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Tracking Refractivity from Clutter Using Kalman and
Particle Filters

Caglar Yardim, Member, IEEE, Peter Gerstoft, and William S. Hodgkiss, Member, IEEE

Abstract—We address the problem of tracking the spatial and
temporal lower atmospheric variations in maritime environments.
The evolution of the range and height-dependent index of re-
fraction is tracked using the sea clutter return from sea-borne
radars operating in the region. A split-step fast Fourier transform
based parabolic equation approximation to the wave equation is
used to compute the clutter return in complex environments with
varying index of refraction. In addition, regional statistics are
incorporated as prior densities, resulting in a highly nonlinear
and non-Gaussian tracking problem. Tracking algorithms such as
the extended Kalman, unscented Kalman and particle filters are
used for tracking both evaporative and surface-based electromag-
netic ducts frequently encountered in marine environments. The
tracking performances and applicability of these techniques to
different types of refractivity-from-clutter problems are studied
using the posterior Cramér-Rao lower bound. Track divergence
statistics are analyzed. The results show that while the tracking
performance of the Kalman filters is comparable to the particle
filters in evaporative duct tracking, it is limited by the high
non-linearity of the parabolic equation for the surface-based duct
case. Particle filters, on the other hand, prove to be very promising
in tracking a wide range of environments including the abruptly
changing ones.

Index Terms—Atmospheric ducts, extended Kalman filter
(EKF), parabolic equation, particle filter (PF), refractivity-from-
clutter (RFC), spatial and temporal tracking, unscented Kalman
filter (UKF).

I. INTRODUCTION

NON-STANDARD electromagnetic propagation due to
formation of lower atmospheric sea ducts is a common

occurrence in maritime radar applications. Under these condi-
tions, some fundamental system parameters of a sea-borne radar
can deviate significantly from their original values specified
assuming standard-air (0.118 M-units/m) conditions. These in-
clude the variation in the maximum operational range, creation
of regions where the radar is practically blind (radar holes),
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and increased sea surface clutter. Therefore, it is important to
predict the real-time 3-D environment the radar is operating
in so that the radar operator will at least know the true system
limitations and in some cases even compensate for them.

The environment is characterized by the modified refrac-
tivity profile (M-profile) and there are many techniques that
measure or predict the lower atmospheric index of refraction.
Some of the conventional techniques include radiosondes and
rocketsondes that estimate the index of refraction by measuring
the vertical temperature, humidity and pressure profiles, mi-
crowave refractometers that measure the index of refraction
using cavity resonators, and meteorological models such as
the Coupled Ocean/Atmospheric Mesoscale Prediction System
(COAMPS) that give M-profile forecasts [1]–[3]. There also
are other techniques that can refer the refractivity using lidar
[4] and GPS [5] measurements.

However, it also is possible to predict the duct properties
using the radar itself. When launched at a low elevation angle,
the electromagnetic signal will be trapped within the duct which
can be taken as a range-dependent leaky waveguide bounded
from below by the sea surface. This will result in multiple reflec-
tions and strong interaction with the surface which in turn will
result in an increase in the sea clutter, forming clutter rings. This
normally unwanted portion of the received signal then can be
used to infer the environment that gives such a clutter structure.
These techniques can be classified as refractivity-from-clutter
(RFC) techniques [6]–[13]. More detailed discussions about the
differences between the RFC schemes can be found in [12], [13].

This paper is a natural extension to these previous RFC
methods which compute the 2-D range and height-dependent
M-profile for a given azimuth direction. Instead of inverting
the environmental parameters for a given azimuth and time,
the emphasis here is on tracking both the temporal and spa-
tial evolutions of duct parameters. Throughout this paper,
the term spatial evolution is used to represent the evolution
of the 2-D M-profile with the rotating azimuth of the radar.
This is achieved by employing tracking filters. The problem
is formulated in a Kalman framework, where the clutter for a
given environment is calculated using a split-step fast Fourier
transform (FFT) based parabolic equation (PE) approximation
to the wave equation [14]. This introduces a high level of
nonlinearity in the measurement equation. The problem then is
solved by using the following three algorithms.

1) Extended Kalman filter (EKF), where the measurement
equation is linearized using the first order Taylor series ex-
pansion.

2) Unscented Kalman filter (UKF), where the nonlinearity in
the parabolic equation is kept but the probability density
functions (pdf) are restricted to be Gaussian.
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3) Particle filter (PF) or sequential Monte Carlo (SMC),
which uses a sequential importance resampling (SIR)
or bootstrap filter to track the nonlinear, non-Gaussian
system.

