
IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 36, NO. 1, JANUARY 2011 73

Peer-Reviewed Technical Communication

An Overview of Sequential Bayesian Filtering in Ocean Acoustics
Caglar Yardim, Member, IEEE, Zoi-Heleni Michalopoulou, Senior Member, IEEE, and Peter Gerstoft

Abstract�—Sequential ltering provides a suitable framework
for estimating and updating the unknown parameters of a system
as data become available. The foundations of sequential Bayesian
ltering with emphasis on practical issues are rst reviewed
covering both Kalman and particle lter approaches. Filtering
is demonstrated to be a powerful estimation tool, employing
prediction from previous estimates and updates stemming from
physical and statistical models that relate acoustic measurements
to the unknown parameters. Ocean acoustic applications are then
reviewed focusing on source tracking, estimation of environmental
parameters evolving in time or space, and frequency tracking.
Spatial arrival time tracking is illustrated with 2006 Shallow
Water Experiment data.

Index Terms�—Acoustic signal processing, acoustic tracking, en-
semble Kalman lter, extended Kalman lter (EKF), ocean acous-
tics, particle lter (PF), sequential importance resampling (SIR),
sequential Monte Carlo methods, unscented Kalman lter (UKF).

I. INTRODUCTION

A common feature of inverse problems in ocean acoustics
is that underlying physical parameters are estimated from

measured acoustic data. Examples include source localization
[1]�–[4], geoacoustic inversion [5]�–[9], and marine mammal
signal processing [10]. In a Bayesian framework, prior knowl-
edge and acoustic models are combined with a likelihood
function to provide posterior probability density functions
(pdfs) of parameters of interest. This formulation was rst pro-
posed in source localization [11], [12]. Geoacoustic inversion
was subsequently approached in a similar fashion, estimating,
in addition to source location, ocean environment parame-
ters and their uncertainties [13]�–[15]. Often, such parameters
evolve in time or space, with acoustic data arriving online at
consecutive steps. Information on parameter value evolution
and uncertainty at preceding steps can be invaluable for the
determination of future estimates but is frequently ignored.
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Depending on the data and the problem, Bayesian approaches
can be used to address inversion or tracking problems (a brief
comparison is given in Appendix I). Sequential Bayesian
ltering, tying together information on parameter evolution, a
function relating acoustic eld measurements to the unknown
quantities, and a statistical description of the random perturba-
tions in the eld measurements, offers a suitable framework for
the solution of such problems.
When functions relating 1) parameters between consecu-

tive steps and 2) data and parameters are linear and noise
is additive and Gaussian, the Kalman lter (KF) is the op-
timal estimator in terms of minimizing mean squared error
(MSE). The KF propagates expectations and covariances of
the unknown parameters from step to step, fully characterizing
posterior pdfs. Some early examples used in source tracking
in the ocean with KFs are given in [16] and [17]. Nonlinear
functions require variations or generalization of the standard
lter. Implementation in ocean acoustic problems of a straight-
forward extension, the extended Kalman lter (EKF), which
linearizes mildly nonlinear functions, has been pioneered in a
series of papers [18]�–[27]. More recently, unscented Kalman
lters (UKFs) have achieved better root-mean-square (RMS)
error and convergence performance than EKFs by selecting
deterministic points called sigma points to represent parameter
pdfs [28], [29]. For large parameter vectors, the ensemble KF
(EnKF) is efcient [30]. Highly nonlinear systems and complex
noise processes require numerical methods for the computation
of posterior pdfs. These approaches are termed particle lters
(PFs) and have been encountered in ocean acoustic applica-
tions in [29] and [31]�–[33].
In this tutorial paper, we briey review the foundations of se-

quential lters, starting from the well-known KF and its variants
and proceedingwith PFs. These techniques formulate sequential
estimation using physical relations between unknown param-
eters and measurements embedded in noise environments of
a diverse nature. We examine and compare lters and present
examples, illustrating practical challenges and solutions.Amore
detailed presentation of these methods, including theoretical
derivations, can be found in many excellent signal processing
papers [34]�–[39] and texts on sequential Monte Carlo methods
[40]�–[43].
Once basic principles and methods of sequential ltering

are discussed, the focus is shifted to an overview of sequential
ltering implemented for parameter estimation of dynamical
systems in ocean acoustics. We present applications in target
tracking, wave estimation, geoacoustic inversion, frequency,
and arrival time tracking.
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The paper is organized as follows. First, a general back-
ground about the state-space formulation for the estimation of
evolving parameters in dynamical systems is given in Section II
together with the basics of Bayesian ltering. The KF frame-
work is introduced in Section III together with its extensions
such as the EKF, the UKF, and the EnKFs. The PFs are pre-
sented in Section IV. The lter equations are derived starting
from the basic importance sampling (IS) concepts, moving to
sequential IS, nally deriving the commonly used PF, often re-
ferred to as sequential importance resampling (SIR). Advanced
PFs are briey mentioned in Section IV and are presented
more extensively in Appendix II. Practical challenges arising
in sequential Bayesian ltering are discussed in Section V and
ocean acoustic applications are discussed in Section VI. Al-
though Section VI is dedicated to solving estimation problems
in the ocean, specic issues in ocean acoustics as they relate to
ltering are discussed throughout the paper.

II. BACKGROUND

A. State-Space Model

In dynamical systems, a major goal is to estimate parameters
that evolve sequentially with time or space. As data become
available, the unknown parameters forming a state vector are
estimated sequentially using collective data history and prior
knowledge on evolution of the state. Tracking in time or space
presents us with problems that can be readily formalized in the
following framework.
Let be the measurement vector (for example, pressure

along a hydrophone array in ocean acoustics) at step and let
represent the state vector (for example, location of a source

emitting signal ), where . The size of the state
vector is . Our goal is to sequentially estimate as data mea-
surements become available.
Two equations dene a state-space model

(1)
(2)

The state equation (1) describes the evolution or transition of
with and assumes that states follow a rst-order Markov

process. Function is a known function relating the state vector
at step to that at step . Variable is the process or state
noise and has a known pdf .
The measurement equation (or observation equation) (2) re-

lates measurements to state vector through a known func-
tion . Variable is themeasurement noise with a pdf .
Noise and can be additive, multiplicative, or incorpo-

rated in the state and measurement through complex functions
of and , respectively. In addition to the state vector and
data , the functions and , and noise components and

can also change with .
In most ocean acoustic applications, the noise terms are ad-

ditive and functions and are independent of . Hence, (1)
and (2) are simplied to

(3)

Fig. 1. Sequential Bayesian ltering. From state , state is rst pre-
dicted via the state (1), providing . As data become available, mea-
surement (2) is employed to update state , providing .

(4)

In a typical ocean acoustic example, function represents
some form of a forward or acoustic propagation model and
vector consists of complex-valued acoustic data measure-
ments across a hydrophone array.
A sketch of sequential localization of a moving target as de-

scribed by (1) and (2) is shown in Fig. 1 with circles representing
target location at step . Term is the estimate of the
target location and velocity at using data obtained up to
and including step . By exploiting knowledge of target po-
sition and trajectory , a lter rst predicts , the
target location and velocity at step . The prediction is then up-
dated when new data become available.

