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Environmental parameters can have large spatial and temporal variability in shelfbreak regions.
The capability of sequential Bayesian filters in tracking this variation is investigated. Particle
filtering (PF) is used to extract the environmental parameters and their uncertainties. The method
tracks the environment with fewer particles relative to conventional geoacoustic inversion methods
using successive independent inversions. As an example, data from the Shallow Water 2006
Experiment are processed. The PF approach first is used to track the source and the environment
with little spatial variation just northwest of the shelfbreak. Then the strongly range-dependent
shelfbreak region is analyzed and the PF results are compared to previous geoacoustic inversion
studies from the region. VC 2012 Acoustical Society of America. [DOI: 10.1121/1.3666012]
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I. INTRODUCTION

The ocean shelfbreak region is characterized by rapid
change in bathymetry, large variations in geoacoustic para-
meters, and the ocean sound speed can evolve rapidly both
temporally and spatially due to the interplay between deep
and shallow water. Sequential Bayesian filters offer a suita-
ble framework for extracting geoacoustic parameters in such
a dynamic environment. They tie together information on
parameter evolutions, a forward model relating acoustic field
measurements to the unknown quantities, and a statistical
description of the random perturbations in the field measure-
ments. A review of sequential filtering in ocean acoustics is
given in Ref. 1 with several underwater acoustic applications
such as target localization and tracking,2–4 sequential geoa-
coustic inversion,5–8 frequency tracking,9 and spatial arrival
time tracking.10

Recently, there has been interest in addressing the capa-
bilities of geoacoustic inversion at the continental shelfbreak
regions. Shallow Water 200611 (SW06) was a series of
experiments conducted in the summer of 2006 in the vicinity
of the New Jersey continental shelfbreak.12 In addition to the
spatial and temporal variabilities of the water column, this
shelfbreak region is characterized by the presence of internal
waves. Sediment properties at the site such as the sound
speed, dispersion, and attenuation were measured in situ.13,14

The seismic surveys showed a significant R-reflector at the
SW06 site15,16 that corresponds to a subsurface layer with
abrupt sediment sound speed change. This R-reflector is
around 20–25 m below the seafloor17,18 and its spatial vari-
ability around the SW06 site has been observed.19,20

Geoacoustic inversion methods21–25 have been used to
invert for the seabed properties in this challenging environ-
ment. An iterative scheme is used with a dispersion-based
short time Fourier transform.21 Spatial variability is tackled
by incorporating the locations of the R-reflector and other
layering information into the perturbative inversion as

a priori information.22 Matched-field Bayesian geoacoustic
inversion algorithms24,25 used with SW06 data incorporate
empirical orthogonal functions (EOF) to represent the high
temporal variability of the sound speed profile (SSP) in the
water column.

Sequential Monte Carlo techniques known as particle
filters (PF) perform well in matched-field shallow water geo-
acoustic inversion applications.6 Two environmental param-
eter models for the PF are considered here depending on the
complexity of the environment. The first is appropriate for
slowly varying bathymetry and geoacoustic parameters. It
assumes gradual range dependence and uses the adiabatic
normal mode model SNAPRD.26 The gradual range depend-
ence is obtained by calculating the mode functions at the
source and receiver locations and linearly interpolating the
wavenumbers along the track.7

The second geoacoustic parameter model deals with a
complex, fast-changing bathymetry. This uses a wide-angle
parabolic equation with Padé coefficients as in the range-
dependent acoustic model.27 The state vector now incorpo-
rates the bathymetry from all ranges to compute the field.
However, this improved ability to track complicated seabed
properties means that the increasing state dimension ulti-
mately will limit the length of the track. To keep the state
size manageable, the full track is split into smaller tracks and
a PF is run for each sector.

The paper is organized as follows. Section II introduces
the PF and the two environmental parameter models that are
used in this paper. An improved likelihood for the PF also is
introduced, along with the PF equations and the sequential
importance resampling (SIR) algorithm. Section III shows
the application of PF on data obtained from SW06, both in
the weakly and strongly range-dependent regions, followed
by discussion and conclusions.