II. THEORY

Two equations are necessary to fully characterize the dynamic
system; one that describes the evolution of the lower atmosphere
and another that governs the propagation of the electromagnetic
signal in this environment. At a time step , these equations can
be given as follows:

(1)

(2)

where is a known linear function of the state vector ,
is a known nonlinear function of the measurement vector ,

and are the process and the measurement noise vectors,
respectively with

(3)

The state vector is composed of the parameters that de-
scribe the complex environment at the step index . The state
vector is constructed (Appendix A) depending on the type of
the duct (evaporation/surface-based duct (SBD)/mixed) and the
appropriate model (range-dependent/independent). The process
noise is taken as a zero-mean Gaussian pdf. The prior den-
sity usually is constructed using the regional statistics.
This density must be Gaussian for the Kalman filters. It can be
any distribution for the PF. For temporal tracking, usually is
in terms of minutes and for spatial tracking it is in terms of az-
imuth of the rotating radar.

Equation (1) is the state equation for the stochastic environ-
mental model. is the linear state transition matrix which will
be taken as the identity matrix following Appendix B. The main
assumption is that the environment is changing slowly com-
pared to the step index. Although the M-profile is not expected
to vary considerably in short intervals, sudden fluctuations can
occur and the filters will require larger to perform ade-
quately in these environments.

Equation (2) is the measurement equation and it relates the
environment given by to the radar clutter power through
a highly nonlinear function which uses a split-step FFT-PE,
see Appendix C. Usually, the nonlinearity is less severe for evap-
orative ducts, however the degree of nonlinearity and hence the
filter performance still heavily depends on the current location
of on the state-space. is the logarithm of the sea surface
radar cross-section (RCS), see Appendix C.

There are many successful models for the sea clutter distri-
bution. The selection of the appropriate model depends mainly
on the grazing angle, radar resolution and sea roughness. Some
of the commonly used models include the Rayleigh, Weibull,
log-normal and K-distributed sea clutter [15], [16]. Since the
Kalman framework requires Gaussian distributions, the model

can only be constructed if the sea clutter is selected as log-
normal even if this may not be the most suitable pdf. The PF
does not have such restrictions and any pdf can be used. How-
ever, since it is desirable to compare these filters under the same
set of assumptions, sea clutter is taken as log-normal.

Note that no other noise terms are used, so all the variation in
the signal is represented by the additive in the logarithmic
domain. This assumption is made due to the dominant effect of
the increased sea clutter resulting from the entrapment of the
electromagnetic signal inside the duct. However, this assump-
tion may have to be modified for a low SNR system. Alterna-
tively, one can use a measurement equation based on the formu-
lation given in [12].

A. Tracking Algorithms

1) Extended Kalman Filter: Since the tracking problem
given in (1), (2) is nonlinear with non-Gaussian pdf, a Kalman
filter (KF) cannot be used. Instead, an extended Kalman filter
(EKF) [17] is used by locally linearizing the equations using
the first terms in the Taylor series expansions of the nonlinear
transformations (such as ) and assuming that the nonlinear-
ities are small so that EKF will perform well. Since the pdfs
are Gaussian and the equations are linearized, it is necessary to
propagate only the mean and covariance as in the KF. However,
due to this approximation, the EKF cannot claim the optimality
enjoyed by the KF for linear-Gaussian systems. The EKF has
been implemented successfully in a large number of applica-
tions such as radar and sonar target tracking applications and
its speed and ease of implementation makes the EKF the filter
of choice. Therefore, the EKF is the first filter tested in the RFC
tracking problem.

2) Unscented Kalman Filter: To alleviate some of the lin-
earization problems confronting the EKF, the unscented Kalman
filter (UKF) [18], [19] has been introduced. Unlike the EKF
which enforces linearity, this filter enforces Gaussianity and
keeps the nonlinearity. This still enables the filter to carry all
the necessary information by propagating only the mean and
covariance as does the KF. It uses an unscented transforma-
tion (UT) that enables the propagation of the mean and vari-
ance through nonlinear functions. The UKF represents initial
densities using only a few predetermined particles called sigma
points. These points are chosen deterministically by the UT al-
gorithm and they describe accurately the mean and covariance
of a pdf. As the random variable undergoes a nonlinear transfor-
mation, these points are propagated through this nonlinear func-
tion and used to reconstruct the new mean and covariance using
the UT weights. Hence, unlike the EKF, they can compute ac-
curately the mean and covariance to at least second order (third
if the initial pdf is Gaussian) of the nonlinearity. Although it is
fast relative to more advanced techniques, derivative-free, and
an improvement over the EKF, there still are two weaknesses.
The first is that the nonlinearity may be so severe that it may re-
quire an even higher order accuracy than the UKF can provide
to correctly capture the mean and covariance. The other is that
the densities may be highly non-Gaussian so that the first two
moments will not be sufficient even if they can be calculated
correctly. The UKF used throughout this work is summarized
in Appendix D.
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3) Particle Filter: The last algorithm used in this paper is
the sequential Monte Carlo (SMC) or the particle filter (PF).
This filter does not come with any inherent assumptions and is
used for many nonlinear, non-Gaussian tracking problems [20].
The main difference with Kalman type filters is that, since no
Gaussian assumption is made, propagating the mean and covari-
ance is not sufficient. Instead the PF propagates an ensemble
of particles to represent the densities. These particles are se-
lected randomly by MC runs. Compared with the sigma points
of the UKF, a much larger number of particles are needed to
represent the pdf. Therefore, the PF can perform much better
than its KF variants but it does this with an order of magni-
tude increase in the required computational resources. There are
many different variants of the PF such as the regularized par-
ticle filter (RPF), Markov chain Monte Carlo step particle filter
(MCMC-PF), auxiliary (ASIR) and classical sequential impor-
tance resampling (SIR) particle filter [21].