B. Bayesian Filtering

Examining the problem from a Bayesian standpoint, we are
interested in deriving the posterior pdf for rather than simple
point estimates. The initial pdf of the state vector is as-
sumed to be known; it can be assumed in a common form such
as uniform or Gaussian, based on ground-truth information, or
estimated using numerical techniques such as a Markov chain
Monte Carlo (MCMC) sampler on the initial data [14], [44].
Let be the set of data observed at the
rst steps and let be the sequence
of unknown state vectors. It is desirable to estimate the state
vector and its uncertainty at all steps via pdf . Due to
the computational cost, the problem is simplied by recursively
estimating the marginal pdf from ,
rather than estimating joint pdf .
With available, we can predict

through the transition pdf . The transition density
is determined by the state (1) and noise pdf . Due to the
rst-order Markov chain assumption of , does
not depend on data . Density can be written
as

(5)

When a new measurement becomes available, we can up-
date the state using the likelihood of the state vector

(6)
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and the prediction pdf of (5). The new estimate of
the state vector at is calculated via Bayes theorem

(7)

The denominator in (7) is the normalizing constant of
, termed the evidence, and may be expressed as

(8)

Density contains all information necessary for the
computation of marginal pdfs of elements of , moments, and
modes. Optimal sequential estimators [45], such as the min-
imum mean squared error (MMSE) estimator, which calculates
the expected value of the state after data have been
observed, and the maximum a posteriori (MAP) estimator that
provides the likely value of the state also after data measure-
ment, can be readily implemented.

III. KALMAN FILTERS
The discussion of Section II-A raises the question of how

to track optimally an evolving density . Kalman
[46] showed that, if a Gaussian distribution can represent this
evolving pdf, the optimum Bayesian estimator (one that attains
the Bayesian Cramér�–Rao lower bound (CRLB) [47] with
the MMSE) exists and can be computed analytically. This
optimum sequential estimator has been termed the KF. Having
a Gaussian posterior at each step implies the following.
1) State and measurement noise must be additive. Noise vari-
ables and , and the prior must be Gaussian.

2) and are known linear functions of the state and mea-
surement vectors.

This reduces the system given in (1) and (2) to

(9)
(10)

where and replace and as matrices representing
known linear functions of the state vector . State and mea-
surement noise covariances and are

(11)

Even though the parameters given here are real, it is straight-
forward to extend these to complex cases. The requirements
given above are fairly restrictive, however the resulting lter
is straightforward to implement. Because a Gaussian pdf is
uniquely and completely dened by its rst two moments,
mean and covariance, the KF needs only recomputing mean
and covariance at step , using , , and the new
measurement .
This is a two-step procedure, repeated at each .
�• Predict: This stage predicts the current value of the state
given its previous value using (9). This is represented by

and .

TABLE I
KALMAN FILTER

�• Update: This stage updates or corrects the values predicted
in the previous stage given the information obtained from
measurement . This provides the posterior at repre-
sented by and .

The resulting set of equations for the linear, Gaussian KF is
given in Table I [46], where represents the Kalman gain.

A. Extended Kalman Filter

Although elegant and easy to implement, the KF has strict lin-
earity and Gaussian pdf requirements that make it unsuitable for
a large class of systems that cannot be characterized by (9) and
(10). An obvious way to extend the KF framework is linearizing
functions and in (1) and (2) around the current state value.
When coupled with a Gaussian prior and Gaussian noise
terms, the posterior will remain Gaussian. Thus, only
mean and covariance need to be tracked via slightly modied
KF equations.
The new lter, the EKF [45], [48], linearizes locally the state

and measurement equations using the rst terms in the Taylor
series expansions. For the EKF to perform well, nonlinearities
should be small and the underlying densities should be close to
Gaussian. However, even under these circumstances, because
of the implied approximations, the EKF cannot claim the opti-
mality enjoyed by the KF for linear-Gaussian systems. For large
nonlinearities, the mean and covariances will not be mapped
correctly as shown in the example of Section III-B. Neverthe-
less, the EKF has been implemented successfully in numerous
applications in areas such as radar and sonar target tracking
among others. The EKF algorithm is summarized in Table II
[45], [48].

B. Unscented Kalman Filter

The simplicity of the Kalman framework arises from its
Gaussian nature. The lter only needs to carry the mean and
covariance to the next step. A nonlinear system will disrupt the
ow of evolving Gaussian pdfs, because a Gaussian random
variable passing through a nonlinear transformation will lose
its Gaussian form and solely mean and covariance will not be
adequate in fully dening this density. This realization leads to
the development of KFs that use sigma points coupled with un-
scented transforms (UTs) [49]. The UT enables the propagation
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TABLE II
EXTENDED KALMAN FILTER

of the mean and covariance through nonlinear functions. KFs
that make use of the UT are called UKF [50].
While the EKF enforces linearity through analytic lineariza-

tion, the UKF enforces a Gaussian distribution while keeping
the functional nonlinearity. This means that the lter assumes
that any nonlinear transformation of a Gaussian input pdf will
always be another Gaussian pdf. Since, under this assumption,
a Gaussian input results in a Gaussian output, the system is
effectively linearized in a statistical rather than analytical sense.
This still enables the lter to carry all necessary information by
propagating only themean and covariance as required by theKF.
In the UT, a number of weighted sigma points are carefully

chosen so that they capture the mean and covariance of the state
variable (the sigma points depend on the matrix square root of
covariance ; see Table III). As the random variable undergoes
a nonlinear transformation, these points are propagated through
this nonlinear function and are used to reconstruct the newmean
and covariance using the UT weights [49]. Hence, unlike with
the EKF, mean and covariance to at least second order of the
nonlinearity (third if the initial pdf is Gaussian) can be computed
accurately.
The UKF uses a recursive formulation where sigma

points and their corresponding weights are gen-
erated. These are used with the UT to perform the mean
and covariance calculations required in the Kalman frame-
work. The UT weights are computed using three independent
parameters: prior knowledge parameter , scaling parameter ,
and parameter , which controls the spread of the sigma points
around the mean. The second scaling parameter can be com-
puted from these parameters: . The algo-
rithm is presented in Table III. Details about the derivation can
be found in [49].
Although UKFs are derivative-free, an improvement over

EKFs, and efcient relative to more advanced techniques to be
discussed later, they have two disadvantages as demonstrated
in the example below.

TABLE III
UNSCENTED KALMAN FILTER. ( IS THE th COLUMN OF THE MATRIX

SQUARE ROOT [49], [50])

1) Example: EKF Versus UKF Versus PF: Assume that a
Gaussian random variable with goes
through a nonlinear transformation with

A cloud of 10 000 particles drawn from is plotted in
Fig. 2 together with the mean and covariance ellipse. When
these particles are propagated through the nonlinear equation,
the distribution becomes non-Gaussian as shown.
The analytical linearization in EKF uses the Jacobian

This will result in a Gaussian density with a mean and covari-
ance of and represented by and
a dashed ellipsoid in Fig. 2. Both mean and covariance have
high errors in their estimates.



YARDIM et al.: AN OVERVIEW OF SEQUENTIAL BAYESIAN FILTERING IN OCEAN ACOUSTICS 77

Fig. 2. Mean and covariance propagation of the EKF and UKF in a nonlinear,
non-Gaussian system with . True mean , means from analytical

, and statistical linearizations are given with covariance estimates in
terms of ellipses for the true covariance and the estimates from the Jacobian
(EKF) and the UT (UKF).

Mean and covariance are also obtained by using the sigma
point generation and a successive UT given in Table III. The
values obtained by UT are very close to their true values with
almost identical ellipses. Fig. 2 highlights two main drawbacks
of KFs in nonlinear, non-Gaussian problems.
The rst is the effect of nonlinearity on the accurate estima-

tion of mean and covariance. This example is �“too nonlinear�”
for the EKF but not for the UKF for obtaining good mean and
covariance estimates. However, there are many cases where the
nonlinearity may be severe and may require an even higher
order accuracy than the UKF can provide to correctly capture
mean and covariance.
The other is that the densities may be too non-Gaussian to be

represented using the rst two moments, even if those can be
calculated correctly. The non-Gaussian pdf cannot be suf-
ciently characterized with mean and covariance alone in this
example. In such cases, the only way to accurately propagate
complex, non-Gaussian pdfs is to store the cloud of particles
that represent the pdf as shown in Fig. 2. This forms the basic
philosophy of particle ltering.
The UKF is the rst and most widely used sigma-point KF.

It is possible to select different sigma points and UT to match
more than the rst two moments. Moreover, less complicated
and more stable versions of UKF with reduced computational
cost have also been proposed [51].

