx
ji
t"1; yt; ~x

ki
tþ1

) *
b ji
t
~b
ki
t :

ð40Þ

The two-ASIR smoother is summarized in Table 2.

4. Tremor State Space Model

[44] The NVT state and measurement equations are given
by:

xt ¼ xt"1 þ vt ð41Þ

yt fj
# $

¼ at fj
# $

d xt; fj
# $

þ wt fj
# $

; ð42Þ

where wt( fj) is a vector of additive non-stationary complex
Gaussian noise processes along the seismic array, each with
a variance of nt( fj) for each frequency fj and step t, at( fj) is
the complex-valued source strength and d(xt, fj) is the for-
ward model.
[45] There are two possible state vector and forward model

selections depending on the required output. In the first one,
we are interested in tracking the direction the tremor signal
that arrives at the array. Hence, the forward model is a
beamformer composed of plane wave phase delays eiwDrxt,
where xt = [sx sy]t

T is the horizontal slowness and Dr
describes the coordinates of the array sensors relative to the
mean coordinates. Here, this formulation will be referred to
as tremor arrival angle tracking.
[46] For tracking the NVT location on the slab, the state

vector is xt = [x y]t
T, the longitude and latitude of the moving

source. In this case, the forward model is a ray tracer code
that propagates the seismic signal from any particle (pro-
spective source location on the slab) to the seismic sensors,
effectively using a back-propagation. This formulation will
be referred to as tremor source location tracking.
[47] Beamforming can be done either in time domain by

time-delaying and adding the time-series recorded by the
seismic sensors or in frequency domain, where the time-
delays are replaced with appropriate phase shifts. One
advantage of frequency domain beamforming is the ability to
use only the desired frequencies. For example, this enables us
to take out the frequencies with significant anthropogenic
noise. It also reduces the computation time since only a small
subset of frequencies representative of the frequency band is
used in the inversion. Initial analyses show that there is little
difference between using 8 or 80 frequencies for a 4–17 Hz
beamformer. Hence a frequency domain beamformer is
selected here with 8 frequencies.
[48] Since PFs and smoothers are sequential Bayesian

techniques capable of giving the PDF of NVT source loca-
tion at each time step, a Bayesian beamformer is used here for
comparison purposes. In fact all these methods will use the
exact same beamformer based likelihood function derived
below for a fair comparison.
[49] The classical Bartlett power objective function is

obtained from the assumption of additive complex Gaussian
noise wt( fj) for each frequency fj and step t, which is written
as wt( fj) = yt( fj) " at( fj)d(xt, fj) following (42), with a
corresponding Bartlett processor based, multifrequency
likelihood function [Gerstoft and Mecklenbräuker, 1998]:

L xtð Þ ¼
Ynf

j¼1

1

pnj
# $nh exp "

jjyt fj
# $

" at fj
# $

d xt; fj
# $

jj2

nj

" #

; ð43Þ

where nh is and nf are the numbers of seismic sensors and the
frequencies used in tracking, and nj is the noise variance at
frequency fj. Note that, the noise variance and the source
strength evolve with both time and frequency. In a Bayesian
seismic inversion, we first estimate the unknown source term
at( fj) for all frequencies at each time step using a maximum
likelihood (ML) estimator and insert the result analytically
into the likelihood formulation.
[50] The unknown source is estimated analytically via a

ML by solving ∂L=∂at ¼ 0:

bat fj
# $

¼
d xt; fj
# $Hyt fj

# $

jjd xt ; fj
# $

jj2
: ð44Þ

Inserting the source estimate back into (43), the likelihood
becomes [Huang et al., 2006]