The SIR algorithm is used throughout this work. Normally,
degeneracy can be a problem for the SIR algorithm, especially
for low process noise systems. However, due to the environ-
mental uncertainty in the model (Appendix B), is selected
relatively large, thus mostly eliminating the need for more com-
plex particle filters with improved sample diversity. The SIR
algorithm [22] is summarized in Appendix D.

B. Posterior Cramér-Rao Lower Bound

It usually is not possible to have an optimal estimator with
minimum mean square error (MMSE) for the nonlinear filtering
problems such as RFC. All the techniques used in this paper also
are sub-optimal techniques. Therefore, it is desirable to have a
tool that not only can assess the performances of these sub-op-
timal techniques but also provide a limit to achievable perfor-
mance for a given environment.

In a classical non-Bayesian framework, the Cramér-Rao
lower bound (CRLB), which is the inverse of the Fisher in-
formation matrix (FIM), is commonly used. In a Bayesian
framework this instead can be replaced by the posterior CRLB
(PCRLB) introduced by van Trees [23]. Since this paper ex-
clusively works with PCRLB, it will henceforth be referred to
simply as CRLB.

Any filter that achieves a mean square error (MSE) equal
to the CRLB is called an efficient estimator. For a linear and
Gaussian system, the Kalman filter is an efficient estimator. It
may not be possible to attain the CRLB for a nonlinear, non-
Gaussian system.

Let be the inverse of the as a filtering
information matrix so that the MSE of any filter estimate at
tracking step index will be bounded as

(4)

where is the estimate of given its previous his-
tory and the set of measurements

. A computationally efficient way of com-
puting this CRLB recursively for discrete-time nonlinear
filtering problems is [24]

(5)

where

(6)

(7)

(8)

Note that the computations only require matrices and
the computation cost is independent of the step index .

The RFC tracking problem with the system of equations de-
fined in (1), (2) has a linear state equation and both of the random
noise sequences and are additive and Gaussian. Therefore,
the above equations can be reduced to

(9)

where

(10)

is the Jacobian of evaluated at its true value . Unfor-
tunately the expectation in (9) has to be evaluated numerically.
The recursion in (5) is initiated by using the prior probability

to compute as

(11)

where is the covariance of the prior density, assuming it is
Gaussian.

III. EXAMPLES

This section is composed of three synthetic and one experi-
mental examples covering the spatial and temporal tracking of
both evaporative and surface-based ducts. Throughout the ex-
amples, issues such as the performance limitations, filter effi-
ciencies, divergence characteristics, and CPU time comparisons
are addressed. These four case studies are as follows.

1) Temporal tracking of a fixed path, range-independent sur-
face-based duct (SBD) for performance comparison of the
EKF, UKF, and PF with respect to the CRLB.

2) Divergence analysis of the EKF, UKF and PF for a typical
temporal range-independent SBD tracking problem.

3) Temporal tracking of a range-dependent littoral evapora-
tion duct. Comparison with the SBD tracking.

4) Spatial tracking of the SBD from the Wallops’98 experi-
ment, using the SPANDAR clutter data.

A. Case Study I: Temporal Tracking of a Range-Independent
Surface-Based Duct

This example is used to compare the tracking performances
of the EKF, UKF, and PF and compute their efficiencies using
the numerically computed CRLB. The range-independent SBD
is selected from the environmental library of the Advanced Re-
fractive Effect Prediction System (AREPS) [25]. The Bahrain
radiosonde station in the Persian Gulf is used for the simulation
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Fig. 1. Case Study I: comparison of the tracking algorithms. (a) Regional map and the location of the station , (b) average spring M-profile, (c) evolutions of
100 Monte Carlo trajectories, and (d) RMS errors of the EKF (O), UKF , and 200-particle PF obtained from the tracking performance of these trajectories
along with the square root of the posterior CRLB (dashed).