C. Ensemble Kalman Filter
The EnKF [52] is a Kalman variant for systems where the

state is composed of a large number of variables. This type of
problem is encountered frequently in geophysical and hydrolog-
ical elds, ocean and atmospheric modeling, and data analysis
[53]. As discussed in [54] and Section V-E, PFs are not appro-
priate for problems of high dimensionality.
The EnKF is a KF that includes MC sampling. It is possible

to argue that the EnKF is a hybrid between a KF and a PF (see
Section IV for details on PFs). The EnKF assumes that the large
number of state variables and all pdfs are Gaussian, hence the
problem is based on a Kalman framework. However, working
with a large covariance matrix in a high-dimensional system
is computationally inefcient for the classical KF. This draw-
back is addressed by using an ensemble of points, similar to the
particle set in a PF, to replace the covariance matrix with the

ensemble covariance matrix using MC sampling. For detailed
theory and practical implementation, see [55].

IV. PARTICLE FILTERS
Sometimes, the dynamics of a problem cannot be adequately

captured by the Kalman family of lters, because of the non-
linear structure of state and measurement equations and the na-
ture of the noise.WhenKFs and their extensions fail, the estima-
tion of via ltering posterior pdfs may be possible
using numerical sequential MC techniques, commonly referred
to as PFs.
PFs track the posterior pdf using a cloud of par-

ticles that evolve with step . All
other estimates can be calculated from , including

and solutions, the variance in the estimates, and
the marginal posterior pdf of the th state variable

(12)

A. Importance Sampling
Before presenting the details of the PF, we summarize how IS

and MC integration work. IS is a method employed to compute
expectations with respect to one density using random samples
drawn from another. Assume that we want to compute an inte-
gral . One way of computing is using samplers
[56] after assuming is a random variable, dening

, and rewriting in the form of an expectation

(13)

where is some function of with pdf . This inte-
gral can be computed numerically via MC integration [56], by
drawing independent and identically distributed samples
from the sampling or proposal density

(14)

This method is commonly referred to as the �“perfect MC�”
[40]. This is an unbiased integral estimator, which converges to
the true value with diminishing error variance as the number of
particles drawn from increases. Another important prop-
erty of perfect MC is that the convergence is independent of the
state dimension, a critical property that IS and many other sam-
pling schemes lack.
In many cases, it is too costly or not possible to sample from
. Therefore, selection of an appropriate sampling pdf is the

critical part in IS. It is customary to use a pdf easy to sample
from, such as a Gaussian or uniform. However, in Bayesian
tracking and inversion, the integral is already in the form of (13),
where is a complex pdf, e.g., (12). It is still possible to use
a simple function as the sampling density by rewriting (13)
and using MC integration to get

(15)



78 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 36, NO. 1, JANUARY 2011

The estimate is

(16)

with (17)

where are the importance weights. The variance is [56]

(18)

The variance in the estimate is minimum if is proportional
to and increases as deviates from the latter. Using
IS requires the selection of a balanced : as easy to sample
from as possible without sacricing the accuracy of the method.

B. Sequential Importance Sampling

Bayesian ltering requires performing successive IS runs at
each . The output of each IS run is used as the prior for the next
one. This process is referred to as sequential importance sam-
pling (SIS). Recalling that and

from Section II-A, it is possible to obtain the
ltering pdf from the full posterior density

(19)

(20)

which is in the same form as (13). Assuming a sampling density
and performing IS, we obtain

(21)

(22)

However, to perform IS sequentially at step , we utilize the IS
results of the previous step , that is, we use the cloud of
particles and associated weights . This is done
by selecting

(23)

Expanding the full posterior pdf (only the results shown here;
for additional details see [41]), we can write

(24)

where the weight of the th particle at step is computed by
inserting (23) and (24) into (22) and ignoring the constant term

(25)

TABLE IV
SIR PARTICLE FILTER

(26)

A key issue in PF design is choosing a good proposal density.
A simple choice is , reducing
(26) to

(27)

Note that, while the full posterior pdf is used in
deriving IS (19) and (27), only the likelihood at step
is employed in updating weights . The implementation of

PF is only concerned with the marginal pdf , as seen
in Table IV.

C. Sequential Importance Resampling

Although SIS provides a complete framework for performing
sequential Bayesian estimation, its implementation quickly runs
into the problem of sampling degeneracy. After a few iterations
of successive SIS, the process leads to a cloud containing few
particles with large weights and numerous particles with negli-
gible weights. In the extreme case, there will be only one particle
left with a large . This loss of sample diversity results in poor
lter performance.
To counter degeneracy, a second sampling stage is proposed

right after the update stage [57]. The purpose of this resampling
stage [58] is to create more high-weight particles from the orig-
inal set of particles . The modied lter is called SIR
[57], [59], [60] and is the most popular PF implementation.
Resampling is easily performed at the end of each step .

Alternatively, resampling is implemented when the effective
number of particles needed to maintain diversity drops
below a threshold [61]. The effective number of particles can
be estimated as

(28)
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Fig. 3. The need for resampling. (a) Particles before and after re-
sampling. (b) Particles before resampling and their weights for

.

The resampling process takes the posterior ltering pdf
represented by the particle set of SIS at

the end of each step and redistributes samples so that all weights
of the new particles are the same, that is, .
This results in a larger number of particles in the high-likeli-
hood regions, preventing degeneracy. It is best to examine the
degeneracy and resampling via an example.
1) Example�—Need for Resampling: Resampling is demon-

strated for a SIR PF tracking a target at step in Figs. 3
and 4. The lter has 200 particles for state variable
representing target location. Target location is assumed to be
between 0 and 35 with true value . The state equa-
tion is: , where is zero mean
Gaussian noise. (The example is discussed in more detail in
Section IV-E1.)
Fig. 3(a) shows 200 particles that predict . During

the update stage, weights for those particles are computed
employing a suitable likelihood function. Only four particles
have signicant weights and provide substantial information
on the posterior pdf; see Fig. 3(b). Resampling is needed for
the generation of more particles around , so that SIS
at step will not be affected by degeneracy.
Fig. 4 illustrates the implementation of the resampling stage.

Resampling creates a new discrete density by rst computing
the cumulative distribution function (cdf) of from

; see Fig. 4(a). Using a sample-drawing technique
that randomly picks samples from a uniform density, new
particles are generated via the inverse cdf. Regions with large
weights are replicated multiple times in the new cloud and par-
ticles with small weights are less likely to be selected. The
new particles after resampling are much more focused than
the original set of particles; see Fig. 3(a). The histogram of
resampled particles in Fig. 4(b) provides the new estimate of

via the likelihood function. Almost 90% of the parti-
cles are now in the high-likelihood region.

Fig. 4. (a) Resampling via the cdf. (b) Histogram of particles after resampling
showing large number of newly created particles at high-likelihood regions.

2) SIR Algorithm: We can merge the SIS and resampling to
create the SIR algorithm outlined as follows.

Predict: This stage is a SIS prediction that starts with
the cloud of equal weigh particles from the previous step

, and creates a new set of predictions for the current
step by sampling from the transitional density

. This is done by propagating each through
the state (1) together with a random realization from . This
step corresponds to the implementation of (5); see Table IV.
Update: Note that for all because of
resampling at step . Having measured , the weight of
each particle is reevaluated and normalized via (27)

(29)

where is the likelihood function dened by the
measurement (2), which includes statistical behavior of errors
in the data. The weights of (29) are used in (21) for expressing
the posterior pdf .
Resample: New particles are drawn
from a discrete approximation to density obtained at
the update stage. This is achieved through the calculation of
the cdf of as explained above. Different types of resampling
are presented in [39] and [62]. All particle weights are now
equal to .