L xtð Þ ¼
Ynf

j¼1

1

pnt fj
# $# $nh exp "

fj xtð Þ
nt fj
# $

" #

; ð45Þ

fj xtð Þ ¼ yHt fj
# $

yt fj
# $

"
d xt; fj
# $Hyt fj

# $
yt fj
# $Hd xt; fj

# $

d xt; fj
# $Hd xt; fj

# $ ; ð46Þ

Table 2. Two-ASIR Particle Smoother

Step Description

Forward
ASIR

Compute and store {xt
i, wt

i, bt
i}i=1
Np for t = 1, …, T

p xt jy1:tð Þ ≈
X

i¼1

Np

wi
td xt " xit
# $

Backward
ASIR

Compute and store ~x it ; ~w
i
t ;
~b
i
t

n oNp

i¼1
for t = T, …, 1

~p xt jyt:Tð Þ ≈
XNp

i¼1

~wi
td xt " ~x it
# $

Resample To sample a smoothing particle !xit at time t
Resample new forward PF particles xt"1

ji with indices ji
from the old particles xt"1

i using bti
{xt"1

i , bt
i}i=1
Np ↦ { ji}i=1

Np

Resample new backward particles ~xkit"1 with indices ki
from the old particles ~x itþ1 using ~b

i
t

~x itþ1;
~b
i
t

n oNp

i¼1
↦ kif gNp

i¼1

Predict Using the forward particle at t-1, backward particle at t + 1,
and the current measurement yt obtain smoothing particle

!xit
! "Np

i¼1 % !q !xit jx
ji
t"1; yt ; ~x

ki
tþ1

# $

Update Compute !wi
tjT from (40) ↦ normalize !wi

tjT ¼ !wi
tjTXNp

i¼1
!wi

tjT

p xt jy1:Tð Þ ≈
XNp

i¼1

!wi
tjT d xt " !xit

# $
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where fj is the Bartlett objective function. The first term in
fj is the total seismic signal power and is a constant (not a
function of xt). The second term in fj is a normalized
beamformer output since a classical frequency-domain
beamformer is given by yt

Hd(xt). Hence the likelihood for-
mulation in (45) and (46) enables the conversion of the
beamformer output into a Bayesian PDF capable of provid-
ing the uncertainty in the estimates and will be shared by the
Bayesian beamformer, PF, and both smoothers used in this
paper.
[51] As for the noise variance term nt( fj), one way is to

estimate the noise from the data [Zhang et al., 2011] and
insert it into (45). An alternative way is to treat the unknown
nt( fj) as a nuisance parameter and use aML estimator, similar
to the one for source estimation. Solving ∂L=∂nt fj

# $
¼ 0

results in:

bn t fj
# $

¼
fj xtð Þ
nh

; ð47Þ

L xtð Þ ¼
Ynf

j¼1

nh
epfj xtð Þ

 !nh

: ð48Þ

4.1. Cascadia Tremor Analysis
[52] The Bayesian beamformer, PF, FBS, and two-ASIR

smoother are used to track the NVT using a 2-D beam-
forming with a temporary array installed in Cascadia, WA
(see Figure 2), to detect seismic tremor [Ghosh et al., 2009,
2010a, 2010b; Zhang et al., 2011]. At the Cascadia array,
tremors typically travel with horizontal phase velocities of
10 km/s (slowness 0.1 s/km). The array is quite dense with
72 sensors placed within a 1.2 km2. All data analyses are
done for May 7, 2008. In all of the data analyses, the time
step is 5 s, providing 720 observations in an hour. Flat priors
are used in all methods. The outputs of the Bayesian beam-
former, PF, and the smoothers represent p(xt|yt), p xtjy1:tð Þ
and p(xt|y1:T), respectively. Since the methods respectively
use an increasing amount of data, it is natural for the
smoother to outperform both the PF and the beamformer,
and the PF to outperform the beamformer.