TABLE I
CASE STUDY I: COMPARISON OF TRACKING ALGORITHMS AND CRLB

RADIOSONDE STATION BAHRAIN, PERSIAN GULF

(Fig. 1). The station, average environment, radar and simula-
tion parameters are given in Table I. The state vector has four
parameters representing the layer thicknesses and slopes of the

range-independent SBD M-profile as defined in Appendix A.
The layer slopes are given in M-units/m while the RMS er-
rors and standard deviations in the slope estimates are given in
M-units/km. The fact that the SBD (excluding evaporative and
elevated ducts) is present 67% of the time makes the estimation
and tracking of these atmospheric ducts a high priority in the
Persian Gulf. The same frequency as that of the Space Range
Radar (SPANDAR) [7], [26] is used. The height is set to 15 m,
a typical value for a naval radar. New clutter data is provided
every minute and an overall track length of 30
min is used. The log-normal sea clutter is assumed to have a
standard deviation of 5 dB [15]. The values of , , are
selected in accordance with the values obtained in Appendix B.

The CRLB and the filter performances are calculated using
Monte Carlo analysis. First, 100 environmental parameter
trajectories are created from the state equation (1) with starting
values randomly selected from the prior density taken as a
Gaussian as given in Table I. Then, in (9) is calculated
using

(12)
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TABLE II
PERFORMANCE COMPARISON FOR CASE STUDY I

Each of these 100 environmental trajectories also is tracked
using the EKF, UKF and PF. The results are given in Fig. 1 and
Table II. The performance metrics are

(13)

(14)

(15)

where is the th parameter of the true state vector at
time index for the th MC run, and are the root
mean square error and the filter efficiency at step , RTAMS is
the root time averaged mean square error [21] calculated for the
interval , and (15) is used to calculate the performance
improvement of a filter with respect to the EKF. RTAMS is cal-
culated for the 5–30 min interval so that the initial variation will
not affect the performance calculations.

The results in Fig. 1 show that Kalman filters suffer due to
their inherent approximations. The measurement equation is
highly nonlinear for most of the state space and linearization
(EKF) clearly does not work. Since the UKF does not assume
linearity, it enjoys an average of 36% improvement over the
EKF results. However, a pure Gaussian assumption and high
nonlinearity also results in poor UKF estimates with only 12%
efficiency. All the particle filters used in this case perform better
than both of the Kalman filters. The PF with 5000 particles has
an average error of only 1.6%, very close to the value of 1.4%
predicted by the CRLB. It is 77% efficient and enjoys a 84%
improvement over the EKF.

The EKF uses eight forward model runs at each step
to compute the Jacobians needed for linearization, whereas the
UKF requires nine sigma points . Hence, the PF-200,
1000, and 5000 requires a factor of 22, 111, and 556 more CPU
time than that of the UKF respectively for this scenario. Hence,
the PF is a costly alternative and as a general rule should be
avoided as long as the Kalman framework provides reasonable
tracking. However, atmospheric parameters sometimes fluctuate
abruptly. This requires increasing to compensate for the
sudden jumps. Initial tests showed that the Kalman structures
are more sensitive to these sudden moves and diverge if the
sudden jump is large, even after is increased, whereas par-
ticle filters showed more robust tracking performance. There-

Fig. 2. Case Study I: efficiency of the PF as a function of the number of parti-
cles.

fore, it can be concluded that the SBD tracking requires a par-
ticle filter approach even though they are computationally ex-
pensive.

Although the results in Table II show the most frequently en-
countered scenario in the SBD tracking, the simulations show
that there are three different cases depending on where you are
in the state space. The other two are when the PF and the UKF
works but not the EKF and when all three filters perform well.
However, these are relatively rare cases and occur only when the
nonlinearity is not strong.

An important issue with the particle filters is the selection
of the number of particles to be used at each step. The in-
crease in the efficiency of the PF with increasing is given
in Fig. 2 for this case study. Unfortunately, it is hard to deter-
mine an optimum value since this curve is scenario dependent.
A tropospheric propagation code such as the Terrain Parabolic
Equation Model (TPEM) [27] can simulate typically 20 envi-
ronments per second on a 3 GHz computer. Therefore, for a
filter with a 1 min update rate, can
be selected, which corresponds to an average 2% error in the
tracked parameters for this scenario. An alternative to this is as-
suming a discrete state space instead of the continuous one used
in this work. Hence, only a finite number of possible environ-
ment states needs to be pre-computed so that a larger number of
particles can be used. Due to its discrete nature, the problem now
can be solved using the grid-based methods such as a hidden
Markov model (HMM) based tracking filter which employs a
Viterbi algorithm. RFC estimation for a fixed path based on the
Viterbi algorithm has been proposed in [12]. However, this re-
quires a sufficiently dense gridding of the state space, which
very quickly will grow as the state dimension increases.
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Fig. 3. Case Study II: temporal evolution of the range-independent duct.