A single iteration of a ten-particle SIR algorithm is illustrated
in Fig. 5. A cylinder with height proportional to the likelihood
represents each particle. As usual, the rst stage is prediction,
where new particles are created from the particles representing
the pdf of the previous step, , the state noise at
step , and (1). The likelihood is calculated for each of these new
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Fig. 5. Particle ow for a SIR algorithm with 10 particles.

particles using new data . Resampling follows this update
stage, where a new set of particles is formed from the previous
one. The larger the weight of a particle, the more new particles
it generates during resampling.
Resampling sometimes adds signicantly to the compu-

tational requirements of a PF. In this case, quasi-random
resampling methods can be used to decrease computational
cost as an alternative to the method explained in Fig. 4. The
commonly used efcient resampling algorithm is systematic
resampling [40]. In this approach, only one random sample
is picked from a uniform distribution and the cdf is
sliced with equidistant points with spacing starting
from the random sample. Original particles are then converted
to new particles using the inverse cdf as shown on the right
in Fig. 5. Cylinders representing each particle are stacked to
obtain the cdf. The new particles are selected by randomly
choosing and equally sampling upwards. Further discussion
about resampling algorithms is given in Section V-F.
To implement the ltering process for , an initial

probability density for state vector has to be selected. Prior
can be obtained via a sampler. Alternatively, a uniform

or Gaussian pdf can be used. The latter requires more steps
before stable estimates are obtained. One can sample from

to generate the initial cloud . Particles in this
cloud will be propagated through the predict, update, resample
process for the estimation of the unknown parameters at the
subsequent step.
The process at step is summarized in Table IV.

D. Advanced Particle Filters

Although SIR provides robust tracking performance in many
nonlinear/non-Gaussian tracking problems, it has two basic
aws.

1) Sample impoverishment: Since the resampling stage cre-
ates many exact replicas of high-likelihood particles, it is
possible to lose sample diversity as the lter progresses.

2) Sensitivity to outliers: The popularity of the SIR lter
lies in the simplicity of the selection of transition prior

as the sampling density. This is, at the same
time, a weakness, because the prediction at step does
not use the newly available information in measurement
, performing a �“blind�” prediction. The lter becomes

vulnerable to outliers, especially when the likelihood is
peaked relative to the prior [41].

To address these problems, advanced PF variants have been de-
veloped. [35], [37], [41]. Common ones are briey discussed in
Appendix II in terms of the specic concern they address, their
main advantages, and possible drawbacks. Comparative infor-
mation is provided in Table V, summarizing salient features and
differences.

E. Sequential Model Selection

Inversion in ocean acoustics typically assumes a known
number of parameters that need to be estimated. In geoacoustic
inversion, an acoustic propagation model is selected that re-
lates sound to a specic number of environmental parameters.
Hence, the model is xed and known. It was recognized early
on that the assumption of a xed model is not optimal [67]. This
observation has lead to efforts towards nonsequential model
selection in ocean acoustics with approaches such as hypothesis
testing [68], Akaike and Bayesian (Schwartz�–Rissanen) infor-
mation criteria [68]�–[70], and evidence calculation [15], [71].
A reversible jump MCMC, where the MC can switch between
different models, seems most promising and efcient. For an
early implementation, see [72], with an extensive derivation
and description in [73].
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TABLE V
FILTER COMPARISON. L: LINEAR G: GAUSSIAN NL: NONLINEAR NG: NON-GAUSSIAN

In dynamic problems, the model may be unknown and
changing for each step, similarly to other unknown parameters.
Therefore, a sequential state-space system may need more than
one model as new data become available. In ocean acoustics,
this problem may be encountered in:
�• tracking an unknown number of targets [74];
�• tracking targets with different motion models such as slow
moving and fast moving targets, targets with large acceler-
ations, maneuvering targets;

�• tracking a changing number of unknown vertical modes of
the acoustic eld, the number of which changes because of
range dependence; tracking an unknown number of modes
in time-frequency representations;

�• switching between ray tracing, normal mode, adiabatic
normal mode, near-eld normal mode, narrow-angle para-
bolic equation, and wide-angle parabolic equation models
that relate data to state parameters, depending on factors
such as distance and environmental complexity between
the source and the receiver;

�• geoacoustic tracking of sediments and their varying prop-
erties with an unknown number of layers;

�• arrival time tracking across phones.
Successful tracking under such circumstances requires se-

quential ltering algorithms that are capable of jumping or
switching between models [63], [75]. These lters are referred
to as the multiple model particle lters (MMPFs) [41]. The state
space is augmented with model order , becoming ,
where parameter takes discrete values corresponding to
different models. The particles contain samples both for
and .

At each step, are updated using values and
the model order probability transition matrix, creating a mixture
of particles that use different models. Once model order param-
eter within the th particle is determined, a �“model-condi-
tioned�” SIR is run, where the particles, after updates imposed
by the state equation, are propagated through the likelihood, re-
lating measurements and state [41]. Since each model has a dif-
ferent number of parameters, the length of the state vector varies
with state. Because MMPFs can jump or switch between dif-
ferent models, they are referred to as jumpMarkov or switching
lters.
1) Example: Multiple-Model Target Tracking: The example

of Section IV-C is expanded to include a second target that ap-
pears at step . Thus, the single-target model is assigned
the model order and the two-target model uses .
An important task is the selection of a transition probability

matrix, which determines how model order transitions
into . Here

(30)

where it is assumed that the probability of a sudden appearance
of a second target or disappearance of an existing target is only
10% at each time step. Each particle will have its own model
order .
The state equation for indices of order include uncor-

related Gaussian noise with

(31)
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Fig. 6. (a) Target trajectories with a varying model order: true (solid lines) and
estimated with a PF . Posterior pdf of model order for (b) ; (c)

; (d) ; and (e) .

The measurement equation for observations includes ad-
ditive, Gaussian noise with and

(32)

where and the size of measurement vector is
100. The vector has the value of one at index and zero
otherwise. Model order determines how many targets are
present. We assume that and represent locations of
two targets at step . The target locations are functions of step
: and . When both targets are present,

.
True state vector values are shown in Fig. 6(a) (solid lines).

To estimate state parameters, particles for and at
are drawn from a uniform distribution between 1 and

100. The model order for each particle is initialized via a uni-
form prior allowing discrete values 1 and 2. Particles are prop-
agated through the state equation, are updated via the measure-
ment equation and resampled, and are then perturbed to predict
the following step. Circles in Fig. 6(a) illustrate the modes of the
posterior pdfs for state variables. The rst target is tracked ac-
curately with small deviations from true values because of noise
. The second target is missed at and but is subse-

quently detected and correctly localized.
Fig. 6(b)�–(e) demonstrates the posterior pdfs of model order
at four consecutive steps. At , only one target is

present and the model order pdf clearly supports that. A second
target enters at but the pdf of the model order remains
concentrated at 1 and the second target is missed. At ,
the system still favors one target, however, signicant proba-
bility appears at . At , the presence of two

targets is favored: . The system learns the presence of
the second target slowly because of the low probability of transi-
tion between models and the posterior pdf from . Changing

alters lter behavior. A with a larger transition proba-
bility would be more sensitive to sudden changes, capturing the
change at but the location estimates would have larger
RMS errors since more particles would be allowed to �“jump.�”

V. PRACTICAL ISSUES

Sequential MC techniques provide a powerful framework for
performing signal processing in nonstationary dynamic systems
involving nonlinear equations and non-Gaussian pdfs. Imple-
mentation of such methods requires a careful selection of a suit-
able and computationally efcient lter, noise in state and mea-
surement equations, and the number of particles when a particle
ltering approach is the best choice. Some of the practical is-
sues arising in state-space estimation are discussed below.

A. Expressing the Problem in a Dynamic State-Space Format

Establishing the measurement (2) that relates data to the
state vector and the state (1) that expresses the dynamic evo-
lution of is the rst step in the implementation of a Bayesian
lter. In ocean acoustics, is often the acoustic eld received
at an array of hydrophones. Some examples of states in ocean
acoustics are source bearing, location, velocity and acceleration,
ocean bathymetry and sound-speed prole (SSP), geoacoustic
parameters, parameters related to acoustic modes and disper-
sion, frequency, Doppler shift, and multipath arrival time struc-
ture along a receiving array.