II. GEOACOUSTIC PARTICLE FILTERS

Particle filters enable tracking of evolving geoacoustic
parameters via sequential observations. These techniques
provide a formulation where the environmental parameters
such as the ocean SSP and sediment properties are
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characterized as dynamic, non-stationary processes that are
continuously estimated as new data become available. This
is done by employing predictions from previous estimates
and updates stemming from physical and statistical models
that relate acoustic measurements to the unknown
parameters.

The objective of a PF is to track the evolution of the
multidimensional posterior probability density function (PDF)
p xtjy0; :::; yt

! "
; the probability of the unknown geoacoustic

parameters xt given the measurements y up to and including
time t. The PF achieves this by creating a set of i¼ 1,…,np

particles xi
t, each with weight wi

t, where the weighted sum of
these particles approximate the posterior PDF,

vt : xi
t;w

i
t
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p xt y0; :::; yt
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ffi
Xnp

i¼1

wi
td xt # xi
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Geoacoustic inversion uses an acoustic measurement equa-
tion that relates the environment and the source location to
the acoustic field. In addition to the measurement equation,
tracking via PF involves a state equation that models the
evolution of the environment and movement of the source.
Usually, but not necessarily, the field is measured across a
receiver array. The equations are given as7

xt ¼ f t#1 xt#1ð Þ þ Btvt; (2)

yt ¼ ht xtð Þ þ wt ¼ atd xtð Þ þ wt; (3)

where ft#1(') is a known function of the state vector xt#1 and
ht(') is the known nonlinear function that relates the environ-
mental and source parameters xt to the acoustic measurement
vector yt. Hence, ht(') includes both the unknown source am-
plitude term at and the known forward model d(xt). vt, wt,
and Bt are the process/state noise vector, the measurement
noise vector, and the scaling matrix. Qt and Rt are the covar-
iance matrices at t for the corresponding noise terms. The
scaling matrix Bt is not needed for the environmental param-
eters and is taken as the identity matrix I but it is needed in
the source model. All the functions, parameters, and the
noise terms are time dependent, which enables the PF to
work in dynamic, non-stationary environments.

The state equation is formed from two blocks; source
and environmental parameter blocks. In the source block,
three source parameters (i.e., source depth, range, and radial
speed) are grouped as st ¼ zs rs vs½ )0t. Using a constant veloc-
ity track model for the source, the source block in the state
equation is given by

st ¼ Fsst#1 þ Bsvs
t ; (4)
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where Dt is the time between successive measurements, vzs

and vas
are random variables representing the variation in

source depth and acceleration, respectively.28 The PF allows
for any type of PDF to be used for these two variables. How-
ever, small fluctuations around the mean speed for a source
moving with a constant velocity can be characterized
adequately by introducing an acceleration error term with a
zero-mean Gaussian PDF. Note that the posterior PDFs for
the geoacoustic and source parameter estimates are not Gaus-
sian even though the noise terms vzs

and vas
are assumed

Gaussian.
The initial density for the environment and source loca-

tion p(x0) can take into account any prior knowledge that is
available or instead p(x0|y0) can be used, by running a geoa-
coustic inversion employing a Monte Carlo sampler29 at
t¼ 0. As the PF can operate on non-Gaussian densities, any
PDF can be used. The effect of the prior will diminish rap-
idly with time as more and more data are used in the track.

A. State vector for weakly range-dependent
geoacoustic parameters

Gradual range dependence allows for a simple formula-
tion where the environmental parameters (water depth, SSP,
and sediment parameters) at step t are grouped into mt to
form the environmental block.6 The environmental compo-
nent of the state vector only consists of the environment at the
location of the moving source. This model assumes that the
rate of change of the environment is slow for each time step.
Hence, the environmental block has both Fm and Bm taken as
identity matrices in Eq. (2), giving mt ¼ Fmmt#1 þ Bmvm

t
¼ mt#1 þ vm

t . Here, vm is the state noise matrix for the envi-
ronmental parameters that takes into account the error in the
evolution model. This noise term enables the filter to continue
tracking the environment even when the evolution in environ-
mental parameters differs from the model evolution defined
by the state equation, such as when there is a rapid change in
the environment in one step.