Fig. 4. Case Study II: evolution of the highly nonlinear relative radar clutter
(decibels) computed for the true environment without .

B. Case Study II: Divergence in Surface-Based Duct Tracking

This example studies the divergence problem in SBD
tracking. The height and slope values (Fig. 3) and their
variations are selected similar to the helicopter measured
real M-profiles obtained in the Wallops’98 experiment [7]
(Appendix B). All the radar and simulation parameters are kept
the same as Case Study I except for the layer slopes and
are taken as and , respectively.
This trajectory is tracked 100 times by each filter to obtain
divergent track probabilities.

The evolution of the clutter signal without the addition of
noise is given in Fig. 4. The strong nonlinearity of re-
sults in a high percentage of track divergence for the Kalman
filters. For this case, a track is declared as divergent if any of the
slope estimates for or have a RMS error greater than 50
M-units/km or any of the layer thickness estimates for or
have a RMS error larger than 5 m for any 5 consecutive minutes.
A typical track result is given in Fig. 5 for each filter type. The
divergence statistics of the filters are provided in Table III. Sim-
ilar to Case Study I, the PF performs significantly better than
both the Kalman filters and the UKF is better than the EKF.
Both Kalman filters mostly were able to follow the thickness
variations but failed in tracking the slopes which usually have
more effect on the clutter return. Interestingly, the EKF RTAMS

Fig. 5. Case Study II: temporal tracking of the range-independent SBD. and
are in M-units/m and and are in meters. True trajectories (dashed) and

filter estimates (solid) for the EKF, UKF, and PF-200.

TABLE III
PERFORMANCE COMPARISON FOR CASE STUDY II

error for the layer thickness is less than that of the UKF. How-
ever, this is more than offset by the fact that after only 10 min,
the EKF reached a 47% divergence rate while none of the UKF
runs diverged. The PF-200 starts to diverge after 30 min with a
17% rate and only 2% of the PF-1000 runs failed to track the
duct after 30 min.

C. Case Study III: Range-Dependent Evaporation Duct
Tracking in Coastal Regions

This example compares the tracking performances of the
three filters in an evaporation duct environment. Evapora-
tion duct differs significantly from the SBD in terms of the
nonlinearity of the measurement equation (2). The clutter in
an evaporation duct environment does not have the complex
patterns of the SBD-induced clutter such as the one in Fig. 4.
Except for the very thick ducts which rarely occur, the evapo-
rative duct clutter decreases monotonically with range and the
nonlinearities are small [6]. This means that the Kalman filters
will no longer suffer from the nonlinearities which severely
limited their usage in the previous SBD tracking examples.
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TABLE IV
CASE STUDY III: COASTAL RANGE-DEPENDENT EVAPORATION DUCT TRACKING, EASTERN MEDITERRANEAN

Fig. 6. Case Study III: range-dependent evaporation duct tracking. (a) Evaporation duct height (EDH) statistics and (b) air-sea temperature difference statistics
for the given region/month/time, (c) spatio-temporal evolution of the simulated EDH, (d) 2-D M-profiles at 0, 60, and 120 min, and (e) the evolution of EDH for
the selected range grid that is used to construct the state vector (dashed line as the true value, solid line as the EKF track).

Eastern Mediterranean is selected for this example. Day time
statistics of July are used. A summary of the selected region,
environmental conditions, radar and simulation parameters are
given in Table IV. The naval radar is taken to be located at 25
km, looking towards the shore. It should be noted that evapora-
tion ducts thicker than 10 m exist more than 80% of the time in
this region. The regional statistics are again taken from the en-
vironmental library of AREPS [25]. The regional evaporation

duct height (EDH) pdf is given in Fig. 6(a) together with the
pdf for the air-sea temperature difference in Fig. 6(b). The small
temperature difference makes possible the representation of the
vertical evaporative M-profile using only the EDH [28] as given
in Appendix A.

