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Sound source localization with sensor arrays involves the estimation of the direction-of-arrival (DOA)
from a limited number of observations. Compressive sensing (CS) solves such underdetermined
problems achieving sparsity, thus improved resolution, and can be solved efficiently with convex
optimization. The DOA estimation problem is formulated in the CS framework and it is shown that
CS has superior performance compared to traditional DOA estimation methods especially under
challenging scenarios such as coherent arrivals and single-snapshot data. An offset and resolution
analysis is performed to indicate the limitations of CS. It is shown that the limitations are related to
the beampattern, thus can be predicted. The high-resolution capabilities and the robustness of CS are
demonstrated on experimental array data from ocean acoustic measurements for source tracking
with single-snapshot data. VC 2014 Acoustical Society of America.
[http://dx.doi.org/10.1121/1.4883360]
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I. INTRODUCTION

The problem of direction-of-arrival (DOA) estimation
with sensor arrays, encountered in electromagnetic, acoustic
and seismic imaging, is to infer the number and the location of
(usually few) sources possibly in the presence of noise from
measurements of the wavefield with an array of sensors.
Conventional beamforming1 is the simplest traditional method
for DOA estimation, though it is characterized by low resolu-
tion. Other methods2 developed to overcome the resolution
limit of conventional beamforming have degraded performance
under noisy conditions, coherent sources and few snapshots.

The compressive sensing (CS) framework asserts that
the underlying sparse signals can be reconstructed from very
few measurements by solving a convex minimization prob-
lem. Exploiting the inherent sparsity of the underlying sig-
nal, CS outperforms traditional methods which aim to
minimize the energy of the reconstructed signal resulting in
low-resolution, non-sparse solutions. The convex formula-
tion of CS offers computational efficiency compared to other
sparsity promoting methods.

CS (Refs. 3 and 4) has found applications in a wide range
of scientific fields from medical5,6 and ultrasound imaging,7

to error correction in channel coding,8 radar detection,9 seis-
mic imaging10,11 and image reconstruction12 to name a few.
In ocean acoustics, CS is shown to improve the performance
of matched field processing,13 which is a generalized beam-
forming method for localizing sources in complex environ-
ments, and of coherent passive fathometry in inferring the
number and depth of sediment layer interfaces.14

Indications of the super-resolution (i.e., finer resolution
than conventional beamforming) and robustness of CS in DOA
estimation are also presented in Refs. 15 and 16. Malioutov
et al.15 study the performance of CS in DOA estimation with
respect to noise, source number and coherence. Edelmann and
Gaumond16 compare CS with conventional beamforming using
towed array data and show that the CS has superior perform-
ance, which is more pronounced with undersampling.

We demonstrate the robustness of CS in sound source
localization with sensor arrays, especially with coherent
arrivals, single-snapshot data and random array geometries.
A systematic analysis of offset and resolution is introduced.
It is shown that the limitations of the method depend on the
array geometry, the frequency, the location of the actual
sources and the relative noise level and that they can be pre-
dicted from the beampattern.

Moreover, we investigate an iterative reweighed optimi-
zation process17–19 for more accurate localization combined
with a level-correction post-processing step to significantly
improve the reconstruction. The superiority of CS in terms of
accurate localization, improved resolution and artifact reduc-
tion is demonstrated on source tracking from experimental
single-snapshot data from ocean acoustic measurements.

In the following, vectors are represented by bold lower-
case letters and matrices by bold uppercase letters. The trans-
pose and Hermitian (i.e., conjugate transpose) operators are
denoted by T and H, respectively. The lp-norm of a vector

x 2 Cn is defined as kxkp ¼
Pn

i¼1jxijp
! "1=p

. By extension,

the l0-norm is defined as kxk0 ¼
Pn

i¼11xi 6¼0.

II. SPARSE RECONSTRUCTION WITH COMPRESSIVE
SENSING

Many engineering problems involve either the recon-
struction of a signal of interest or the estimation of its
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parameters from a (usually small) number of observations.
Compressive sensing, also known as compressed sensing20

or compressive sampling,21 is a method for solving such
underdetermined problems assuring very accurate recon-
struction under two conditions:3,21,22

(1) sparsity of the underlying signal,
(2) sufficient incoherence of the process which maps the

underlying signal to the observations.

A concise description of the method follows.
Let x 2 CN be an unknown vector representing the under-

lying signal we aim to reconstruct. The signal x is sparse, i.e.,
it has only K nonzero elements with K " N. An example of
such a sparse signal is the frequency domain representation of
a sinusoidal time signal. Let y 2 CM be a vector of measure-
ments linearly related to the signal x, e.g., time samples of the
sinusoidal signal. In the absence of noise, the vectors x and y
are related by a linear set of equations, y ¼ Ax. The sensing
matrix A ¼ WU is the product of the matrix UN#N , which
transforms the signal from one domain to another [e.g., the
inverse discrete Fourier transform (IDFT) for a time-frequency
representation], and the matrix WM#N , which represents the
measurement process (e.g., time sampling).

The matrix A is assumed known and fixed (it does not
adapt to the information on the signal x). In the case that
M < N, the problem is underdetermined and does not have a
unique solution. A way of solving this ill-posed problem is
constraining the possible solutions with prior information,
here by exploiting sparsity.