[53] Four cases are analyzed. The first three use tremor
source location tracking state space formulation whereas
the last one uses tremor arrival angle tracking state-space
formulation:
[54] 1. Case I: The effects of the selection of frequency

band on tremor source location tracking are investigated.
A 400-particle PF is used to track data from 11:40–12:30 UTC
using 3–17 Hz, 3–8 Hz, and 10–17 Hz frequency bands.
[55] 2. Case II: A beamformer and PF are compared in

tremor source location tracking. Following Ghosh et al.
[2010a, Figure 6], data from 11:40–12:30 UTC is used.
The frequency band is 3.9–17.6 Hz.
[56] 3. Case III: The benefits of using smoothers (FBS and

two-ASIR) in tremor source location tracking are explored.
Again data from 11:40–12:30 UTC with 3.9–17.6 Hz is
used. All filters and smoothers use 400 particles.
[57] 4. Case IV: PF and the smoothers are compared in the

alternate tremor arrival angle tracking formulation where we
track horizontal slowness using data from 0:00–1:00 UTC.
A frequency band of 3.9–17.6 Hz and 400 particles are used.
4.1.1. Tremor Source Location Tracking
[58] From Zhang et al. [2011, Figure 3] the frequencies

with acceptable tremor signal to noise ratio (SNR) lie
between 1.2–18 Hz. The frequency band used in the inver-
sion is expected to make a difference in the source location
estimates. Low frequencies such as 3–8 Hz used in Ghosh
et al. [2010a] have the highest SNR, roughly SNR ∝ f "2

[Zhang et al., 2011]. However, low frequencies mean small
array aperture/wavelength ratio. Assuming 10 km/s phase
speed and 1 km array diameter give an array aperture of 0.3,
1, and 1.8l at 3, 10, and 18 Hz, respectively. This results in
fat beamformer lobes with lower angular resolution at low
frequencies. Thus, a small amount of error can result in a
large shift in the source location estimate. On the other
hand, the high frequency range (10–18 Hz) has low SNR
but a much sharper beamforming resolution which may
compensate for the low SNR. In case I, we tracked the
source using the low, high and all usable frequency bands.
[59] The results are given as evolving 1-D probability

density functions (PDFs) for the source longitude and lati-
tude in Figure 3. Note that the high frequency PF (Figure 3c)
has the sharpest PDFs. The high frequency track is also more
stable with smaller variations in NVT source location relative
to the low frequency PF result (Figure 3b). The two tracks
differ from each other in the first 15 minutes and at around
12:15 UTC, where the NVT signal is weak (Figure 4c). They
give similar results between 11:15–12:10 UTC and at the end
of the track around 12:30 UTC.
[60] An important aspect of the 2-D beamformer is that it

provides an angle of arrival at the array location and an
undetermined range. Determining the source range requires
an extra piece of information. This is provided by the
assumption that the tremor originates on the slab. This enables
mapping of the angle of arrival by back-projection onto the
slab and this produces an estimate for range.
[61] There are two main factors that can affect the range

estimation using back-projection: small arrival angles and
low SNR. When the array is far from the tremor source, the
propagation path is almost parallel to the surface with a very
narrow angle of arrival. Thus, a small uncertainty in the angle
estimates (i.e. a narrow angular cone of signals launched

Figure 2. Tremor array deployed in Cascadia.
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back towards the slab) will be back-projected into a large area
on the slab. Similarly low SNR will increase the uncertainty
in the range estimate. This large range uncertainty results
in the typical ellipsoid shaped results with a radially smeared
beamformer output (Figures 4a and 4b). Therefore, the back-
projection beamformer source location uncertainty can be

reduced by using an array as close as possible to the tremor
source, which will result in both increased arrival angle and
SNR.
[62] Therefore, the rapid variations at low frequencies