The full state vector merges both the source and the
environmental parameters. Hence, the state equation is
obtained by merging the two blocks. Defining the state vec-
tor as x0t ¼ s0t m0t

( )
, the state equation, Eq. (2), for gradual

range dependence is obtained as
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Note that both Fs and Bs are time independent. Similarly, vs

and vm are stationary random variables with constant Q. In
Eq. (3), d(') is implemented using the adiabatic normal mode
model SNAPRD for the data analyses discussed in Sec. III.

B. State vector for strongly range-dependent
geoacoustic parameters

A complicated bathymetry requires a larger number of
interpolation points along the propagation path. Assume a
source moving away from a receiver array over a highly
range-dependent region and mt(rt) is the environment at
range rt under the moving source at time t. Environments at
all previous ranges are included in the state vector xt in addi-
tion to the environment at the current location and the source
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parameters. The acoustic signal yt measured by the receiver
array at rt depends on mt(rs) for all s* t. For a track that
runs T steps, the state vector and the measurement equations
assume the form

xt ¼ s0m0 r0ð Þ ' ' 'm0 rtð Þ ' ' 'm0 rTð Þ½ )0t; (7)

yt ¼ atd m0 r0ð Þ ' ' 'm0 rtð Þ½ )0t
! "

; (8)

where r0 represents the source range at the first time step of
the filter and the forward model d(') is selected as a wide-
angle parabolic equation code. Only the parameters in xt rep-
resenting the region up to the source range are used in the
measurement equation.

The source modeling in the state equation is as in Eq.
(5). The geoacoustic portion of the state equation is formu-
lated using

mt rkð Þ ¼
mt#1 rkð Þ þ vtemp k < t
mt#1 rk#1ð Þ þ vspat k ¼ t;

*
(9)

where vtemp and vspat are temporal and spatial state noise
terms, respectively. This definition enables the PF to take
into account both the spatial and temporal coherence in the
evolution of parameters in the state equation. The predict
and update stages of a single particle at t are shown in Fig. 1.
All the environmental parameters up to and including t in
the particle are predicted via Eq. (9). Then the acoustic field
across the array for the environment represented by this par-
ticle is computed via the forward model d('). Afterward, the
likelihood of this particle is computed using the acoustic
data. Once the likelihoods of all particles are computed, the
posterior PDF of the environmental parameters is computed
via importance sampling using the weight of each particle.
Finally, a new set of particles is created at the resampling
stage, where the number of particles in a region of the state
space will be proportional to the value of the posterior PDF
at that location. This completes the update stage of the PF
and the filter moves to the next step. Note that the unused
terms relating to ranges greater than rt in the state vector
[Eq. (7)] are excluded both from the state and measurement
equations, Eqs. (8) and (9).

Hence, the full state equation takes the form
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where the state parameters are separated as the source terms,
temporally updated environmental terms, and spatially
updated environmental terms. If the spatial variation is too
large, the last line in Eq. (10) can be modeled as [0 ''' 0 2 I
2I] as mt(rt)¼mt#1(rt#1)þDmt#1 with the spatial rate of
change in m estimated by Dmt#1¼mt#1(rt#1)#mt#1(rt#2).
This takes into account the rate of change of the parameter
assuming the ship speed is constant. Another way would be
to include the rates of change (@m/@r) as separate parame-
ters to be tracked.

As an example, assume water depth (m¼wd) is tracked
over the shelfbreak. At t¼ 0 the acoustic data y0 is inverted,
giving a source range of r0 with a water depth of wd0(r0). At
t¼ 1, the source moves to r1. Acoustic data y1 provide the
first time information about wd at r1 as well as extra infor-
mation about the already-estimated parameter wd at r0.
Therefore the PF with a state equation as given in Eq. (9)
can correct the previous estimate cwdt¼0 r0ð Þ at t¼ 1 giving
cwd1 r0ð Þ, and estimate wd1(r1) for the first time.

Following the first line in Eq. (9), wd1(r0) will be pre-
dicted to be its own previously estimated value wd0(r0) with
the addition of a temporal noise term. This noise term allows
the PF to correct the previous estimate at the same location
if it changed between the two measurements. It also allows
for a correction in the parameter at that range in case the
ship motion is not entirely in a radial direction. On the other
hand, there is no previous information on wd at r1 so the
value at the closest known value wd0(r0) will be assigned to
it with an additive spatial noise term that will allow the PF
to take into account the difference between the water depth
in the two locations.