By definition, sparsity can be imposed on x by minimiz-
ing the l0-norm, which counts the number of non-zero entries
in the vector, leading to the minimization problem (P0),

min
x2CN
kxk0 subject to y ¼ Ax: ðP0Þ

However, the minimization problem (P0) is a nonconvex
combinatorial problem which becomes computationally intrac-
table even for moderate dimensions. The breakthrough of CS
came with the proof that for sufficiently sparse signals and
sensing matrices with sufficiently incoherent columns23,24 the
(P0) problem is equivalent to the (P1) problem,5,20,25

min
x2CN
kxk1 subject to y ¼ Ax: ðP1Þ

The l1 relaxation (P1) of the (P0) problem (also known as
basis pursuit26) is the closest convex optimization problem
to (P0) and can be solved efficiently even for large dimen-
sions. Moreover, due to the convexity of the l1-norm, the
method of minimizing P1ð Þ converges to the global mini-
mum. Other lp-norm relaxations of the (P0) problem for
0 < p < 1, which also favor sparsity, are nonconvex and
convergence to global minima is not guaranteed.17,27

For comparison, traditional methods solve the underde-
termined problem y ¼ AM#Nx, M < N by seeking the solu-
tion with the minimum l2-norm through the minimization
problem (P2),

min
x2CN
kxk2 subject to y ¼ Ax: ðP2Þ

The problem (P2) is convex and has the analytic minimum
length solution,

x̂ ¼ AH AAHð Þ&1
y: (1)

It aims to minimize the energy of the signal through the
l2-norm, rather than its sparsity, hence its solution is non-
sparse. Thus, the problem (P1) has increased performance
over (P2) for sparse signals (at the cost of computational
complexity since it does not have an analytic solution) and it
can be solved efficiently with convex optimization.

Figure 1 depicts the geometry of the lp-norm minimiza-
tion problem, for p ¼ 0; 1; 2 constrained to fit the data. To
keep the visualization intuitive, an example is considered
where the sparse vector x 2 R2, with a single nonzero
element (kxk0 ¼ 1), is to be recovered by y 2 R linear
measurements. Since there are less measurements than
unknowns, all x residing on the line y ¼ Ax satisfy the
constraint. A unique solution is found only by providing addi-
tional information about x. For example, we seek the one with
the minimum lp-norm [by solving either (P0), (P1), (P2)].

Geometrically, all vectors with lp-norm less or equal to
a value r 2 R are on an lp-ball with radius r,

xj kxkp ' r
# $

. In R2, the l2-ball is a disk while the l1-ball
is a rhombus. The solution x is the intersection of the mea-
surement line and the smallest lp-ball. The l2-norm optimiza-
tion problem, Fig. 1(c), results almost always in non-sparse
solutions due to the curvature of the l2-ball. In contrast, the
edginess of the l1-ball favors sparse solutions, Fig. 1(b), and
likely leads to the solution of the l0-norm problem, Fig. 1(a).

The theory extends to noisy measurements and com-
pressible signals (approximately sparse)28 making the frame-
work useful for practical applications. Assuming that the
measurements are contaminated with additive noise n 2 CM

such that y ¼ Axþ n the P1ð Þ problem is reformulated as

FIG. 1. (Color online) Geometric visualization of (a) the l0-norm, (b) the l1-
norm, and (c) the l2-norm problem in R2. The solution x̂ is the intersection
of the measurement line y ¼ Ax and the minimum norm-ball in each case.
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min
x2CN
kxk1 subject to kAx& yk2 ' !; ðP!1Þ

where ! is an upper bound for the noise norm, such that
knk2 ' !. The solution to (P!1) has the minimum l1-norm
while it fits the data up to the noise level. (P!1) can be refor-
mulated in an unconstrained form with the use of Lagrange
multipliers,

min
x2CN
kAx& yk2

2 þ gkxk1: ðPg
1Þ

The regularization parameter g controls the relative impor-
tance between the sparsity of the solution (l1-norm term) and
the fit to the measurements (l2-norm term).

Herein, we use the CVX toolbox for disciplined convex
optimization which is available in the MATLAB environment.
It uses interior point solvers to obtain the global solution of a
well-defined optimization problem.29–31

III. COMPRESSIVE SENSING FOR DOA ESTIMATION

In this section, we apply the CS for DOA estimation and
compare it with widely used localization methods, namely,
conventional (delay-and-sum) beamforming (CBF), mini-
mum variance distortionless response (MVDR) beamform-
ing, and the multiple signal classification (MUSIC)
method.2,32 The focus is on obtaining the accurate locations
of the sources rather than their amplitudes since the ampli-
tudes can be adjusted in a further step after the locations are
recovered (see Sec. V).

In the following, the sound speed and the geometry of
the array are assumed known. We further assume that the
sources are in the farfield of the array (i.e., plane waves), the
processing is narrowband and the problem is confined in two
dimensions (2D) with a linear array of sensors and the sour-
ces residing in the plane of the array. These assumptions
only serve simplicity. CS, as the other localization methods,
is universal and can be extended to three-dimensions (3D)
and arrays with arbitrary (but known) geometry, as random
arrays.

The location of a source is characterized by the direction
of arrival of the associated plane wave h 2 [&90),90)] with
respect to the array axis. The propagation delay from the ith
potential source to each of the array sensors is described by
the steering (or replica) vector,

aðhiÞ ¼
1ffiffiffiffiffi
M
p ej 2p=kð Þr sin hi ; (2)

where k is the wavelength and r ¼ ½r1;…; rM+T comprises
the sensor locations. The normalization 1=

ffiffiffiffiffi
M
p

, such that
kak2 ¼ 1, is to simplify the analysis.

To infer the unknown number and locations, h, of the
sources, the problem of DOA estimation is formulated as a
spatial spectrum estimation problem where the source loca-
tions are estimated from the received signal y.