(Figure 3b) may be due to the weak NVT signal strength
coupled with a fat beamforming mainlobe. Other possible
scenarios include source longitude and latitude changing
faster suggested by the low-frequency case or having dif-
ferent sections of the slab generating NVT at different fre-
quencies. The PF that uses both the low and high frequencies
(Figure 3a) gives values in between the two extremes.
Determination of an appropriate frequency band that will
give the most accurate source localization requires a more
detailed analysis and comparisons with results from tremor
locations other than Cascadia. For the reminder of this paper
we will be using the entire frequency band (3–18 Hz).
[63] Results of case II where beamforming is compared to

a PF are given in Figures 4–6. The beamformer is used to
statistically estimate the source location by inverting the data
at each time step and combining the results of all beam-
former inversions to obtain an evolving PDF that can be
compared to the PF result. Then a 400-particle PF is used to
track the source and the uncertainty in the source estimates.
At each time step these 400 particles are first predicted
using the state equation (41) and then their weights are
updated using the beamformer based likelihood (45) that
use the data yt arriving at that time step as shown in Table 1.
The beamformer and PF are compared at different SNR

Figure 3. Case I: Effects of the frequency band used for
inversion. Evolving PDF of source location obtained by
PFs for (a) f = 3–17 Hz, (b) 3–8 Hz, and (c) 10–17 Hz.

Figure 4. Case II: Beamformer vs. PF comparison. PF particles (() plotted over beamformer output in
dB for (a) high SNR and (b) low SNR. (⋄) shows the array location. Dashed lines give the slab depth at
that location. (c) Maximum beam power showing the fluctuating NVT source strength.
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values (Figure 4c). First, the beamformer objective function
fj in (46) is given in dB together with the PF particles for
high and low SNR cases in Figures 4a and 4b. Both methods
agree well with high SNR, however, the beamformer objec-
tive function at low SNR is flat. Although the particle spread
is increased, the PF tracks the source location even in low
SNR, due to its sequential formulation given in Table 1.
[64] The beamforming and PF are more easily compared

in terms of their posterior PDFs for the source location.
Figure 5 shows the evolving PDFs for source longitude and
latitude obtained using both methods. The beamforming
PDF is much more sensitive to the variations in the tremor
SNR and frequently loses the track of tremor location
whereas the PF tracks the tremor the entire time even though
the uncertainty in Figure 5b increases at low SNR at around
11:40 and 12:15 UTC. Vertical cuts from these plots at three
different times representing low, medium, and high SNR are
given in Figure 5c. In all cases the PF provides a sharper
PDF with low uncertainty in the source location. In addition,
for low SNR the beamformer PDF is flat, unable to localize
the NVT source. Even though the peak location is around
["123.25), 47.9)] there is significant uncertainty towards
["124), 47)] (towards southwest) in the beamformer results,
creating an asymmetric long tailed PDF, an indication of the
large radial uncertainty that is described earlier.
[65] The PF also has its largest uncertainty radially since

both the beamformer and the PF use the same beamformer

based likelihood function. However, the state equation (41)
used by the PF mitigates the degradation in range at low
SNR. The state equation forces the PF to ignore the rapid
range fluctuations due to the poor likelihood function of the
low SNR data. The PF will only believe the new range
inferred from the current data when SNR increases or when
the likelihood function consistently keeps pointing to the new
range at consecutive steps, indicating that the range change is
likely not a random fluctuation.
[66] Finally, the two methods are compared using the 2-D

uncertainty for the back-projected tremor location on the
slab in Figure 6 for different SNR values. Again notice that
the PF location uncertainty is less than the beamforming
results at all SNR levels. Note that the radial uncertainty in
the beamforming results have significantly been mitigated in
the PF PDFs.
[67] Case III involves comparing the smoothers with the

PF results. All methods use 400 particles and all methods
start with a flat prior corresponding to a uniformly distrib-
uted initial particles. For each time step t the PF first pre-
dicts the values based on time step t-1 using the state
equation (41). Then, it updates the values based on the
observed data, that is, based on the likelihood function given
in (45). The FBS results are obtained by running a backward
correction given by (21) and (22) on the PF results. The two-
ASIR smoother requires running a second PF backward in
time, one that starts at 12:30 and goes back to 11:40 UTC.