A complex, temporally evolving, range-dependent coastal
evaporation duct as given in Fig. 6(c) is artificially created in
accordance with the regional EDH pdf. Corresponding 2-D
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TABLE V
PERFORMANCE COMPARISON FOR CASE STUDY III

M-profiles at , 60, and 120 min are shown in Fig. 6(d).
As a typical coastal duct, it has high variability near the coastal
zones with multiple local disturbances with 10–30 min and
2–10 km scales similar to those measured in [29]–[31], while it
gets more uniform as the distance from the shore increases. It
also includes the formation and dissipation of a strong offshore
evaporative duct (between 60–100 min) and as usual, the duct
starts to lose its strength as it gets closer to the land. To better
represent the coastal zones, a denser grid is used for these
regions. The nonuniform grid used here has seven ranges at 1,
3, 5, 7, 10, 13, and 17 km from the shore. Hence, the state vector
is composed of the EDH at these seven ranges (Appendix A).

The tracking performance of the EKF, UKF, PF-200, and
PF-1000 are given in Table V. A typical EKF track is provided
in Fig. 6(e). Both Kalman filters have a high performance with
an average RTAMS of around 1 m. Since the nonlinearity is not
severe, the 1st order accurate linearization used by the EKF is
as good as the higher order accurate UKF and overall, the UKF
achieves only 1% improvement over the EKF. Unlike the SBD
tracking, the 200 point PF is no match for the Kalman filters,
while PF-1000 is now comparable to the EKF.

The results show that Kalman filters are able to track evapora-
tive ducts successfully, and can only be outperformed by a very
high PF which is computationally much more expensive.

D. Case Study IV: Wallops’98 Experiment

The last example is the spatial tracking of the surface-based
duct observed during the Wallops’98 experiment. The re-
gional, environmental and radar system parameters are given
in Table VI. For the sake of simplicity, a range-independent
M-profile is used and its evolution with the changing azimuth
is tracked. Hence, the state vector has only four parameters
representing the layer thicknesses and slopes of the range-in-
dependent SBD M-profile as defined in Appendix A. The step
index represents the evolving azimuth of the rotating radar.
SPANDAR is a high gain antenna with a beamwidth of 0.39 .
Therefore, the step size can be on the order of 1 or less.

The evolution of the clutter with changing azimuth is given
in the plan position indicator (PPI) map in Fig. 7(a). Since Wal-
lops data is coastal, the spatial variability observed in the plot is
expected to be more than a typical non-littoral marine environ-
ment. Clutter maps evolving faster or slower than the selected
one have been observed throughout the experiment. The region
90 –170 is selected for tracking [Fig. 7(b)]. Tracking is ini-
tiated at 90 using the maximum a posteriori (MAP) solution
obtained from the genetic algorithms (GA) inversion [7] result
at that azimuth. Then a 100-point PF is used to track the envi-
ronment as SPANDAR rotates between 90 and 170 .

TABLE VI
CASE STUDY IV: RANGE-INDEPENDENT SURFACE-BASED DUCT TRACKING,

WALLOPS’98

The Kalman filters perform poorly and diverge quickly,
similar to the first two cases where surface-based ducts were
tracked. Therefore only the results of a 100-point PF tracking
are given in Fig. 8.

Unfortunately the helicopter measurements (Appendix B)
are only available for 150 . Hence, this azimuth is used to
compare different techniques. For comparison purposes, the
range-independent profile at 150 azimuth is also inverted using
GA. A typical GA run for a given azimuth requires 10,000
forward model (split-step FFT parabolic equation) calculations.
The tracking filter uses far fewer samples (e.g., 10,000 versus
100) to achieve a performance similar to that of an individual
GA inversion at a given azimuth angle. This is due to the
fact that the PF uses not only the clutter measurement at that
azimuth but the measurements and environmental information
from the previous azimuths as well. Note that, even though
the estimated individual layer thicknesses are different, the
overall duct height is well determined both in the PF and the
GA results.

Finally, the M-profiles and the clutter structures of the PF
and GA solutions, and the helicopter measurements are given in
Fig. 9 along with the coverage diagram one would obtain from
an environment given by the PF result at 150 . The mean heli-
copter profile (HP) is the average profile one would obtain from
the range-dependent helicopter measurement. Both algorithms
provide an M-profile close to that of the mean HP [see Fig. 9(a)]
and similar clutter returns [see Fig. 9(c)].

IV. DISCUSSION

A fundamental question for a real RFC tracking system is
the temporal/spatial step size. The continuous real-time inflow
of clutter data enables RFC techniques to capture much finer
details in the local environmental conditions. Track updates at
every minute or two seems to be a reasonable choice for tracking
since the typical RMS error in the propagation factor has been
shown to exceed 6 dB after 30 min due to temporal decorrela-
tion of the environmental parameters [32]. Tracking faster may
necessitate a decrease in the number of particles to be used in
the PF which may degrade the track effectiveness.

