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The challenge of a deep-water oil leak is that a significant quantity of oil remains in the water col-
umn and possibly changes properties. There is a need to quantify the oil settled within the water
column and determine its physical properties to assist in the oil recovery. There are currently no
methods to map acoustically submerged oil in the sea. In this paper, high-frequency acoustic meth-
ods are proposed to localize the oil polluted area and characterize the parameters of its spatial co-
variance, i.e., variance and correlation. A model is implemented to study the underlying
mechanisms of backscattering due to spatial heterogeneity of the medium and predict backscatter-
ing returns. An algorithm for synthetically generating stationary, Gaussian random fields is intro-
duced which provides great flexibility in implementing the physical model of an inhomogeneous
field with spatial covariance. A method for inference of spatial covariance parameters is proposed
to describe the scattering field in terms of its second-order statistics from the backscattered returns.
The results indicate that high-frequency acoustic methods not only are suitable for large-scale
detection of oil contamination in the water column but also allow inference of the spatial covari-
ance parameters resulting in a statistical description of the oil field.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4818897]
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I. INTRODUCTION

Prior to the oil accident of the Deepwater Horizon, the
presence of oil in the sea was confined at shallow-water
owing to either natural processes (e.g., biogenic oil) or
human-induced pollution (e.g., oil slicks along shipping
routes, blow outs from shallow water oil drills).
Subsequently, the effort has been focused on monitoring and
characterizing oil pollution on the sea surface. Remote sens-
ing methods from satellites and aircrafts are efficient imag-
ing methods of buoyant oil on the sea surface.1,2 The
challenge of a deep-water oil leak encountered in the case of
the Deepwater Horizon is that a significant quantity of oil
remained in the water column after the cease of the dis-
charge from the wellhead3,4 with serious environmental
implications.5–7 Much of the oil which was released into the
water decomposed into stringy formations of viscous mate-
rial which remained trapped, mixed with water, far below
the sea surface;3,4 see Fig. 1. Even though the mean values
of the acoustic parameters, the compressibility, and density,
of sea water and oil are approximately equal, weak scattering
of acoustic waves (volume reverberation) can be observed in
both areas due to random fluctuations of the acoustic param-
eters from their mean value. It is of interest to determine the

physical properties of the new forms of oil and describe the
spatial covariance of the submerged oil in order to monitor
the degradation process.

Methods based on electromagnetic waves are inefficient
for mapping submerged oil in the sea since the electromag-
netic waves attenuate fast when traveling in water. Acoustic
methods based on Doppler velocimetry which have been
used8,9 to quantify turbulent flow of hydrocarbons are ineffi-
cient to quantify the submerged oil since they require knowl-
edge of the exact position of the oil leak. Tracking of the
submerged oil is mainly based on fluorescence and dissolved
oxygen measurements and low-frequency acoustic1 or seismic
methods.10 These methods can detect submerged oil plumes
but they do not provide information about the spatial distribu-
tion of the stringy oil contaminants in the water. High-
frequency acoustic methods are promising since they can both
overcome the optical opacity of the water and resolve the
small-scale structure of the new forms of oil. Therefore, such
methods can be used both to localize submerged oil fields and
to characterize them in terms of their second order statistics.

The submerged oil in the water is modeled as a fluid me-
dium with spatial heterogeneity, potentially exhibiting
roughness at the interfaces with the water and possibly com-
prising inclusions of gas bubbles. Since the existence of sub-
merged oil is controlled by the ambient density it is a
reasonable assumption that the difference in the acoustic pa-
rameters between the two fluid media is small, producing
weak scattering of the incident acoustic energy.11,12
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Several authors13–17 have used the weak scattering
approach to model monostatic backscattering from inhomo-
geneous sediments in the seafloor. Palmese and Trucco13

incorporate the effect of volume reverberation from the
seabed to their model of imaging embedded objects with a
three-dimensional (3D) monostatic sonar configuration. Li14

and Li et al.15 model the monostatic backscattering from 3D
volume inhomogeneities in shallow water ocean sediments.

Tang16 and Ivakin17 developed independently the theoreti-
cal framework for a unified approach to describe weak scatter-
ing due to interface roughness and volume inhomogeneities,
i.e., spatial fluctuations of the compressibility and density,
from ocean sediments. The unified approach is based on the
assumption that the roughness can be described as a specific
kind of spatial fluctuation around an otherwise horizontal inter-
face. Ivakin17 further assumes that the weak scattering
approach is not restricted to small-scale roughness but it
extends to arbitrary roughness as long as the difference in the
parameters between the adjacent media is not large. The uni-
fied approach in modeling scattering from irregular media
facilitates the description of cases where the effect of volume
and surface scattering is comparable and potentially coherent.

In this paper the weak scattering approach is applied for
modeling the backscattered returns from inhomogeneous
substances in the water column. A random field generator is
introduced to implement a physical model of the inhomoge-
neous media and high-frequency active sonar is selected to
collect the backscattered returns. Relative to methods used
in ocean acoustics,14,15 the random field generator18 allows
local perturbations of the modeled random field.

It is shown that high-frequency acoustics can be used to
detect the submerged field and infer the parameters of its
spatial covariance. Traditional methods describe weak scat-
tering fields by comparing the statistical distribution of back-
scattering strength with known models.12,19,20 An alternative
method is proposed which allows the description of a sta-
tionary scattering field in terms of its second-order statistics
without prior knowledge of its spatial covariance.