Figure 5. Case II: Beamformer vs. PF comparison. Evolving 1-D PDFs for source longitude and latitude
obtained using (a) Bayesian beamforming and (b) a PF. (c) 1-D PDF comparison for beamforming (dashed)
and PF (solid histograms) at strong (12:03 UTC), medium (11:51 UTC), and weak (12:12 UTC) NVT
source strength.
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Then the forward and backward PFs are combined together
to obtain a smoothing distribution using Table 2.
[68] The results for case III are given in terms of source

location PDFs on the slab (Figure 6) and 1-D PDFs of the
evolving tremor longitude and latitude (Figure 7) for all three
algorithms. Note that both smoothers outperform both the
beamformer and the PF, resulting in a further reduction in
the source location uncertainty. Even at low SNR (Figure 6c)
the smoother PDFs are sharp. The smoothers are comparable
to each other. Significant reduction in the localization
uncertainty enables the PF and the smoothers to keep track of
the NVT at all times, whereas the beamformer requires a high
SNR to accurately localize the NVT.
[69] The NVT source migration direction reverses several

times. As shown in Ghosh et al. [2010a, Figure 6] the tremor
moves up and down multiple times within an hour. Figure 8
is obtained by plotting the source location PDF at each time
step where a reversal occurs in the tremor movement direc-
tion and superimposing them to clearly display the beginning
and ends of each migration. This is similar to Ghosh et al.
[2010a, Figure 6] but also provides the underlying uncer-
tainty in the estimates in addition to the point estimate.
Notice that every time the source migrates southwest, it

Figure 6. Case II and III: Comparison of Bayesian beamformer, PF, FBS, and two-ASIR smoother.
2-D PDFs for the source location on the slab for (a) strong (12:03 UTC), (b) medium (11:51 UTC),
and (c) weak (12:12 UTC) NVT source strength. For comparison purposes, the PDFs are normalized
individually to make the peak values 1. (⋄) shows the array location. Dashed lines give the slab depth
at that location.

Figure 7. Case III: PF vs. FBS and two-ASIR smoother
comparison. Evolving 1-D PDFs for source longitude and
latitude obtained using (a) PF, (b) FBS, and (c) two-ASIR
smoother.
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moves away from the array and the range ambiguity increa-
ses as discussed before.
[70] Another interesting observation is the appearance of

multiple tremor source locations at various times (Figure 9).
These multiple sources are usually short events typically
lasting on the order of minutes. As seen in the figure, most of
the time a second peak appears in the objective function.
However, in rare cases such as at 11:01 UTC three peaks are
also observed.
[71] A PF is run to observe the appearance of a second

tremor source. The results (Figure 10) show that the transi-
tion from a single to a double source happens under a minute
in all cases analyzed. The migration rate is also faster then the

average NTV migration speed. Once formed, both sources
evolve, sometimes alternating in strength, where eventually
one dies out.
4.1.2. Tremor Arrival Angle Tracking
[72] In case IV, the Bayesian beamformer, PF and the

smoothers are also used to track the peak slowness (slowness
is here the horizontal phase slowness or inverse phase speed)
sx and sy across the array for 1 h starting at midnight of 7 May
2008. From the data, we extract the 2-D slowness vector
(sx, sy) based on total beam power at eight frequencies from
3.9 to 17.6 Hz. The PF is initialized (t = 1) with 400 uni-
formly distributed particles across (sx, sy).

Figure 8. Cascadia NVT source migration between 11:40–12:30 UTC: Rapid back and forth source
migration within an hour. The 2-D smoother PDFs at the beginning and end of each trend artificially
superimposed for visual display. The arrows indicate the direction of NVT source migration. (() repre-
sents the MAP solution at each time for visual comparison. (⋄) shows the array location. Dashed lines
give the slab depth at that location.