Therefore, as the ship moves, there will be tþ 1 data
sets Yt¼ {y0, y1, …, yt} that are used to extract wd(r0), t for
wd(r1), etc., and only the data yt for wd(rt). As long as the
ship moves radially, the location of wd(r0) does not change
with time. This means the output of the PF at r0 is effectively
p(wd(r0)|Yt), a behavior similar to a particle smoother even
though we are running a PF.1

An efficient implementation of a strongly range-
dependent state model is splitting the total track length T
into smaller tracks 0: T1: T2 '''T. The PF is then run on each
track successively, where the posterior of the first PF at T1 is
used as the prior for the next PF. As a short section of the
total track is used in each PF run, the dimension of the state,
which contains the environmental parameters at each range,
remains small. The trade-off is that only the data in the
smaller track will be used to estimate the local parameters.

Finally, a mixed state formulation can be used, where
some parameters are modeled as explained earlier and others
as in Sec. II A. Hence, the mixed model will have weakly

FIG. 1. (Color online) Predict and update for a particle for strongly range-
dependent environment at time t.
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range-dependent m modeled as given in Eq. (6), whereas the
strongly range-dependent parameters will follow Eq. (10).
For the SW06 site, the bathymetry changes between 60 and
500 m. However, the R-reflector is much more stable, at
20–25 m below the seafloor, following closely the bathyme-
try line. Similarly, the sound speed, attenuation, and den-
sities of sediment layers are relatively stable.19 Thus, a
mixed state model appropriate for SW06 environment treats
the water depth as strongly range dependent and sediment
and SSP parameters as weakly range dependent.

C. Likelihood formulation

Previously, a PF likelihood formulation7 was developed
based on the classical geoacoustic inversion likelihood
obtained from the Bartlett power objective function.30 That
likelihood function used all the state parameters except ship
speed. Here, an improved likelihood function is adopted as
the ship speed parameter also is incorporated.

The classical Bartlett power objective function is
obtained from the assumption of additive complex Gaussian
noise wt(fj) for each frequency fj and step t, which is written
as wt fj

! "
¼ yt fj

! "
# at fj

! "
d xt; fj

! "
following Eq. (3), with a

corresponding Bartlett processor based, multifrequency like-
lihood function:

L xtð Þ ¼
Ynf

j¼1

1

p!j

! "nh
exp #

yt fj

! "
# at fj

! "
d xt; fj
! "++ ++2

!j

" #

; (11)

where nh and nf are the numbers of hydrophones and the
frequencies used in tracking, and !j is the noise variance at
frequency fj. The unknown source complex amplitude is esti-
mated by a maximum likelihood estimator. An analytic solu-
tion is obtained by solving @L=@at ¼ 0:

ât fj
! "
¼

d xt; fj
! "H

yt fj

! "

d xt; fj
! "++ ++2

: (12)

Inserting the source estimate back into Eq. (11), the cross
spectral density matrix (CSDM) is defined as the average
CSDM obtained from n data snapshots collected between
t# 1 and t:

Ct fj

! "
+ 1

n

Xn

i¼1

yt i; fj

! "
yt i; fj

! "H
: (13)

Then the likelihood is written as30,31

/j xtð Þ ¼ trCt fj
! "
#

d xt; fj

! "H
Ct fj
! "

d xt; fj
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d xt; fj
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L xtð Þ ¼
Ynf

j¼1

1
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! "nh
exp #

/j xtð Þ
!j

& '
; (15)

where tr is the trace operation, ! is the noise variance, and /j

is the Bartlett objective function. A frequency-coherent
Bartlett objective function can also be used as the PF will

help eliminate range aliasing accompanied by undersam-
pling in the frequency domain.32

The predicted ship speed at t# 1 can be used to obtain
an evolving objective function corrected for the ship motion,
instead of an ensemble average. Unlike a geoacoustic inver-
sion problem, the PF tracks readily the source speed so the
PF enables us to predict where the source is going to be at
each snapshot between t# 1 and t. Assuming n snapshots,
the range, geoacoustic parameters, and the outer product of
the data vector at the ith snapshot are given by

rt ið Þ ¼ rt#1 þ
i

n
Dttst#1

; (16)

xt ið Þ ¼ xt#1 þ
i

n
xt # xt#1ð Þ; (17)