Let the unknown vector x 2 CN comprise the source
amplitudes at all directions h 2 [&90),90)] on the grid of
interest. Let y 2 CM be the vector of wavefield

measurements at the M sensors. Practically, we are interested
in a fine resolution on the angular grid, thus M < N. The
sensing matrix is formed by the steering vectors at all poten-
tial source directions as its columns,

AM#N ¼ ½aðh1Þ;…; aðhNÞ+: (3)

It is the product of a matrix, W, representing the spatial sam-
pling of the wavefield at the sensor locations and an IDFT
basis, U, connecting the dimensionless spatial domain of the
sensor locations per wavelength, r=k, and the DOA domain
in terms of sinh.

In the presence of additive noise n 2 CM, the measure-
ment vector is described by

y ¼ Axþ n: (4)

In the following, the noise is generated as independent and
identically distributed complex Gaussian. The array signal-to-
noise ratio (SNR) for a single snapshot is used, defined as
SNR¼ 20 log10 kAxk2=knk2

! "
. The choice of the array SNR,

which determines the noise l2-norm knk2 ¼ kAxk210&SNR=20,
serves the analytic study of the (P!1) problem.

A. CBF

The CBF (Ref. 1) is the simplest source localization
method. The method combines the sensor outputs coherently
to enhance the signal at a specific look direction from the
ubiquitous noise, yielding the estimate

x̂ ¼ AHy: (5)

It can be seen as a solution, Eq. (1), to the l2-norm minimiza-
tion problem (P2) with the simplifying assumption
AAH ¼ IM. The CBF is robust to noise but suffers from low
resolution and the presence of sidelobes. The spatial resolu-
tion at each look direction, hi, i ¼ 1;…; N, is indicated by
the beampattern, jAHa hið Þj, i.e., the ith column of jAHAj
(j , j is the elementwise absolute value).

The CBF power spectrum is

PCBFðhÞ ¼ aðhÞHR̂yaðhÞ; (6)

where R̂y ¼ ð1=LÞ
PL

l¼1yly
H
l is the cross-spectral matrix

from L snapshots (i.e., observations of y at a particular fre-
quency). CBF is robust to noise and can be used even with
single snapshot data (L ¼ 1) but suffers from low resolution
and the presence of sidelobes.

B. MVDR beamformer

The MVDR weight vector33 is obtained by minimizing
the output power of the beamformer under the constraint that
the signal from the look direction, h, remains undistorted,

min
w

wHR̂yw subject to wHaðhÞ ¼ 1; (7)

resulting in the optimal weight vector
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wMVDRðhÞ ¼
R̂
&1

y aðhÞ

aðhÞHR̂
&1

y aðhÞ
: (8)

The regularized inverse ðR̂y þ bIMÞ&1 with regularization

parameter b is used instead of R̂
&1

y , whenever the cross-

spectral matrix is rank deficient. The MVDR beamformer
power spectrum is

PMVDRðhÞ ¼ wMVDRðhÞHR̂ywMVDRðhÞ: (9)

C. MUSIC

MUSIC (Ref. 34) is based on the eigendecomposition of
the cross-spectral matrix and the separation of the signal and
the noise subspaces,

R̂y ¼ ÛsK̂sÛ
H

s þ ÛnK̂nÛ
H

n : (10)

The signal eigenvectors, Ûs, corresponding to the largest

eigenvalues, K̂s, are in the same subspace as the steering vec-

tors, Eq. (2), while the noise eigenvectors, Ûn, are orthogonal

to the subspace of the steering vectors thus aðhÞHÛn ¼ 0.
MUSIC uses the orthogonality between the signal and

the noise subspaces to locate the maxima in the spectrum,

PMUSICðhÞ ¼
1

aðhÞHÛnÛ
H

n aðhÞ
: (11)

Both MVDR and MUSIC overcome the resolution limit of
the conventional beamformer by exploiting signal informa-
tion conveyed by the cross-spectral matrix. However, their
performance depends on the eigenvalues of the cross-
spectral matrix thus it degrades with few snapshots, when
the cross-spectral matrix is rank deficient, and in the pres-
ence of coherent sources, when the signal subspace is
reduced (Chap. 9 in Ref. 32). CS does not have these limita-
tions as it utilizes directly the measured pressure y.

D. Compressive sensing

Usually, there are only few sources K " N present and a
sparse solution x can be obtained which honors the data, Eq. (4),
using the l1-norm for sparsity and the l2-norm for noise (P!1).

CS for DOA estimation as the solution to the problem
(P!1) is formulated for a single snapshot. Figure 2(a) com-
pares CBF and CS in the case of a single snapshot. Given a
good choice of !, that is ! ¼ knk2 for the single snapshot
case, CS locates the two sources correctly while CBF cannot
resolve them as separate due to their proximity. The CS reso-
lution limitations in relation to the SNR and the choice of !
are discussed in Secs. IV F and V, respectively.

To compare CS with other methods which involve the
cross-spectral matrix, we formulate the method under the
multiple snapshots scenario. For L snapshots, the measure-
ment matrix is Y ¼ AXþ N, where Y and N are M # L mat-
rices and X has dimensions N # L.

For moving sources, it befits to solve one optimization
problem for each snapshot sequentially, resulting in a sparse

solution for each snapshot.35 For stationary sources, a way
to combine the multiple snapshots is by minimizing the
l1-norm of the vector xl2 resulting from calculating the l2-
norm of the row vectors in X (see Ref. 15 for details),

minkxl2k1 subject to kAX& Yk2 ' !: (12)

Figures 2(b)–2(e) compare the CBF, MVDR, MUSIC, and
CS methods for DOA estimation. The noise bound, !, is used
both as a regularization parameter for the regularized inverse
of the cross-spectral matrix in the case of snapshot-starved
data, i.e., L < M, in MVDR and as a separation limit between
the signal and noise subspace eigenvalues in MUSIC.