During the simulations some special cases other than the pro-
vided examples have been noted which can cause track diver-
gence. One of these is when one of the layer thickness param-
eters gets very small for a short period of time. Since the layer
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Fig. 7. Case Study IV: (a) PPI image of the radar clutter measured by
SPANDAR during the Wallops’98 experiment (Map 18, April, 2007) and (b)
the evolution of the clutter within the region of interest.

is thin it has minimal effect on electromagnetic propagation so
the slope of this layer does not have any significance on the
overall clutter structure. This leads to major deviations in the
slope parameter and when the layer starts to thicken again, the
track diverges since the starting slope value is too far from the
true one. The PF is more resilient to this type of divergence than
the Kalman filters.

The second case is when the duct height becomes less than
the antenna height for some range interval (in a range-dependent
profile) even for a short duration. Since the source now is outside
the waveguide, the sea clutter drops possibly resulting in track
divergence.

The final case is when the duct becomes very strong for some
range interval (in a range-dependent profile) even for a short
duration. A strong duct is formed when the inversion slope is
so strong (highly negative) that the entire electromagnetic field
is trapped before it reaches the upper boundary of the inver-
sion layer. Then any inversion layer thickness value larger than
this total entrapment thickness will have the same effect on the

Fig. 8. Case Study IV: range-independent surface-based duct tracking results
obtained using the SPANDAR clutter map by a 100-point PF. The results of the
GA inversion performed at 150 is shown by cross.

Fig. 9. Case Study IV: tracking results. (a) M-profile estimates of the PF
tracking (red) and the GA (black) plotted together with the mean helicopter
profile (blue) at 150 , (b) coverage diagram for the PF solution, and (c) the
relative clutter power given by the three M-profiles in (a).

clutter, resulting in large deviations in the inversion layer thick-
ness and as the duct loses its strength, divergence occurs since
the starting value of the inversion layer thickness is too far from
its true value.

V. CONCLUSION

The extended and unscented Kalman and particle filters have
been studied for tracking the spatial and temporal evolution of
the lower atmospheric index of refraction using the radar clutter
return. The divergence statistics, computational complexities,
and tracking performances of these filters were compared to
each other using the posterior Cramér-Rao lower bound through
four case studies. The results showed that the clutter can be a
rich source of information for real-time tracking of the 3-D en-
vironment in which the radar is operating.
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The Kalman filters showed that they can be used successfully
only for the evaporative duct tracking but were limited by the
nonlinearity of the mapping from environmental refractivity to
clutter (that uses the split step fast Fourier transform parabolic
equation) and the non-Gaussianity of the environmental param-
eter densities, especially for the surface-based duct tracking. In
contrast, the particle filter showed that it can successfully track
all four of the cases although it required much larger computa-
tion times relative to the Kalman filters.

APPENDIX A
CREATION OF THE 2-D MODIFIED REFRACTIVITY PROFILE

FROM STATE VARIABLES

Surface-based ducts (SBD) are represented by the commonly
used tri-linear M-profiles. Each tri-linear profile requires four
parameters: slope and thickness of the base and inver-
sion layers . The top layer slope is taken to be constant
at 0.118 M-units/m. For range-dependent profiles, the M-profile
parameters are defined at range intervals and the values at
other ranges are calculated using a cubic fit. Hence, the number
of state parameters . The 2-D M-profile is calculated
using the following procedure:

(A.16)

(A.17)
if
if
if

(A.18)

where is the base refractivity usually taken as 330
{M-units/m}, represent the trilinear profiles at different
ranges defined in the state vector, , , , and are param-
eters obtained by a cubic fit for range .

Evaporative ducts are represented using only the evapora-
tive duct height, which is true when the air and sea temper-
atures are almost identical with a neutrally buoyant boundary
layer. Range-dependence is similarly achieved by defining the
duct height at various ranges and interpolating in between using
cubic fit. Hence, the number of state parameters for
evaporative duct problems. The 2-D evaporative duct is con-
structed using the log-linear evaporative duct formula given in
[33]:

(A.19)

(A.20)

where represents the duct height obtained by a cubic fit at
range , the constant and the roughness factor are taken as
0.13 and , respectively.

State vector for a mixed type range-dependent/independent
duct is created using 4 1 (SBD+evaporation) parameters at
each of the ranges. Then the evaporative M-profile is ap-
pended to the bottom of the trilinear SBD profile.