Ct i; fj

! "
¼ yt i; fj

! "
yt i; fj

! "H
; (18)

with the corresponding Bartlett and likelihood functions:

/ij xtð Þ ¼ trCt i; fj

! "

#
d xt ið Þ; fj

! "H
Ct i; fj
! "

d xt ið Þ; fj

! "
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! "H

d xt ið Þ; fj

! " ; (19)

L xtð Þ ¼
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j¼1

1
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! "nh
exp #

/ij xtð Þ
!ij

& '
: (20)

Treating the unknown noise variance v as a nuisance param-
eter, we again can use a maximum likelihood estimator simi-
lar to the unknown source estimation performed earlier.
Solving @L=@! ¼ 0 results in31

!̂ij ¼
/ij xtð Þ

nh
: (21)

Inserting Eq. (21) into Eq. (20), the likelihood used in this
paper is obtained as

L xtð Þ ¼
Yn

i¼1

Ynf

j¼1

nh

ep/ij xtð Þ

 !nh

: (22)

D. Filter implementation

A SIR (Refs. 1 and 33) type PF is used in this work. The
PF is a sequential Monte Carlo method that is used to track
desired parameters and their underlying PDFs in a dynamic
non-linear, non-Gaussian system as they evolve both in
space and time.28,34

The SIR algorithm uses a set of np particles xl
t

# $np

l¼1
to

represent the PDF at each step t. The filter has predict and
update sections which the SIR algorithm uses first for pre-
dicting the next set of values of the environmental and
source parameters given their previous history and then
including the latest measurement to correct/update the pre-
dicted value and their PDFs. The initial set of particles
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xl
0

# $np

l¼1
are sampled from the prior p(x0). A single iteration

at step t of the SIR is summarized as follows.
(1) Predict: For a given set of particles from the pre-

vious step xl
t#1

# $np

l¼1
, create a new set fxl

tjt#1g
np

l¼1 by using

Eq. (2). Hence, predict where each particle should be at the
current step given its previous location.

(2) Update: Update the predictions in the previous step
using the acoustic data that just came in at the current step t.
Calculate the normalized weight Wl

t of each particle xl
tjt#1

from its likelihood function:

L xi
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L xl0

t t#1j

, - : (24)

The posterior PDF p(xt|xt#1, yt) now can be approximated
using importance sampling:

p xt xt#1; yt

%%! "
¼
Xnp

l0¼1

wl0

t d xt # xl0

t

, -
: (25)

(3) Resample: Create a new set of particles denoted by

fxl
tjtg

np

l¼1 by resampling fxl
tjt#1g

np

l¼1, effectively integrating

both the predictions from previous values and the informa-
tion coming from the new measurement. Resampling gener-
ates particles with identical weights from the parent set
according to the weights of the parent particles, with high
likelihood particles generating more particles than the low
likelihood ones.28

III. SHALLOW WATER 2006

The shelfbreak region in SW06 is shown in Fig. 2. The
isobath lines lie diagonally southwest–northeast with the
northwest of the shelf characterized by a flat region at 80 m
water depth. Track I is a 30 min long radial track starting
northeast of vertical line array VLA1 moving toward the
array, whereas Track II is perpendicular to the isobaths,
crossing over the shelfbreak. This section is composed of
two examples:

(1) Tracking in a relatively range-independent area (Track I)
northwest of the shelfbreak. Data were collected on
August 28, 2006 (JD240), 00:50–01:20 UTC.

(2) Tracking across the shelfbreak (Track II) with strong
range dependence. Data were collected on August 28,
2006 (JD240), 02:12–09:00 UTC.

Both data sets were recorded by the 16-element,
56.25 m aperture VLA1 moored at 39,1.4770N, 73,2.2560W
at a water depth of 79 m. The bottom hydrophone is 8.2 m
above the seafloor. Due to mechanical strum contamination
in the upper array elements, only the lower ten array ele-
ments are used in the analysis.