CBF fails to discern the two closely spaced sources.
MVDR and MUSIC provide high resolution under high array
SNR and uncorrelated sources but their performance degrades
significantly under snapshot-starved data, correlated sources,
and noisy conditions. CS resolves the two sources with high
resolution in all cases and indicates the applicability of the
method in detection of coherent arrivals (such as multipath
arrivals) and when a limited number of snapshots is available.

In the following, the CS formulation for a single snap-
shot is used except at the end of Sec. VI.

IV. LIMITATIONS

CS offers super-resolution due to the sparsity constraint
imposed by the minimization of the l1-norm of the signal.
However, as all DOA estimation methods, it also has limita-
tions. In this section, we analyze the performance of CS in
DOA estimation in terms of the discretization of the angular
space, the coherence of the sensing matrix and the SNR.

FIG. 2. (Color online) DOA estimation from L snapshots for two equal-
strength sources at 0) and 5) with a uniform linear array with M¼ 8 sensors
and spacing d=k¼ 1/2. (a) CBF and CS for uncorrelated sources with
SNR¼ 20 dB and one snapshot, L¼ 1. CBF, MVDR, MUSIC, and CS for
uncorrelated sources with (b) SNR ¼ 20 dB and L¼ 50, (c) SNR ¼ 20 dB
and L¼ 4, (d) SNR¼ 0 dB and L¼ 50, and (e) for correlated sources with
SNR¼ 20 dB and L¼ 50. The array SNR is for one snapshot.
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A. Basis mismatch

The fundamental assumption in CS is the sparsity of the
underlying signal in the basis of representation, A. However, a
mismatch between the assumed and the actual basis may cause
the signal to appear as incompressible. One such example is
the mismatch of a DFT basis in FFT beamforming due to inad-
equate discretization of the DOA domain. When the sources
do not coincide with the points on the selected angular grid
(particularly in the case of moving sources), the signal might
not appear sparse in the selected DFT basis due to spatial spec-
tral leakage. Since the fundamental assumption of sparsity is
violated, the CS reconstruction might have poor performance
under basis mismatch. An analysis of the sensitivity of CS to
basis mismatch is found in Ref. 36.

Herein, we assume that the problem is discretized
densely enough to avoid basis mismatch and we study the
limitations of CS due to a coherent basis.

B. Coherent or redundant basis

To guarantee good performance of the CS in parameter
estimation, the columns of the sensing matrix should be
incoherent, i.e., sufficiently uncorrelated.28 In this case, the
optimization problems (P0) and (P1) are equivalent, resulting
in the same unique solution.

Random matrices with Gaussian independent and identi-
cally distributed entries are ideal sensing matrices in CS due
to their very low coherence.8,20 Monajemi et al.37 extend the
utility of CS to cases which involve some types of determin-
istic sensing matrices.

Many problems involve sensing matrices with highly
coherent columns. A common example is when A is an over-
sampled DFT basis. Sparse recovery with a coherent sensing
matrix is important.38,39 To achieve low coherence, Elad40

proposes an optimized selection of the columns of A,
Gaumond and Edelmann38 examine using a random (or opti-
mized) array in DOA estimation, and Cand!es et al.39 apply
the sparsity constraint to the beamformed solution.

In the following, we provide the relevant measures of
coherence of the sensing matrix A in DOA estimation and
analyze the performance of CS in relation to this.

C. Coherence measures

An intuitive measure of correlation between any two
columns of A is its mutual coherence defined as3,4

lðAÞ ¼ max
i6¼j

Gij; (13)

where Gij denotes the element in the ith row and jth column
of the absolute Gram matrix,

G ¼ jAHAj: (14)

The elements of G are the inner products of the correspond-
ing l2-norm normalized columns of A, Eq. (2), thus are equal
to the cosine of the angle between them.

Another measure of correlation of A is the restricted
isometry property (RIP) which is described by the restricted
isometry constants.23,24 The sth restricted isometry constant
ds of a matrix A 2 CM#N with l2-norm normalized columns
is the smallest non-negative number such that

1& dsð Þkxk2
2 ' kAxk2

2 ' 1þ dsð Þkxk2
2; (15)

for all s-sparse vectors x 2 CN . The matrix A satisfies the RIP
of order s if ds 2 ð0; 1Þ. It is more informative to prove the
RIP of order 2s since d2s < 1 yields kA x& x0ð Þk2

2 > 0 for ev-
ery s-sparse x 6¼ x0, x; x0 2 CN assuring that distinct s-sparse
signals correspond to distinct measurement vectors, y 6¼ y0.4

Let AS be a submatrix composed by any set S - N of nor-
malized columns of A with cardinality cardðSÞ ' s. The condi-
tion (15) implies that the Gram matrix GS ¼ AH

S AS has its
eigenvalues in the interval ½1& ds; 1þ ds+ and if ds

2 ð0; 1Þ then GS has full rank.24 It follows that d1 ¼ 0, d2 ¼ l,
and, since the sequence of restricted isometry constants is non-
decreasing,4 ds>2 . l. Therefore, the simple measure of mutual
coherence, Eq. (13), usually suffices as an indicator of coherence.

D. Coherence of the sensing matrix in DOA estimation

The sensing matrix A ¼ ½aðh1Þ;…; aðhNÞ+ is formed
by the column steering vectors on an angular grid of i
¼ 1;…; N DOAs, hi 2 [&90),90)]; see Eq. (2). Hence, from
Eq. (14), the columns or equivalently the rows of G repre-
sent the beampattern for the corresponding focusing direc-
tion (see Sec. III A).