B. Likelihood Function

An essential part in implementing a sequential PF is to derive
the likelihood used in (6) and (29) from the measurement equa-
tion. The likelihood function for is derived based on func-
tion and statistical properties of noise . In ocean acoustic
applications, data errors are often considered uncorrelated and
Gaussian, giving analytically tractable likelihoods.
As an example, measurements employed for source local-

ization and geoacoustic inversion contain complex-valued hy-
drophone data across the array and several frequencies. For a
single frequency, a simple measurement equation is of the form

(33)

where is the known or unknown complex-valued source
amplitude and is the acoustic propagation model.
Assuming noise to be , the likelihood function is
of the form

(34)

In geoacoustic tracking, the complex-valued source ampli-
tude is usually unknown. The PF likelihood formulation with
an unknown source signal [33] follows closely that of the clas-
sical geoacoustic inversion likelihood obtained from the Bartlett
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Fig. 7. A quick guide to lter selection.

power objective function [76]. In most cases, likelihoods de-
rived for inversion can also be used in the sequential ltering.

C. State Vector Transitions
State noise in (1) determines the error in the state vector

evolution and is often chosen as additive and Gaussian. Further-
more, parameters in the state vector are usually assumed uncor-
related, i.e., is diagonal.
Although state variables are not expected to vary in a way

that is not consistent with the state evolution model (1), sudden
changes can occur. The lters in such cases need a noise term
with a suitable covariance to continue tracking even

when the state behaves in an unexpected way. For example,
when bathymetry is tracked in a relatively at ocean environ-
ment, the water-column depth varies slowly with range. Hence,
small perturbations of the state vector can capture these varia-
tions. The presence of a canyon, on the other hand, results in a
radical bathymetry change. A small variance in the state noise
may then cause the ltering process to diverge. Covariance ma-
trix should contain values large enough to accommodate the
unexpected changes, but at the same time small enough to pre-
vent noisy estimates and poor performance. These tradeoffs can
make state noise selection a challenging practical problem. An
example where state noise and the number of particles need to be
carefully selected because of sharp changes in sediment thick-
ness and sound speed is discussed in Section VI-B.

D. Filter Selection
Once an estimation problem is dened with appropriate state

and measurement equations, a suitable lter needs to be iden-
tied; see Fig. 7. For linear and , additive Gaussian noise
terms, the KF is the optimal sequential lter. When and
are weakly nonlinear, EKF and UKF provide near-optimal so-
lutions. The EKF has been a popular choice under such cir-
cumstances, especially when Jacobian computations of and
are straightforward. However, the UKF is superior to the EFK
because of higher accuracy in moment estimation and deriva-
tive-free implementation using comparable computational re-
sources.
EnKFs are recommended for high dimensionality of the state

vector. When the estimation problem is too complex to be han-
dled via either analytical or statistical linearization, a PF ap-
proach is mandated. However, PFs require considerably more
computational resources. PFs are not superior to KFs but rather

complementary to them. All variants of Bayesian lters have
their place and may perform better in terms of RMS error and
divergence performance than the other lter types for particular
sets of problems.
An example where a PF implementation is required is the

problem of atmospheric environmental tracking [77]. The rela-
tionship between data and state vector is complex and requires a
strongly nonlinear measurement equation with multiple nonad-
ditive, non-Gaussian noise terms. Signal received at a naval
radar is a function of the changing sea surface and consists
of the atmospheric conditions to be tracked. Data are related to
as follows:

where is the eld calculated using a split-step Fourier
transform parabolic equation for inhomogeneous and
and represent a compound -distributed pdf (a gamma
pdf modulated by a Rayleigh) and a complex Gaussian pdf,
respectively. Neither noise component is additive. Even after
eliminating and reducing to an additive Gaussian
term through a series of approximations, the PF signicantly
outperforms the EKF and the UKF [29], [78]. This example il-
lustrates a case where the additive Gaussian noise assumption
in Section V-B is not suitable.

E. Number of PF Particles

In a classical inversion, the whole search space needs to be
explored. However, in sequential Bayesian ltering, the state
vector is assumed to follow the state equation. Thus, utilizing
the information from the prior step and the known evolution of
the states enables a focused search in the state space. Hence,
the PF requires a smaller number of particles at each step than
the number of samples necessary for a single inversion via, for
example, Metropolis�–Hastings sampling [14].
The essential number of particles for the ltering process to

successfully estimate posterior is problem dependent.
There are four main factors that determine .
�• Problem complexity: Nonlinearities in the state and mea-
surement equations, complexity of the underlying posterior
pdf, errors in the state and measurement equations, and de-
sired lter output affect the selection of . It takes fewer
particles to track the median/MAP than the marginal pdf.
Highly non-Gaussian, long tailed, peaked, multimodal pdfs
require a large number of particles. If the state differs
from the evolution in (1), the actual state will deviate from
predicted . A larger is then needed for tracking.

�• Accuracy: Desired accuracy in track estimates is a major
factor in selecting the number of particles. Increasing the
number of particles initially provides a large performance
improvement in a PF. It has been shown in [79] that the
error is of the order of . However, after a problem-
dependent is reached, the performance stays relatively
at and increasing the computational cost provides only
marginal benets. An example in geoacoustic tracking is
given in [29].

�• State dimension: Amajor factor determining is the state
dimension . MC integration is independent of the state
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dimension for statistically independent particles. How-
ever, for sequential ltering, the resampling stage creates
multiple copies of high-likelihood particles, making
tightly related to the number of state variables [80]. The
problem is further complicated by the fact that the impor-
tance density in SIR determines convergence. A good sam-
pling density results in increasing linearly with [81].
The required increases exponentially with when
the importance density is poorly chosen (often referred to
as �“the curse of dimensionality�”). Special circumstances
facilitate the reduction of the effective size of the state
dimension without compromising accuracy. Rao�–Black-
wellized PFs [82] do just that and are briey discussed in
Appendix II. Note that the effects of a high state dimension
on are of importance for EnKF applications [54].

�• Computational cost: An upper limit for is determined
by the maximum number of particles that can be processed
with limited computational resources, which is important
especially for real-time lters.

It is possible to have lters with adaptive schemes [83].
Coupling PFs with error metrics, the sample size can be adapted
depending on the error estimate. Such an implementation is par-
ticularly important during the initial steps, when there is only
little prior information for . To address the signicant uncer-
tainty, a large number of particles can be sampled, with the cloud
size decreasing in subsequent steps.

F. Computational Cost
Computational cost is related to the overall central pro-

cessing unit (CPU) time and number of operations a lter has
to perform at each step. KFs are generally computationally
efcient. EnKFs and PFs can be computationally intensive.
The cost is problem specic, depending in particular on the
computational complexity of the state transition function ,
the propagation model , and the ability to sample from the
noise pdfs. Following the example in Section V-D, obtaining
a Gaussian sample is much simpler than obtaining a -dis-
tributed sample. Similarly, the propagation model may require
linear matrix multiplications or a complex, nonlinear parabolic
equation acoustic propagation model.
The KF has the lowest possible computational cost. The

computational complexity of KFs and their variations mainly
lie in the inversion of matrices necessary for the calculation
of the Kalman gain. The EKF needs only slightly more com-
putation, depending on whether the Jacobians are calculated
analytically or numerically. The UKF needs sigma
points, and EnKFs and PFs use particles. PFs are critically
affected by the number of particles and the implementation
of resampling.
Three stages contribute to the computational cost of a SIR

PF with particles. The prediction stage uses compu-
tations to obtain . This is followed by likelihood
and weight calculations during the update stage, which are
followed by a resampling stage. The resampling algorithm
described in the example of Section IV-C is called multinomial
[57]. Less computationally expensive resampling algorithms
that operate on the order of have been proposed such as
residual resampling [84] and systematic resampling [40]. The

systematic resampling shown in Fig. 5 is the commonly used
resampling algorithm.