A. Track I data

As the environmental variation is small, the formulation
in Sec. II A is adopted as given in Eq. (6). The source loca-
tion, bathymetry, array parameters, and the seabed properties
are assumed unknown. The R/V Knorr approached the array
with a speed of 5 kn, simultaneously towing a source at
25–30 m depth and emitting a multitone comb at frequencies
303, 403, 503, 703, and 953 Hz. The last 10 min section of
Track I ranging from 3.5 to 1.5 km is used. The data from
this track also were inverted in Refs. 24 and 25.

The received time series was split into snapshots with
50% overlap and converted to the frequency domain using a
218-point fast Fourier transform. The data CSDMs were
computed as the outer products of seven snapshots represent-
ing a time epoch of 20 s spread across 50 m in range, hence
30 time steps for a track length of 10 min in the PF.

The environment model given in Fig. 3 is used for each
range. For this case, the sediment sound speed is taken as a
constant with Dcsed¼ 0. An EOF analysis of the SSP was
carried out using 16 conductivity, temperature, depth sensor
(CTD) measurements along the 80 m isobath track from
JD239 19:17 to JD243 20:16 UTC giving a mean profile to-
gether with the first three EOFs (accounting for 90% of the
variance in ocean SSP).25 The SSP is tracked by tracking the
EOF coefficients.

FIG. 2. (Color online) SW06 bathymetry and ship tracks. SW23–SW34 rep-
resent environmental moorings. Shark, VLA1, and VLA2 represent acoustic
arrays. Entire ship tracks are given in dashed lines. Start/end of the sections
used in tracking (solid) are marked with closed circles.

FIG. 3. (Color online) Geoacoustic model used in the inversions.
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Bartlett processor based likelihood functions are com-
puted from Eqs. (15) and (22) to be used in genetic algo-
rithms (GA) and the PF, respectively. First, data at each time
step are inverted independently by a global optimizer (using
a 30 000-point GA). Tracking can be achieved using a small
number of particles.7 Obtaining a smooth posterior PDF
requires more particles, but still less than for GA. Hence, the
source and receiver VLA parameters, the SSP, and the geoa-
coustic parameters are tracked using a 5000-point SIR PF.
The root-mean-square (rms) error decreases with increased
number of particles, albeit with decreasing benefit (see Fig. 4
in Ref. 6) and the np needed to obtain accurate PDFs is a func-
tion of the number of parameters, the specifics of the state
space formulation, and the importance sampling density.

True source depth, range, and speed values are obtained
using global positioning system (GPS) and depth sensor data.
z1 is the distance between the deepest element in the array and
the seafloor. The results are given in Fig. 4. For the GA runs,

the source range is assumed to be known within a 500 m limit
around its true value at any t. The PF does not use such prior
information and has a range limit of 0–5000 m for the moving
source. The rms errors between the ground truth values and
the inversion results for rs, vs, and zs for PF (GA) are 32.3
(68.4) m, 0.09 (0.8) m/s, 1.06 (1.31) m, respectively. Note
that the source depth fluctuates between 27 and 30 m depth.
Even though a constant-depth source evolution model is used,
the PF still tracks the source depth fluctuations due to the state
noise that compensates for the evolution model errors. As suc-
cessive GA inversions do not take advantage of the previous
steps, the GA results have a larger variation than the PF
results, particularly in cbot, hsed, and the SSP EOFs.

The evolving marginal posterior PDFs for the source,
geoacoustic parameters, and SSP EOFs are all given in
Fig. 5. The water depth slowly decreases from 81 to 78 m.
The sediment sound speed stays between 1580 and 1605 m/s,
sediment thickness 17–22 m, and the bottom sound speed

FIG. 4. (Color online) Track I results for the source (top) and geoacoustic parameters using GA (þ) and PF (solid), together with the true trajectories
(dashed).
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1690–1750 m/s, respectively, along the track. Even though
detailed range-dependent ground truth measurements do not
exist, the results compare favorably with previous studies
that inverted data from the same area with an average csed of
1599 (Ref. 24) (1604—Ref. 25) m/s, hsed of 21.1 (24) m, and
cbot of 1740 (1739) m/s. Sediment thickness is consistent
with other studies where the R-reflector is found to be
around 20 m below the seafloor.17–20 Previous studies14,22,23

also reported similar sediment sound speed results.