Figure 9. Beamformer output showing multiple sources at different times along the track. Dashed lines
give the slab depth at that location.
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[73] The beamformer p(xt|yt), PF p(xt|y1:t) and smoothing
p(xt|y1:T) results for horizontal slowness parameters are
given in Figure 11. The ability to incorporate the dataset up
to t allows the PF to perform better than the beamformer and
the ability to use the entire data set in parameter estimation
allows the smoothers to have a smaller uncertainty in the
PDFs than the PF.
[74] The distribution of the particles for the three methods

used here can be seen in Figure 12. Figure 12a is the result at
a low SNR. The spread of the particles in the two smoothers
is similar and significantly less than the spread in the PF. As
the SNR increases the distributions of the particles get nar-
rower indicating lower uncertainty in the estimates. In angle
tracking, the two-ASIR smoother outperforms the FBS at
medium to high SNR.
[75] The root time averaged mean squared error (RTAMS)

given in Ristic et al. [2004] and Yardim et al. [2008] cal-
culated for the interval t = [t1, t2] is the performance metric
that we use:

RTAMS ¼
Xt2

t¼t1

XNp

i¼1

xit " bxt
# $2

t2 " t1 þ 1ð ÞNp

" #1=2
; ð49Þ

where bxt is the mean state vector at t, computed using the
particle cloud. The RTAMS error for sx calculated for the
entire track gives 45 ( 10"3 s/km for the PF. This uncer-
tainty is reduced by 36% for the FBS, and 38% for the two-
ASIR smoother. Even though the smoothers have almost
identical RTAMS errors for the entire track, the FBS per-
forms better for the first 30 min with RTAMS values of 54,
33, and 34 ( 10"3 s/km for the PF, FBS, and the two-ASIR
smoother, respectively. After the first 30 min, the two-ASIR

smoother outperforms the FBS with RTAMS values of 37,
26, and 23 ( 10"3 s/km, respectively.

5. Conclusions

[76] Non-volcanic tremors (NVT) contain important
information about the processes at the deep roots of the faults

Figure 10. Evolution of source location obtained by a PF as a second peak appears. (a) 1-D PDFs of
tremor longitude and latitude. 2-D PDF of tremor location on the slab (b) before, and (c) after a second
peak appears.

Figure 11. Case IV: Time evolution of the posterior
probability of peak slowness (s/km) for one hour for
(a) beamformer, (b) PF, (c) FBS, and (d) two-ASIR
smoother.
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controlling episodic tremor and slip. In this paper, the Cas-
cadia tremor was analyzed using sequential Bayesian tech-
niques. The aim is to use better signal processing techniques
to characterize the source of the tremor. The theoretical
background for sequential Bayesian methods was summa-
rized along with the concept of filtering and smoothing. The
difference between a particle filter (PF) that uses previous
data obtained up to and including the current time and a
smoother that uses data from the entire dataset that includes
future values were explained. Two main smoothing frame-
works, the forward-backward and the two-filter smoothers,
were compared. Particular emphasis was given to a recently
developed two-ASIR smoother.
[77] As demonstrated, geophysical data offer a rich envi-

ronment for implementing sequential Bayesian filtering. The
Cascadia seismic tremor tracking example showed how to
form the state and measurement equations, compute the
likelihood, and implement the geophysical PF. The PF was
shown to outperform classical beamformer and continue
tracking the NVT even in low SNR conditions. Smoothing
and filtering were compared in the seismic tremor smoothing
example. It was shown that using future data in addition to
past data improves the quality of the estimates and reduces
the uncertainty.
[78] Both Cascadia NVT source location on the slab and

angle of arrival in terms of horizontal slowness were
tracked. The effects of the frequency band used in tracking

was analyzed. Rapid back and forth source migrations were
explored. Multiple NTV source location events were dis-
cussed. A particle filter was used to track to track a tran-
sition from a single source to a double one.

[79] Acknowledgments. This work has been supported by NSF
grants EAR-0944109, OCE-1030022, and ONR grant N00014-11-1-0320.
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