Overall, the computational cost of a PF is of the order of
. Although the complexity of ltering methods is ex-

pressed as a function of the number of particles drawn within
each step, it is important to consider the computational cost im-
posed by the propagation model in the measurement equation.
In many ocean acoustic applications, the number of operations
required for propagation model calculations is signicant rela-
tive to the ltering. This should be taken into account when eval-
uating the computational efciency of sequential ltering ap-
proaches. Selecting an algorithm that requires few propagation
model calculations without affecting track quality is important.

VI. OCEAN ACOUSTIC APPLICATIONS

Signal processing in ocean acoustics frequently involves
complicated and rapidly changing ocean environments in
coastal shallow water. The dynamics that characterize ocean
acoustic applications are inherently nonlinear, non-Gaussian,
and nonstationary processes that quickly vary with space and
time. Sequential ltering is able to adapt to these environmental
changes. The introduction of newer lters such as UKFs,
EnKFs, and PFs that handle nonlinear/non-Gaussian problems,
coupled with an increase in computational power, enabled a
steady increase in the number of KF and PF approaches devel-
oped for ocean acoustic applications. This section is composed
of four ocean acoustic examples where tracking lters have
been used.

A. Target Localization and Tracking With
Filtering and Ocean Acoustics

Sequential lters have been applied extensively to target
tracking [41]. There is a fair amount of literature about au-
tonomous underwater vehicle (AUV) positioning, navigation,
and target tracking [35], [85]. EKFs are frequently employed
in target tracking in radar and sonar applications and used in
all references cited below. These algorithms involve a state
equation that describes the motion of the target in addition
to ocean acoustic observations contained in the measurement
equation. The state vector may consist of target range, azimuth,

coordinates, velocity, and acceleration depending on
the complexity of the target motion [35].
Due to the difculty of incorporating the complex ocean

physics in the estimation process, early work in tracking in-
volved simple ocean models that progressively became more
sophisticated. This evolution can be seen in the following series
of papers. Culver and Hodgkiss [16] apply an EKF to track the
position of an array of freely drifting oats. They use a constant
velocity track model for the oat positions. The measurements
consist of observed travel times between the oats. The ocean
acoustic model is responsible for separating the direct arrivals
from the surface- and bottom-reected arrivals. Instead of l-
tering out the reected arrivals, El-Hawary and Mbamalu [17]
create a more complete ocean model, relating the difference
in travel times between direct and reected arrivals to target
range and depth, and solve the tracking problem using various
techniques, including EKFs.
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A unique technique is implemented by Candy and Sullivan
[18], [22] in that the propagation model (wave equation) is inte-
grated into both the state andmeasurement equations, as opposed
to using acoustic propagation model just in the measurement
equation, common to other ocean acoustic applications. This
enables realistic oceanmodeling by computing the acoustic eld
in a normal mode framework. In acoustics, a full propagation
model is implemented by marching the eld in depth (e.g., a
normal mode solution of the Helmholtz equation) or range (e.g.,
parabolic equation). In [18] and [22], the state vector consists of
the modal functions and their horizontal wave numbers and the
state equation marches in depth based on a measured SSP. The
measurement equation relates the measured complex-valued
acoustic pressure on a vertical array to the vector (solutions of the
wave equation). This method solves normal mode propagation
as an EKF and enables passive source localization in range
and depth. Hence, coupling a nonlinear optimization algorithm
with the EKF-based ocean acoustic model can solve the source
localization problem in a complex ocean environment [21].
Bayesian ltering can track the bearing of a target. Sullivan

et al. [25] improve target bearing tracking by applying an EKF
to a broadband acoustic eld measured on a short array towed
by an autonomous submerged vehicle. The moving array causes
a Doppler shift in the received signal frequency, which is a
function of both bearing and source frequency. By casting the
problem as a joint bearing-frequency tracking problem, they
track bearing and the rate of change of bearing together with
source frequency.
An alternative Bayesian tracking approach has been explored

extensively [86], [87] for tracking a source in the presence of
ocean and geoacoustic variability. Normally, tracking is per-
formed sequentially using SMC. In this paper, the track is pa-
rameterized in terms of an analytic equation with unknown pa-
rameters (e.g., a straight line with unknown slope) and estimated
using nonsequential MC methods. Environmental parameters
are included in the inversion to obtain the full posterior pdf. One
difference is that they are constant and hence are not tracked.
He et al. [26] track with an EKF a target in a horizontal

coordinate system illuminated with an active source and a 2-D
planar receiver array. The state parameters are the position
and velocity. The tracking stability is improved by utilizing
the waveguide invariant [88], which is approximately one for
shallow-water propagation with reecting boundaries. The pro-
posed invariance constraint enforces consistency between fre-
quency and range and smoothness in frequency variations with
time along an identied striation. Adding the invariance con-
straint to the EKF improves tracking.

B. Environmental Parameter Estimation, Geoacoustic
Inversion, and Tracking

The relation between the complex ocean environment and
acoustic wave propagation involves nonlinear processes. An
acoustic propagation model such as normal modes or the para-
bolic equation is needed depending on the problem. Due to com-
plexity and nonlinearities, environmental sequential Bayesian
inversion applications require lters that can handle such prob-
lems. Advances in ltering techniques using physics-based

Fig. 8. Geoacoustic environmental tracking. (a) Temporal tracking of the ocean
SSP for a xed receiver and a xed source. (b) Tracking of the changing envi-
ronment between the receiver and a moving source. Here shown for a vertical
line array (VLA) of receivers.

environmental inversion are shown in a series of papers dis-
cussed below.
Candy and Sullivan [19] give an early application of environ-

mental Bayesian ltering, where an EKF-based normal mode
code is used [18] to estimate the ocean SSP from noisy acoustic
measurements at a single frequency. The EKFmarches in depth,
constructing the mode shapes together with the SSP as a func-
tion of depth. They then apply the algorithm to the Hudson
Canyon experiment data [20] and generalize it for broadband
processing [23]. These early applications use an EKF. More ad-
vanced KFs such as the UKF, the EnKF, and PFs enable estima-
tion and tracking in more complex environments varying tem-
porally and/or spatially both in range and depth.
Carriere et al. [28] use the UKF to perform range-indepen-

dent SSP prediction enabling the temporal tracking of the prole
as shown in Fig. 8(a). The SSP is constructed using empirical
orthogonal functions (EOFs). The coefcients of each EOF are
tracked in time using both an EKF and an UKF. The results con-
rm that a UKF in range-independent SSP tracking is superior
to the EKF. However, the SSP in [28] is a range-independent
prole. Temporally tracking a range-dependent SSP requires a
much larger number of state parameters to estimate the evolu-
tion of the SSP in both depth and range.
To solve this problem, Carriere et al. [30] replace the UKF

with an EnKF that is efcient for larger state spaces as dis-
cussed in Section III-C. They develop an EnKF processor for
tracking the range-dependent sound-speed structure from mul-
tifrequency sound transmission between a point source and a
vertical array. The ocean sound speed is parameterized in terms
of range-dependent EOF coefcients. The acoustic measure-
ment equation is augmented by sea-surface sound-speed mea-
surements. They demonstrate the approach from a 13-day exper-
iment in the Ligurian Sea for a 20-km-long transect in a water
depth of about 100 m. The introduction of the EnKF decreases
the track RMS error signicantly and reduces track divergence.
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A 4-D spatio�–temporal environmental tracking of the SSP using
full-eld tomography is also given in [27] using the EKF.
Another application of Bayesian ltering is in geoacoustic

inversion and tracking. Just like the water-column SSP, bottom
parameters such as SSPs, thickness, attenuation, and density of
sedimentary layers affect acoustic propagation. Yardim et al.
[29] show how to track these geoacoustic parameters using both
vertical and horizontal array data as shown in Fig. 8(b). The
paper also gives a detailed analysis of performance comparison
between the EKF, the UKF, and SIR PFs with changing particle
numbers and it was shown themore computationally demanding
PF performed best followed by UKF and then EKF.
Yardim et al. [33] demonstrate sequential geoacoustic

tracking on real data and extend geoacoustic parameter
tracking by including the unknown source parameters, ef-
fectively tracking the source in an unknown and changing
environment. This requires inclusion of the source depth,
range, and speed together with the geoacoustic parameters and
a source motion model similar to that in target tracking lters.
The algorithm is tested on the SWellEX-96 data [89] with
bathymetry ranging from 100 to 250 m and a range-dependent
sedimentary layer.