B. Track II data

In Track II, the source starts close to VLA1 and moves
away from the receiver at a speed of 5 kn across the shelf-
break. The source is towed at a depth of 28–32 m, emitting
four continuous wave (CW) tonals (53, 103, 203, and

253 Hz). The PF track covers ranges from 5 to 18 km
(80 min) with water depth changing from 82 to 130 m. The
PF uses a mixed state formulation as explained in Sec. II B
with a strongly range-dependent bathymetry and a sediment
layer and water column that change slowly compared to the
PF steps, mostly following the quickly changing bathymetry.

As mentioned in Sec. II B, the track is split into smaller
10 min intervals with successive PF runs in each section to
reduce the maximum size of state dimension. Time between
successive filter steps is taken as 1 min. This selection corre-
sponds to a bathymetry point at every -150 m in range, line-
arly interpolated in-between, and sediment parameters that
follow the bathymetry with a spatial update at each 1.5 km.
Similarly, the sound speed EOF coefficients are updated at
every 1.5 km. These spatial estimates also are updated con-
tinuously as new data become available every minute as

FIG. 5. (Color online) Track I results as evolving marginal PDFs for source location, sediment thickness, and SSP EOF parameters given as a normalized his-
tograms of particles.
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shown in Fig. 1. The bottom layer sound speed is assumed
constant with a cbot¼ 1740 m/s and is not tracked.

The ability of PF to handle non-stationary dynamic sys-
tems is used here with the state noise variance for the water
depth increasing from Qt¼ (1 m)2 to (5 m)2 as the source
travels toward the shelfbreak. The number of particles is
increased gradually from np¼ 800 at 5 km to 2000 particles
at the end the track.

The environmental model given in Fig. 3 is used at each
range. The data are analyzed as in the previous section. The
PF is started at a range of 5 km at 02:37 UTC. The data at
this location are inverted using a GA and a broad multivari-
ate Gaussian PDF with GA results as the mean is used as the
prior to initialize the PF. The inversion at 5 km gave a result
similar to Ref. 24 with a decreasing sediment sound speed
with depth for the top layer (Dcsed< 0). The water column
SSP at each range is estimated from estimating the EOF
coefficients as with Track I.

The time evolving maximum a posteriori (MAP) solu-
tion for each parameter is given in Fig. 6. Source parameters
are tracked closely. Water depth is well determined too.

Sediment thickness stays at 17–18 m for the first 30 min and
then fluctuates between 10 and 30 m. The seismic survey
images for this shelfbreak19,20 show that the R-reflector stays
mostly less than 25 m below the seafloor. The two-
dimensional R-horizon over the region that includes Track I
and the first half of Track II can be found in Fig. 1(b) of Ref.
20 as a function of two-way travel time. R-reflector depth
values obtained from that plot are in general agreement with
the results shown here.

Sound speed at the top of the sediment remains consist-
ent through the track between 1610 and 1645 m/s with an av-
erage of 1625 at the beginning of the track gradually moving
to 1640 m/s at the end. Unlike the other sediment properties
Dcsed shows a distinct range variation. It starts at #30 m/s,
corresponding to 1590 m/s at the bottom of the sediment. For
20–40 min the sound speed at the bottom of the sediment
layer remains at average 1620 m/s# 50 m/s ¼ 1570 m/s. Af-
ter 40 min the value evolves to a new average of 1615 m/s,
making a vertically more uniform sound speed profile in the
sediment. Note that similar shelfbreak results are reported in
the literature.19 The negative gradient in the sediment layer

FIG. 6. (Color online) Track II results of source (top) and geoacoustic parameters for PF(þ) together with the true trajectories (solid).
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corresponds to the low-speed sediment layer between the
erose boundary and the R-reflector.19

The range-depth MAP solution for sediment sound
speed is shown in Fig. 7, where sound speed for each range
and depth along the track is plotted. The PF water depth esti-
mates follow closely the true bathymetry. The marginal dis-
tributions for individual parameters are similar to the results
for Track I shown in Fig. 5 with a cloud of particles around
the MAP values given in Fig. 6.