The mutual coherence of the sensing matrix A, i.e., the
maximum off-diagonal element in G [see Eq. (13)], is deter-
mined by the frequency, the geometry of the array and the
discretization of the angular space. To demonstrate this, we
study a uniform linear array (ULA) with r ¼ ½0 : M & 1+d
for simplicity. In this case,

AHAð ÞN#N ¼
1

M

M , , ,
XM&1

q¼0

ej2pq d=kð Þðsin h1&sin hNÞ

XM&1

q¼0

ej2pq d=kð Þðsin h2&sin h1Þ , , ,
XM&1

q¼0

ej2pq d=kð Þðsin h2&sin hNÞ

! ! !
XM&1

q¼0

ej2pq d=kð Þðsin hN&sin h1Þ , , , M

2

6666666666664

3

7777777777775

(16)
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hence the elements of G are sampled from the periodic sinc
function f ðxÞ,

f ðxÞ ¼ 1

M

XM&1

q¼0

ej2pq d=kð Þx

&&&&&

&&&&& ¼
1

M

sin pM
d

k
x

' (

sin p
d

k
x

' (

&&&&&&&&

&&&&&&&&
; (17)

such that

Gij ¼
1

M

sin pM
d

k
sin hi & sin hj
! "

' (

sin p
d

k
sin hi & sin hj
! "

' (

&&&&&&&&

&&&&&&&&
:

Figures 3(a), 3(b) and 3(c), 3(d) show the matrix G (i.e.,
the beampattern) as a function of sin h and h, respectively.
When the DOA grid is formed so that sin hi ¼ i k= Mdð Þ

) *
or,

equivalently, hi ¼ sin&1i k= Mdð Þ
) *

, where i ¼ 0; 1;…; M & 1
(*), the columns of A form an orthonormal system, i.e.,
lðAÞ ¼ 0. In this case, A is square and Fig. 3(e) shows the
corresponding G ¼ IM¼N .

To achieve super-resolution, a finer grid is required
resulting in a nonorthonormal sensing matrix A. Since the
row and the column rank of a matrix are equal, a sensing
matrix in an underdetermined problem has linearly

dependent columns. The degree of the linear dependency of
the columns of A is reflected in the coherence.

Figure 4 depicts the Gram matrix for an oversampled
DFT (fine angular grid) for three array configurations with the
same number of sensors. Grating lobes appear within the visi-
ble area when the array spacing is d=k > 1=2, Figs. 4(b) and
4(e). A simple way to decrease the coherence of the represen-
tation while keeping the number of sensors small is to employ
random arrays which lack periodicity, Figs. 4(c) and 4(f).

E. Offset and coherence

In the case of a coherent sensing matrix, uniqueness of
the CS solution is not guaranteed (Sec. IV C) thus the DOA
of the CS solution, ĥ, may be offset from the actual DOA, h,
resulting in erroneous localization, ĥ & h 6¼ 0. In the absence
of spatial aliasing, the coherence of A is mostly limited to
the proximity of the actual directions and it is dependent on
the grid spacing relative to the aperture in terms of wave-
length. Thus, the maximum CS offset, maxjĥ & hj, is related
to the beampattern and the SNR and can be predicted.

Reformulating the constraint in the optimization prob-
lem (P!1) by denoting the true solution as xs,

kAx& yk2 ¼ kAx& Axs þ nð Þk2

¼ kA x& xsð Þ & nk2 ' !; (18)

and applying the reverse triangle inequality, jkuk2 & kvk2j
' ku& vk2, where u, v are generic vectors, yields

jkA x& xsð Þk2 & knk2j ' kA x& xsð Þ & nk2 ' !;
&! ' kA x& xsð Þk2 & knk2 ' !;
0 ' kA x& xsð Þk2 ' 2!: (19)

Thus, all vectors x for which the error norm satisfies 0
' kA x& xsð Þk2 ' 2! are possible solutions to the (P!1)
problem.

To demonstrate the relation of the CS offset to the mu-
tual coherence of the sensing matrix (i.e., the d2 isometry
constant; see Sec. IV C) and the SNR we assume that xs and
x each have a single nonzero element, xs at hj and x at hi;
respectively, such that kxsk0 ¼ 1, kxk0 ¼ 1which yields,

kA x& xsð Þk2 ¼ kxai & xsajk2
2 ' 2!; (20)

FIG. 3. (Color online) Gram matrix G in (a) sin h and (c) h space for a ULA
with M ¼ 8 sensors and d=k ¼ 1=2. Corresponding beampattern at broad-
side in (b) sin h and (d) h space. Discretization of the DOA grid (*) such
that sin hi ¼ i k=ðMd½ Þ+, i ¼ 0;…; M & 1 (a), (b) or, equivalently,
hi ¼ sin&1i k=ðMd½ Þ+, i ¼ 0;…; M & 1 (c), (d) leads to (e) an orthonormal
Gram matrix (l ¼ 0).

FIG. 4. Array configurations with M ¼ 8 sensors at k ¼ 7:5 m for a ULA
with (a) d=k ¼ 1=2, (b) d=k ¼ 5=2, (c) a random array. (d)–(f) The corre-
sponding Gram matrices.
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where the notation for the steering vectors is simplified such
that aðhiÞ ¼ ai.

The optimal value of x which minimizes the error norm

qðxÞ¼ kxai& xsajk2
2¼ xHx& xHxsaH

i aj& xH
s xaH

j aiþ xH
s xs for

every hi, hj is the solution to @qðxÞ=@x¼ 0,

x ¼ xsa
H
i aj: (21)

Inserting the value for x from Eq. (21) into Eq. (20),

k aH
i aj

! "
ai & ajk2 ' 2q; (22)

where q ¼ knk2=kAxsk2 ¼ !=jxsj ¼ 10&SNR=20 is the relative
noise level dictated by the SNR. Therefore, the CS DOA, hi,
may be offset from the true, hj, within a region where,

Gij .