C. Frequency Tracking

Time-frequency representations provide a wealth of informa-
tion on the time-varying evolution of the frequency content of
nonstationary signals. Short-time Fourier transforms (STFTs)
and time-varying autoregressive (TVAR) methods have been
frequently employed in, e.g., audio processing [90] and speech
processing [91].
PFs offer an excellent framework for instantaneous frequency

extraction in such problems. Data measurements (time slices of
the STFT or TVAR spectra) are related to the varying frequen-
cies through a measurement equation. The state vector consists
of peak frequencies that vary smoothly between consecutive
time steps as given by the state equation. In addition to peak
frequencies, the state vector includes the corresponding peak
amplitudes and the model order (how many frequency com-
ponents are present); see Section IV-E for the treatment of a
varying or unknownmodel order. TVAR offers different choices
for state-space formulation, with the state vector including ei-
ther autoregressive coefcients or poles and moduli. Poles, for
example, represent frequencies of an observed signal, related to
the measured data in a nonlinear fashion. The unknown number
of frequencies also dictates a PF implementation rather than that
of a KF or KF variant.
Zorych and Michalopoulou [31] track group velocity dis-

persion curves using PFs, utilizing a normal mode code for
sound propagation. Each modal dispersion curve is treated as
a �“moving target,�” whose �“location�” (here frequency) evolves
with time. Synthetic signals at receiving phones from a 20-km
range in a 120-m waveguide are processed with an STFT, the
magnitude of which is expressed as a weighted sum of Gaussian
pulses representing the modes present in the signal. This para-
metric formulation provides the measurement equation for the
PF framework. Frequencies and modal amplitudes are the state
parameters.

Geoacoustic inversion can employ modal arrival times at spe-
cic frequencies as observed data. The PF method described
above can enhance inversion by computing uncertainty on ex-
tracted arrival times, which can be propagated through the in-
version process for the calculation of uncertainty in geoacoustic
estimates [92]. Compiling particle information of a specic fre-
quency in each mode provides a posterior pdf of arrival times
for this frequency.
Instead of estimating wave dispersion using time-frequency

representations, Candy and Chambers [24] assume a known
dispersion relation in a time-varying waveguide. Under this
assumption, their goal is to obtain accurate estimates of
the propagating wave from noisy eld measurements. This
problem is addressed in a state-space framework. The modal
wave number is the state variable and the state equation de-
scribes the wave number evolution in time between consecutive
states. The measurement equation relates eld measurements
to wave number via the dispersion relation. State transition and
measurement functions are nonlinear and an EKF is proposed,
calculating Jacobians for the two functions. At each step, MAP
wave number estimates are employed in the calculation of an
enhanced acoustic eld through the measurement equation.
Wave number tracking and internal wave estimation of syn-
thetic data demonstrates the approach.
Dispersion aside, frequency line tracking has been success-

fully implemented in other ocean acoustic problems as well.
For example, KFs are employed in [93] for the extraction
of striations from active sonar spectrograms. This striation
identication is useful in verifying target tracks provided by
active sonar measurements. Striations relate intensity, target
range, and source frequency through the known waveguide
invariance [88]. KFs are designed that trace frequency lines
in time using smoothness constraints on frequency evolution.
The measurement equations relate measured frequency and
intensity to the state vector, which also includes frequency
and intensity as well as the difference in frequency between
consecutive pings.

D. Spatial Arrival Time Tracking
In ocean acoustics, multipath arrival times have been suc-

cessfully used for source location, bathymetry estimation, and
geoacoustic inversion [17], [94]. This approach is especially
helpful for short-range, high-frequency sound propagation in a
shallow-water waveguide. Such circumstances allow us to ob-
serve and quantify interactions of sound paths with the propaga-
tion medium and boundaries. The quality of source localization
and environmental parameter inversion depends on the accuracy
of arrival time estimates.
A PF was employed for time-delay estimation [95], where

arrival times at two receivers were tracked in time for signals
propagating in a time-varying environment. The measurement
equation related measurements to arrival times and the state
equation allowed limited and controlled variations between time
states. In addition to evolution in time, sequential Bayesian l-
tering is employed to trace spatial variations of arrival times.
In [32], a PF extracted accurate travel times (state variables)

from acoustic signals (measurements). Spatial rather than tem-
poral sequential variability of arrivals was exploited. Following
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the process of [32], we applied the PF arrival time estimation
approach to data from the 2006 Shallow Water Experiment
(SW06). The data were received on August 27, 2006, at the
16-element MPL-VLA1 vertical array, just before geoacoustic
inversion was performed [96], [97]. A linear-frequency-mod-
ulated signal was transmitted with frequency content between
100 and 900 Hz; the sampling rate was 50 kHz. The source
depth was 25 m and the range to VLA was 230 m. Received sig-
nals were match ltered to produce the time series of Fig. 9(a).
Only the 14 lower phones were used here, as the SNR at the
top two phones was low due to large ocean waves.
The purpose is to estimate the arrival times of three paths

at each phone (direct path and surface and bottom reections),
because accurate estimation is needed for inversion based on
extracted path arrivals. The state variables for the PF are the
arrival times for the three paths of Fig. 9(a). Similarly to the
example of Section IV-E, both state and measurement equations
include uncorrelated Gaussian noise and , respectively.
The state equation is given in (31). The measurement equation
is

(35)

The pulse results from the autocorrelation of the linearly
frequency-modulated source waveform of bandwidth , which
was match ltered similarly to the received time series.
The likelihood function for the unknown arrival times at re-

ceiver is

(36)

Data covariance matrix is assumed diagonal with all
nonzero elements equal to . Quantities are amplitudes
of the arriving paths that are here assumed to be known. The
sequential ltering is started from the top (phone 14). Initially,
order is assumed to be the same for all phones and equal
to three.
Fig. 9(b) demonstrates the pdfs of peak arrival times as cal-

culated by the PF. The spread of the pdfs as well as the number
of modes express the uncertainty in arrival time estimation. The
third arrival is the weakest in terms of amplitude. As a result, the
pdf for this arrival at the top phone is spread and bimodal. The
uncertainty is reduced at lower phones, where prior information
builds and sequentially propagates from one phone to the next.
We next expanded the state vector to include the order,

namely the number of arrivals that are present in the time
series. That is, could be 1, 2, or 3. We used only a portion
of the time series of Fig. 9(a), up to 14 ms, excluding the
bottom echo from phones 14�–9. At the beginning of the l-
tering process, the prior on the number of arrivals was uniform
allowing values 1, 2, and 3; the transition matrix probability
between model orders (numbers of arrivals) is given by

(37)

Fig. 9. (a) Observed time series at range 230 m from the VLA showing direct,
surface-, and bottom-reected arrivals; (b) pdf of peak arrival time for each of
these arrivals.

Fig. 10. (a) PDF of arrival times for two or three arrivals. Model order is
varying with each hydrophone. (b) PDF of model order (number of arrivals)
present at phones 9, 8, and 7.