As discussed earlier, the PF tracks the SSP by tracking
the EOF coefficients. In Fig. 8(a), the mean profile used in
the EOF analysis, Shark, SW30, and the cloud of particles at
10 min all show similar profiles. The uncertainties in the
EOF coefficients at 10 min into the track also are projected
into uncertainties in the sound speed as a function of depth
as shown in Fig. 8(b).

As the range increases, the estimates fluctuate more,
resulting in larger filter divergence probability, likely due to
the water column SSP variability. When range increases, the
SSP EOF coefficient estimates show greater variability.
Although appropriate early in the track, the mean profile and
EOFs used are less characteristic of the deeper water SSP
later in the track. An extension of this analysis could aug-
ment the existing approach with a deeper water mean profile
and set of EOFs with coefficients tracked by the PF.

IV. DISCUSSION AND CONCLUSIONS

The capabilities of sequential Bayesian techniques to
track source and environmental parameters in spatially and
temporally rapidly varying environments such as a shelf-
break region were discussed. Two state models—one for
weak range dependence and one for rapid variations—were
formulated within the PF. The gradually varying region
northwest of the New Jersey shelfbreak was tracked and the
results compared favorably with previous Shallow Water
2006 (SW06) inversion results. The SW06 shelfbreak also
was tracked over 80–130 m depth.

This paper assumes a single sediment layer and tracks
the sound speed in this layer using only one to two parame-

ters. The sediment actually consists of a top sand layer, or
has multiple layers.19,20 It would be possible to use a multi-
ple model PF (Refs. 1 and 8) to track a varying number of
layers. However, this would increase the complexity and the
state dimension further.

An important issue with geoacoustic inversion at the
shelfbreak is the strong variations in the water column SSP.

FIG. 8. (Color online) Track II results at 10 min into the track: (a) Particle
cloud representing the spread of all particles, along with the mean SSP profile
obtained from the CTD analysis (open circles), SSP measurements at Shark
(asterisks), and SW30 (open squares) at 10 min (see Fig. 2). (b) Posterior SSP
PDF computed by projecting the tracked EOF coefficients represented by the
PF particles and weights xi

10;w
i
10

# $np

l¼1
into sound speed as a function of

depth, and the spread of measured SSP profiles from all 11 mooring locations
in Fig. 2 during the 80 min track (shown as the mooring measurements).

FIG. 7. Track II results. The geoacoustic environment obtained from the
MAP estimate sediment sound speed in range and depth. True bathymetry
along the ship track given by crosses.
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Large deviations from the underlying model can reduce the
geoacoustic inversion/tracking capabilities due to reduced
sensitivity of the likelihood function to subbottom parame-
ters. This error can be reduced if the SSP component of the
environment model is expanded to accommodate larger spa-
tial variations, however, this will lead to additional computa-
tional complexity and increased state dimension.

Strongly range dependent tracks require a large state
vector. However, just like other Monte Carlo techniques,
PFs are affected by the curse of dimensionality.35 An alter-
native would be to employ Kalman filtering, in particular an
ensemble Kalman filter (EnKF).36 The EnKF is a semi-
analytic technique designed to handle a large state dimen-
sion. The trade-off for employing an EnKF is that all the
PDFs must be reduced to Gaussian.

Previous geoacoustic PF studies6,7 used the SIR PF
algorithm without experiencing sample impoverishment.1,28

Sample impoverishment corresponds to a particle collapse
where only one particle has a high likelihood, reducing the
posterior PDF to a delta function. Our studies show that
impoverishment can be a problem when the strongly range-
dependent state formulation is used with a SIR type PF. This
is caused by the combination of a large state space and inad-
equate number of particles. An alternative is to improve
sample diversity by using a higher order PF such as a regu-
larized PF (Refs. 1 and 37) or a Markov chain Monte Carlo
PF (Ref. 8) at a cost of increased algorithm complexity.

Another issue is filter divergence.6 Our simulations have
shown that divergence is a problem if an insufficient number
of particles is used, the true environment evolution is signifi-
cantly different than the model evolution given by the state
equation, the number of environmental parameters is too
large, or improper selections are made for state and measure-
ment noise properties.
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