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& 4q2

p
; q <

1

2
;

0; q . 1

2
:

8
>><

>>:
(23)

In other words, the SNR sets a coherence limit,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& 4q2

p
, for the steering vectors, a, below which accurate

DOA reconstruction with CS is not guaranteed. For SNR
lower than 6 dB (q . 1

2), Eq. (23) yields Gij . 0, hence CS
may erroneously localize the source at any angle.

Figure 5 depicts the reconstructed DOA and the estimate
offset for one source for DOA 0)–90). Figure 5(c) shows a
detail from Fig. 5(b) towards endfire superimposed to the
values of the error norm at the optimal x up to 2q, Eq. (22).
Even though the CS error is determined by the specific noise
realization, the offset region can be identified where
Gij .

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& 4q2

p
and is more pronounced towards endfire

where the steering vectors are more correlated.

F. Resolution and coherence

The resolution limit of a DOA estimation method is
determined by the minimum required angular separation of

two sources to be resolved as separate. In this section, the
CS resolution limit is discussed in relation to the coherence
of the sensing matrix and the SNR.

Let the true solution, xs, comprise two sources at hi and
hj. The two sources may not be resolved as separate by CS
whenever a solution, x, with only one source at hk is possi-
ble, i.e., when the error norm 0 ' kA x& xsð Þk2 ' 2! while
kxsk1 ¼ kxk1.

To analyze this we let the two sources in the vector xs

have equal strength, xs=2, the one with DOA at hi ¼ 0)

(Fig. 6) or hi ¼ 90) (Fig. 7) and the other at hj moving from
0) to 90), while the vector x comprises one source at hk with
strength x, moving from 0) to 90). Following Eq. (20),

FIG. 5. (Color online) (a) Error norm k aH
i aj

! "
ai & ajk2, Eq. (22), for the

random array in Fig. 4(c), angular grid spacing 0.1) and SNR¼ 40 dB
(q ¼ 0:01). (b) Reconstructed DOA. (c) Detail (80)–90)) from showing the
reconstructed DOA in (b) and the error norm in (a) for values up to 2q. (d)
Offset of the CS solution for one source in relation to the actual DOA.

FIG. 6. (Color online) (a) Error norm 1
2 ka

H
k ai þ ajð Þ ak & ai & ajk2, Eq.

(26), for the random array in Fig. 4(c), angular grid spacing 0.1) and
SNR¼ 40 dB (q ¼ 0:01). (b) Reconstructed DOAs. (c) Detail (0)–5)) from
showing the reconstructed DOAs in (b) and the error norm in (a) for values
up to 2q. (d) Estimate offset for a source at 0) and a source at 0)–90).

FIG. 7. (Color online) (a) Error norm 1
2 ka

H
k ai þ ajð Þ ak & ai & ajk2, Eq.

(26), for the random array in Fig. 4(c), angular grid spacing 0.1) and
SNR¼ 40 dB (q ¼ 0:01). (b) Reconstructed DOAs. (c) Detail (70)–90))
from showing the reconstructed DOAs in (b) and the error norm in (a) for
values up to 2q. (d) Estimate offset for a source at 90) and a source at
0)–90).
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kA x& xsð Þk2
2 ¼ xak &

xs

2
ai &

xs

2
aj

+++
+++

2
' 2!: (24)

Similar to Eq. (21), the optimal value of the x is

x ¼ xs
aH

k

2
ai þ ajð Þ; (25)

and Eq. (24) yields

1

2
kaH

k ai þ ajð Þ ak & ai & ajk2 ' 2q: (26)

In contrast to Eq. (23), there is no simple expansion of Eq.
(26) in terms of G.

The resolution analysis is depicted in Figs. 6 and 7 at
broadside and endfire, respectively, for the random array in
Fig. 4(c). The two sources are possibly resolved as one when
the angular separation of the sources is less than 2) at broad-
side and up to 15) at endfire.

Figure 8 shows the angular resolution limit of CS for
two sources near broadside, Figs. 8(a) and 8(b), and near
endfire, Figs. 8(c) and 8(d) as a function of SNR and com-
pares it with the half-power (&3 dB) beamwidth.

V. SPARSITY AND ESTIMATED NOISE LEVEL

A basic assumption in CS is sparsity of the signal in the
representation basis. In the presence of noise, the solution to
(P1) is non-sparse but still a sparse solution can be found
instead by solving (P!1) or (Pg

1) equivalently. However, when
the data noise level knk2 is unknown, the solution to both
(P!1) and (Pg

1) depends on the estimated noise level. By
underestimating the noise, i.e., ! in (P!1) or g in (Pg

1), the CS
solution may appear as less sparse than the actual solution.
On the other hand, overestimating the noise may cause the
CS solution to be too sparse, for example by eliminating
sources of smaller strength.

In the case that the noise level is not explicitly known,
we propose using an underestimated (low) noise level, to
assure that all the nonzero components of the solution are
captured, and enhance sparsity by reweighing the l1-norm
iteratively in the convex optimization procedure.17,18 After
detecting the source locations in the solution with reweighed
l1-norm minimization, the source amplitudes can be rectified
with a level correction step.

A. Reweighed l1 minimization

The l1-norm minimization (P!1) is a convex problem and
converges to a global minimum. However, the solution to (P!1)
is not necessarily the sparsest feasible. To enhance sparsity, a
reweighed l1 minimization problem can be solved instead.