PDFs of peak arrival times at each phone are shown in
Fig. 10(a). Two arrivals are detected at phones 14�–8. The third
arrival appears in the time series at receiver 8. The PF misses it
there but captures it at phones 7�–1.
Due to the sequential nature of the Bayesian estimation

process, where the previous estimate inuences the current, the
approach is biased towards the prior solution. The transition
from two to three arrivals in Fig. 10(b)�–(d) illustrates the
predict-and-update process. The posterior pdf on the order
at phone 9 exhibits a signicant probability for the presence
of two arrivals, which is the actual case. At phone 8, when
the third arrival appears, its presence appears plausible, but
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lags behind the probability for two arrivals, because of the
information that is propagated from the previous phone. At
phone 7, the order is comfortably estimated to be three, with
little probability corresponding to the order of two. That is,
after two updating steps, the estimation process �”learns�” that
an order jump has occurred.
Increased uncertainty is evident in the surface- and bottom-

reected paths near their crossing in the neighborhood of the
fth phone. The arrivals can still be well estimated as modes
of the computed pdfs, with the direction of the paths being cor-
rectly identied after the crossing.

VII. CONCLUSION

The theory for sequential Bayesian ltering of acoustic sig-
nals is summarized focusing on classical KF and PFs. Filtering
tracks the evolving state parameters as new data become avail-
able. It is based on two equations: state equation (transitions be-
tween states) and measurement equation (relation between data
and states for one measurement).
KFs and their extensions are simple in their implementation

and computationally efcient. PFs are computationally onerous
but make fewer assumptions than the KF family, solve complex
problems, and are still straightforward to implement. Hence,
KFs and PFs complement each other enabling us to success-
fully address a wide spectrum of problems involving dynamical
systems.
Ocean acoustic measurements in many applications are by

nature sequential. Thus, the powerful sequential Bayesian l-
tering approaches can be applied to a broad range of acoustic
problems. In the examples that were presented in this paper,
we described how classical target tracking has evolved into the
more complex problem of environmental tracking. Model selec-
tion is another important example as well as frequency compo-
nent extraction from acoustic measurements. We showed how
PFs can be successfully applied to SW06 data for the extraction
of multipath arrival times.

APPENDIX I
CHOICE OF POSTERIOR PDF

It is important to identify which posterior pdfs of the un-
known state variables are calculated in problems such as the
ones encountered in ocean acoustics, depending on the available
data measurements and limitations on complexity. There
may be signicant computational differences between these ap-
proaches.
1) ; inversion. This is the marginal posterior pdf cal-
culated in ocean acoustics where a state equation is not uti-
lized to predict the subsequent steps. The estimate of
does not use information from previous or future measure-
ments. It is computationally inefcient to perform each in-
version independently with . Further, the estimates can be
inconsistent from step to step.

2) ; full posterior. The dimension of can
become large, as the dimension of is the product of
number of data measurements and states, making the
estimation of the full posterior pdf practically impossible.
An example of such an approach in ocean acoustics is

given in [86], where has been computed for a
small in a nonsequential way.

3) ; lter: Bayesian ltering is the topic of this
paper. Filtering enables all the previous and current mea-
surements to be used in estimating using �“predict�” and
�“update�” steps.

4) ; smoother. A smoother is appropriate
in applications where all data have already been observed
and are readily available. Therefore, both past and �“future�”
measurements can be exploited for the calculation of mar-
ginal pdf . Smoothing is more complex and
computationally expensive than ltering. Although inclu-
sion of future data improves estimation in comparison to a
one-way ltering approach, the increase in computational
cost sometimes makes smoothing less desirable than l-
tering.

5) ; predictor. It is ideal for applications
where the acoustic measurements collected up to and in-
cluding the current step are needed to predict some future
value of state . It is the most common form where

is known as the one-step ahead predictor.

APPENDIX II
ADVANCED PARTICLE FILTERS

A. Regularized Particle Filters
The SIR disadvantage associated with the resampling stage

is a result of the discrete posterior pdf, designated by a sum of
delta functions with corresponding particle weights as given in
(21). The resampling stage can only select from these discrete
values, creating a large number of identical particles. An alter-
native is to replace the delta functions in (21) with sharp con-
tinuous kernel functions [63]. Since the pdf is now continuous,
resampling results in nonidentical particles in the high-likeli-
hood regions, regularizing/smoothing the particle distribution.
This type of lter is called the regularized PF (RPF) and re-
solves the sample impoverishment problem. Kernel approxima-
tions are not appropriate for large dimensional state spaces and
the introduction of a kernel violates the asymptotic convergence
of the particle set to the underlying posterior pdf as the particle
number increases.

B. Markov Chain Monte Carlo Particle Filters
The Markov chain MC PF (MCMC-PF) [60] is similar to the

RPF. It is designed to solve the problem of sample impoverish-
ment by inserting an MCMC sampler in the resampling stage.
Such samplers are designed to draw samples from complex pdfs.
The histogram of MCMC particles can be shown to converge
asymptotically to the desired pdf [56], [98].
Similarly to the PRF, the MCMC kernel and sampling create

the necessary sample diversity. Moreover, due to the nature of
MCMC, the resulting set of particles still satises the asymptotic
convergence as opposed to the RPF.

C. Auxiliary Particle Filter
The auxiliary PF (APF), or auxiliary SIR (ASIR), is intro-

duced by Pitt and Shephard [64] to reduce sample impoverish-
ment and prevent the blind prediction of SIR. This is imple-
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mented by delaying the resampling stage that would normally
follow the update stage in classical SIR. Instead, the resam-
pling is incorporated into the prediction stage of the next step.
The APF introduces an auxiliary variable to state vector that
combines the resampling at with the prediction stage at
. Therefore, particles at the prediction stage are con-
ditioned on the current prior and the likelihood, resulting in a
more efcient lter. APF may be adversely affected in the pres-
ence of large process noise [41].

D. Rao�–Blackwellized Particle Filters

A main drawback of any PF algorithm is the large amount of
particles needed to estimate accurately the posterior. Moreover,
this already large number increases quickly as the state-space
dimension rises, especially when the IS density used in the PF
is different from the true pdf. It is, therefore, desirable to reduce
the number of unknown parameters that the PF needs to track.
This might be possible in a large number of practical problems
(target tracking in particular) [35]. In many cases, not all of the
unknown parameters in the state space are nonlinear and non-
Gaussian. These include target/source velocity and acceleration
components. If some subset of the state vector can be modeled
as linear/Gaussian conditioned on the rest of the parameters, it
might be possible to create tracking lters that are both more
efcient and accurate than a standard PF.
This is done through Rao�–Blackwellization. The Rao�–Black-

well theorem shows how to transform an arbitrary estimator into
an estimator that is optimal relative to a selected criterion, in the
MSE sense [45]. In cases where conditional linear/Gaussian as-
sumption holds, one can Rao�–Blackwellize a standard PF. This
process involves splitting the state space into two parameter
sets: linear/Gaussian and nonlinear/non-Gaussian parameters.
We can apply the optimal KF for the marginally linear/Gaussian
parameters at each step, concentrating the powerful yet costly
PF on the reduced, nonlinear/non-Gaussian portion of the state
space. Since the Rao�–Blackwellization procedure results in a
mixture of Kalman and PF sections and reduces the PF state
space via marginalization, the lter is known as mixture PF,
marginalized PF, or Rao�–Blackwellized PF (RBPF) [41]. A de-
tailed analysis of computational cost and estimate quality of
RBPF is given in [82].

E. Linearized Particle Filter

Another interesting variation is the linearized PF (LPF). In-
stead of using the transitional pdf as the IS density, each particle
is treated as a KF and the Gaussian pdfs at the output of each KF
are employed as the IS density for the predict stage of the LPF.
This creates a bank of KFs, one for each particle and a signicant
increase in the computational cost for each particle. However,
by running a KF on the particles of the previous step, the LPF in-
corporates both the prior and the current measurement in its pre-
dict stage similar to APF does. Since the algorithm uses various
forms of KFs, each KF effectively performs a local linearization
around its particle. Hence, it is also called the local linearization
PF [41]. Successful implementations using both EKFs [59] and
UKFs [66] show superior performance compared to SIR. Even

though the cost for each particle calculation increases, the total
number of particles needed to obtain good track performance
decreases.
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