APPENDIX B
STATE EQUATION—ENVIRONMENTAL MODEL

The spatial and temporal evolution of the environmental pa-
rameters are taken as a first order autoregressive (AR) process
with an exponentially decaying autocorrelation function. This
structure is selected after the analysis of the helicopter data
collected during the Wallops’98 experiment. A helicopter from
John Hopkins University (JHU) measured the 2-D M-profile
on a fixed path at 150 azimuth from the Space Range Radar
(SPANDAR) several times on April 02, 1998 and these mea-
surements are processed into 10 2-D helicopter profiles. Each
helicopter profile takes about 24 minutes to measure and is com-
posed of vertical M-profiles every 1.852 km (1 nautical mile)
out to 60 km. Therefore, the variation in the M-profiles unfor-
tunately is a combination of both spatial and temporal fluctu-
ations. The variation in two successive M-profiles in range in
any given helicopter profile is assumed to be purely spatial to
obtain an approximation to the spatial autocorrelation. In other
words, the mean helicopter flight time between successive ver-
tical M-profiles is ignored.

The best trilinear fit for each of these vertical M-profiles is
computed (Fig. 10) for each helicopter profile. The autocorre-
lation for each parameter is calculated using the Yule-Walker
method. It also is assumed that these parameters are stationary
random processes and hence the spatial autocorrelation only
depends on the distance between the two vertical profiles. For
the spatial and temporal step sizes used in this paper, the results
provided an autocorrelation between 0.97 and 1 for both the
layer slopes and thicknesses. The standard deviation for the
layer slopes and thicknesses are observed to vary between
5–100 M-units/km and 1-10 m, respectively, for these 10
profiles. However, it should be noted that these values are by
no means general. From many previous experiments such as
the Variability of Coastal Atmospheric Refractivity (VOCAR)
[34], it is known that these values are strong functions of region,
season, time of the day and mesoscale atmospheric processes.
For example, experiments indicate that Santa Ana-induced
(warm and dry offshore winds in Southern and Baja Cali-
fornia) SBDs typically have higher spatial variability than the
subsidence-induced SBDs [35]. It has been known that duct
parameters such as the duct height can stay stable for days,
followed by rapid fluctuations [29]. Spatial variability also
has challenging and dynamic patterns as shown during the
Wallops’2000 experiment [26]. Hence, different environmental
models may be necessary for different applications or regions.
One solution can be using multiple models created by observing
the most common patterns in the region of interest.

APPENDIX C
MEASUREMENT EQUATION—PROPAGATION MODEL

The measurement equation provides , the radar clutter
power in dB, for an environment described by the state vector

. First the field is propagated in range using the following
recursive split-step FFT PE formula [27]

(C.21)
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Fig. 10. Ten 2-D M-profiles measured by JHU helicopter, Wallops’98 experiment (gray) and best trilinear profile fit for each measurement (black).

where is the vertical electromagnetic field at range
at step index , and are the wavenumber and its vertical
component, is the range increment in PE, and are the
Fourier and inverse Fourier transforms and is the 2-D
M-profile computed in Appendix A. Following [7], the
clutter power for low grazing angles can be calculated using

(C.22)

where accounts for the constant terms in the radar equation,
is the one way propagation loss obtained from the elec-

tromagnetic field calculated at the effective scattering
height given as 0.6 times the mean wave height [36] and is
the normalized sea surface RCS.

The measurement equation (2) can be obtained by repre-
senting (C.22) in dB with the following definitions:

(C.23)

(C.24)

where the measurement noise is additive Gaussian since
is the sea surface RCS with log-normal pdf. For tracking the en-
vironment, there probably will be periods of minutes between
two measurements and the quantities above actually will be av-
eraged over the interval, which may reduce the log-normal mea-
surement noise.

APPENDIX D

A. Unscented Kalman Filter Equations

The UKF uses the following recursive formulation where
sigma points and their corresponding weights

are generated and used with the unscented transform (UT)
to perform the mean and covariance calculations
required in the Kalman framework. The UT weights are given
in terms of the scaling parameter
and prior knowledge parameter where is used to control
the spread of the sigma points around the mean and is the
secondary scaling parameter. , , and are taken as 0.1, 2,
and 0, respectively.

UT weights and sigma points are generated using

(D.25)

(D.26)
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where is the th column of the matrix square root. The
prediction step is composed of

(D.27)

(D.28)

and the update step uses

(D.29)

(D.30)

(D.31)

B. Sequential Importance Resampling Filter Equations

The SIR algorithm [21] uses particles to repre-
sent the pdf at each step . The filter has the predict and update
sections just as in a KF but the SIR filter will use these sections
to propagate the particles instead of mean and covariance cal-
culations.

The initial set of particles are sampled from the
prior . The SIR filter uses the importance sampling den-
sity as the transitional prior . Therefore, the predic-
tion step consists of sampling from this pdf. Then the normal-
ized weight of each particle is calculated from its likeli-
hood function. The update step includes the resampling section
where a new set of particles is generated from the parent set
according to the weights of the parent particles. Hence, a single
iteration of the recursive SIR algorithm can be summarized as

(D.32)

(D.33)

(D.34)
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