The method solves iteratively the weighed l1-norm min-
imization problem (see the Appendix for details),

min
x2Cn
kWxk1 subject to kAx& yk2 ' !; ðPw

1 Þ

where W is a diagonal weight matrix. Initially, all the
weights are 1 leading to the problem (P!1). After the first esti-
mate x, the weights are updated as

wi ¼
1

jx̂ijþ n
(27)

and the problem (Pw
1 ) is solved again. The parameter n > 0

ensures that a null coefficient in the current estimate does
not suppress a nonzero coefficient in the next iteration. It
should be on the order of the smallest expected source ampli-
tude. The algorithm iterates until a stable estimate is
reached, i.e., x̂kþ1 ¼ x̂k, where

jwixijkþ1 ¼
jxij
jxijþ n

/ 1; jxij > 0;

0; xi ¼ 0;

8
><

>:
(28)

thus it has converged (usually one or two iterations suffice).
The weights in Eq. (27) are large for small coefficients,

jxij, and vice versa. Therefore, the smaller coefficients, as indi-
cated by the current solution, are amplified by the weighing,
Eq. (27), thus are penalized more in the minimization (Pw

1 ).
Figure 9 shows the process of reweighing the l1 -norm

minimization problem. The solution to P!1ð Þ with
! ¼ 0:8knk2, Fig. 9(a), appears less sparse than the actual
solution due to the lower noise level. Overestimating the noise
level, Fig. 9(b), erroneously favors very sparse solutions sup-
pressing the weakest source in the estimated solution. Figures
9(c) and 9(d) show the solution to (Pw

1 ) with ! ¼ 0:8knk2 after
the first and second iteration, respectively. Reweighing the l1-
norm results in a more sparse solution compared to (P!1) even
though the noise level is underestimated. The (Pw

1 ) leads to the
actual solution already from the first iteration thus the compu-
tational burden is not increased significantly compared to (P!1).

B. Level correction

The sparse solution to (Pw
1 ) can be further improved

with level correction. Retaining only the columns in A which

FIG. 8. CS resolution limit for two sources. Beampattern at (a) broadside
and (b) endfire for the random array in Fig. 4(c). Resolution limit versus
SNR at (b) broadside and (d) endfire. The half-power beamwidth (dashed
line) is indicated in both cases.
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correspond to peaks in the solution, Aa, we solve the overde-
termined problem,35,41

x̂a ¼ Aþa y; (29)

where the plus sign denotes pseudo-inverse of a matrix, to
obtain the source level for just the active indexes.

Figure 10 compares the solutions from CBF, CS,
reweighed CS and reweighed CS with level correction. CBF
fails to detect the weakest source due to the high sidelobe
levels even though the separation of the two sources exceeds
half of the mainlobe width. The two sources are localized
with high resolution with CS and the estimate is more accu-
rate with reweighed CS. Further processing for level correc-
tion gives very good reconstruction.

VI. EXPERIMENTAL RESULTS

To demonstrate the high-resolution capabilities and the
robustness of CS in DOA estimation, the method is applied

to ocean acoustic measurements for source tracking from
single snapshot data and is compared with CBF. More elabo-
rate techniques, such as, for example, multi-rate adaptive
beamforming42 or post-processing with the method of sub-
band peak energy detection,43 would provide cleaner recon-
struction than CBF by exploiting information from several
snapshots. The main interest is to show the performance of
CS as a non-adaptive technique and in challenging scenarios
of few snapshots (or even a single one) thus we compare CS
simply with CBF.

The data are from the long range acoustic communica-
tions (LRAC) experiment44 collected from a towed horizon-
tal uniform linear array from 10:00–10:30 UTC on 16
September 2010 in the NE Pacific. The array has M ¼ 64
sensors, with intersensor spacing d ¼ 3 m, Fig. 11(a), and
was towed at 3:5 knots at 200 m depth. The data were
acquired with a sampling frequency of 2000 Hz and the
record is divided in 4 s non-overlapping snapshots. Each
snapshot is Fourier transformed with 213 samples.

Figure 11(b) shows the scaled Gram matrix G at fre-
quency f ¼ 125 Hz (d=k ¼ 1=4) for a DOA grid
[&90):1):90)]. The 1) grid spacing is considered sufficient
to avoid basis mismatch in this case since a finer grid would
not improve the results. The data are post-processed with
CBF, CS, and iterative reweighed CS with level correction

FIG. 9. (Color online) Enhancing sparsity by reweighted l1 minimization.
Two sources at [0),15)] with SNR [20,0] dB, respectively, are detected by
measurements on the random linear array in Fig. 4(c). The solution to the
(P!1) with (a) underestimated noise level ! ¼ 0:8knk2, (b) overestimated
noise level ! ¼ 2knk2, and the solution to the (Pw

1 ) with ! ¼ 0:8knk2 after
the (c) first and (d) second iteration.

FIG. 10. (Color online) DOA estimation with CBF, CS, reweighed CS and
reweighed CS with level correction with the random linear array in Fig.
4(c), for two sources at [0),15)] and SNR [20,0] dB, respectively.

FIG. 11. (Color online) Data from LRAC: (a) Array geometry, (b) Gram
matrix G, (c) CBF, (d) CS, (e) reweighed CS with level correction.
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in Figs. 11(c)–11(e). The unconstrained (Pg
1) formulation of

CS is used here with g ¼ 1.
The beamformer output, Fig. 11(c), indicates the pres-

ence of three stationary sources at around 45), 30), and
&65). The two arrivals at 45) and 30) are attributed to dis-
tant transiting ships, even though a record of ships in the
area was not kept. The broad arrival at &65) is from the tow-
ship R/V Melville. The CBF map suffers from low resolution
and artifacts due to sidelobes and noise. The CS map pro-
vides high resolution, Fig. 11(d). The reconstruction is fur-
ther improved with one iteration of reweighed CS with level
correction, Fig. 11(e), which eliminates the noisy artifacts.

The same data set is processed by reducing the sensors by a
factor of 4 to M¼ 16 for a ULA with d=k ¼ 1, Figs.
12(a)–12(d), and a random array, Figs. 12(e)–12(h). Both array
configurations, Figs. 12(a) and 12(e), have the same aperture as
the original array hence the same resolution. In the case of the
ULA with d=k ¼ 1, grating lobes appear in the visible area, Fig.
12(b), resulting in spurious sources in both CBF, Fig. 12(c), and
CS, Fig. 12(d). In the case that the sensors are selected randomly,
there are no grating lobes in the beampattern, Fig. 12(f), thus
spurious sources do not appear. The increased level of sidelobes
in this case degrades the CBF map, Fig. 12(g). In contrast, CS,
Fig. 12(h), results in a clean map with accurate localization of

the three sources. The robustness of CS even with a limited num-
ber of sensors indicates the possibility of using arrays with fewer
sensors (reducing the cost, exceeding the design frequency) with-
out a significant reconstruction degradation as long as the config-
uration is random.

Assuming the sources are adequately stationary, the 200
snapshots are combined to compare the CS method with
CBF, MVDR, and MUSIC (see Sec. III). The superior per-
formance of CS in terms of resolution and sidelobe levels is
depicted in Fig. 13.

VII. CONCLUSION

Source localization with sensor arrays is a sparse signal
reconstruction problem which can be efficiently solved with
compressive sensing (CS). The offset and resolution analysis
indicates that the CS has robust performance in most of the
angular spectrum. The CS estimate offset in DOA estimation is
related to the coherence of the sensing matrix A and is restricted
to the proximity of the actual source location. Similarly, the reso-
lution of CS is determined by the coherence of A and depends
on array geometry, frequency, source location, and SNR.

CS achieves high-resolution in DOA estimation by pro-
moting sparse solutions. It can distinguish between coherent
arrivals, as multipath, since it does not involve the array
cross-spectral matrix and can be used even with single-
snapshot data outperforming traditional DOA estimation
methods. Furthermore, CS can be used with (arbitrary)
random array configurations allowing great flexibility in the
context of sound source localization.
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APPENDIX: REWEIGHED l1 MINIMIZATION

To enhance sparsity, the l1-norm of a vector, x 2 CN , can
be replaced by other sparsity promoting functions such as,
J xð Þ ¼

PN
i¼1ln jxijþ nð Þ, resulting in the optimization problem,

min
x2CN

J xð Þ subject to kAx& yk2 ' !; ðP!JÞ

instead of the problem (P!1).

FIG. 12. (Color online) Data from LRAC: (a)–(d) M ¼ 16 arranged in a
ULA, (e)–(h) M ¼ 16 arranged in a random linear array. (a),(e) Array
configurations; (b),(d) corresponding Gram matrix; (c),(g) CBF; (d),(h)
reweighed CS with level correction.

FIG. 13. (Color online) Data from LRAC: Combining the 200 snapshots and
processing with CBF, MVDR, MUSIC, and reweighed CS with level correc-
tion. The ULA array with M ¼ 64 sensors and d=k ¼ 1=4 is used.
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However, the function J xð Þ is concave and its minimiza-
tion is achieved by a majorization-minimization approach45

rather than a convex minimization as with the l1-norm (P!1).
In principle, minimizing a concave function g xð Þ,

x 2 X, with the majorization-minimization framework
involves the following steps (see Fig. 14):

(1) Majorize g xð Þ at xa with a convex function h xjxað Þ such
that for x 2 X,

h xajxað Þ ¼ g xað Þ;
h xjxað Þ . g xð Þ:

(A1)

(2) Minimize the convex function h xjxað Þ with respect to
x 2 X,

h xaþ1jxað Þ ¼ min
x2X

h xjxað Þ; (A2)

which also assures a descent for the concave function
g xð Þ as

g xaþ1ð Þ ' h xaþ1jxað Þ ' h xajxað Þ ¼ g xað Þ: (A3)

(3) Replace steps (1) and (2) until convergence.

For a differentiable concave function g xð Þ, x 2 X, a
majorization function can be found easily by definition
through the derivative

g xð Þ ' g xað Þ þrg xjxað Þ x& xað Þ; (A4)

and minimized such that

h xaþ1jxað Þ ¼ min
x2X

h xjxað Þ ¼ min
x2X
rg xjxað Þ x: (A5)

Therefore, the minimization problem (P!J) can be recast
in an iterative convex optimization procedure, such that at
the ðk þ 1Þ iteration,

min
x2CN
rJ xjx̂kð Þ x subject to kAx& yk2 ' !;

min
x2CN

XN

i¼1

1

jx̂i; kjþ n
jxij subject to kAx& yk2 ' !; (A6)

where x̂k is the estimated solution at iteration k. The minimi-
zation problem (P!J) is equivalent to the iterative weighed l1-
norm minimization problem (Pw

1 ),

min
x2Cn
kWxk1 subject to kAx& yk2 ' !; ðPw

1 Þ

where W is a diagonal weight matrix with elements
wi ¼ 1=jx̂ijþ n determined by the solution of the previous
iteration x̂. The weight matrix, W, is initialized with the
identity matrix, IN , and the parameter n > 0 is used to pre-
vent infinite-valued weights.
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