II. SCATTERING FROM INHOMOGENEITIES

Since the focus of this work is on modeling volume scat-
tering, we undertake the derivation of the scattered pressure
due to a region R in the medium with spatial heterogeneity
in the acoustic parameters. The derivation follows the analy-
sis by Morse and Ingard.21

Assuming time-stationarity, the Helmholtz equation for
the scattered acoustic pressure p due to inhomogeneities in
the acoustic parameters is given by

r2pþ k2p ¼ #k2 !jðrÞp# div ð!qðrÞgrad pÞ; (1)

where k ¼ x=c is the wavenumber, x ¼ 2p f is the radial
frequency, c is the speed of sound, and
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are the deviations of the model parameters, namely, of the
compressibility and density, relative to their unperturbed
mean values, j and q, respectively. The fluctuations vary in
a statistical manner as a function of space.

Applying the Gauss-Green theorem, the Helmholtz
equation takes the form of the integral equation,

pðr0Þ ¼ piðr0Þ

þ
ð

R
ðk2!jðrÞpðrÞ #rð!qðrÞrpðrÞÞÞ gðr0jrÞdr

¼ piðr0Þ þ
ð

R
ðk2!jpgþ !qrprgÞdr; (2)

where g is the Green’s function and pi is the incident wave.
The Green’s function describes the sound pressure at an ob-
servation point r0 due to a point source located at r and is
given by

gðr0jrÞ ¼
1

4pjr0 # rj
e#ikjr0#rj: (3)

The time convention eixt is implied and neglected for
simplicity. For far field radiation the Green’s function takes
the form in Eq. (4), where r ¼ jrj,

gðr0jrÞ ¼
1

4pr
e#ikjr0#rj: (4)

The incident wave insonifies the region R. It emanates
from a monopole located at the origin of the coordinate
system out of the scattering region R and is given by
Eq. (5),

piðrÞ ¼ A
e#ikr

r
; (5)

where A is the pressure amplitude at a distance 1 m from the
source, k is the wavenumber of the incident wave, and r
denotes the location of the insonified point.

The integral equation, Eq. (2), is exact and valid
universally for parameter perturbations of arbitrary size.

FIG. 1. Schematic for a submerged dispersed oil plume within the water col-
umn. (a) The mean values of the acoustic parameters for the two media are
approximately equal. (b) Weak scattering can be observed due to random
fluctuations of the acoustic parameters from their mean values.
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Discontinuous perturbation can also be handled with Eq. (2)
since it does not involve gradients of the model parame-
ters.17 Nevertheless, solving Eq. (2) requires exact expres-
sions of the Green’s function and the sound pressure inside
the scattering region R. The integral equation for the scat-
tered wave can be solved analytically only for a few special
cases (e.g., scattering by spheres). Alternatively it can be
solved by variational methods or approximations.21,22

In the case of weak scattering, first-order scattering is
assumed, thus Born’s approximation is applied. Born’s
approximation implies that the sound pressure inside the
scattering region is equal to the incident sound pressure
neglecting the effect of higher-order scattering.21,22

The sound pressure observed at a remote position r0 due
to scattering from inhomogeneities in the acoustic parame-
ters located at r within a region R is determined by inserting
Eqs. (4) and (5) into Eq. (2). In a monostatic configuration
and assuming that the Born approximation is valid the scat-
tered sound pressure is given by21

psðr0Þ ¼
k2A

4p

ð

R
ð!jðrÞ # !qðrÞÞ

e#ikðjr0#rjþ rÞ

r2

" #
dr:

(6)

III. RANDOM FIELD GENERATOR

There are indications that the submerged oil extends
throughout the water column as elongated formations of vis-
cous material mixed with water and possibly with biological
material.3 Since the spatial distribution of scatterers due to dis-
persed oil varies in a complex way it is reasonable to model it
as a random field of compressibility and density perturbations
of the background medium with specified statistical properties.

In the absence of turbulence and for a short measure-
ment interval, the random field is assumed to be spatially sta-
tionary and time-invariant. Stationarity can be exploited to
develop a numerical method for synthetically generating ran-
dom fields.

A. Methods for generating random fields

The term random field generator refers to an algorithm
which utilizes uncorrelated normally distributed random
numbers to generate more complex random fields with spe-
cific spatial covariance characteristics.18,23,24 In principle,
the algorithm generates a stationary random field, e, by add-
ing a convolution of a random Gaussian field, n, with a
decomposition of the underlying covariance function, w, to
the mean value, m,

! ¼ mþ w & n: (7)

Several statistical methods have been proposed for syn-
thetically generating random fields which differ in the imple-
mentation of the convolution in Eq. (7). Using the Cholesky
decomposition of the covariance matrix,25,26 the convolution
is calculated by multiplying the lower triangular matrix by a
vector of random uncorrelated numbers. The moving aver-
age (MA) method27,28 offers an alternative implementation

of the covariance decomposition. In this method, the covari-
ance function is expressed as a convolution product of two
mirror symmetric functions. The function resulting from the
decomposition of the covariance function is further con-
volved with a set of uncorrelated random numbers on the
field grid. The drawback of this method is that it is generally
difficult to determine the decomposition function.18,27,28

Spectral methods perform the convolution in the spec-
tral domain using the fast Fourier transform (FFT) algo-
rithm.14,15,23,24 The spectral methods are based on the fact
that, for a stationary random field, the Fourier transform con-
nects the covariance function, CðhÞ, with its spectral equiva-
lent, the power spectrum, SðkÞ, where h and k are vectors
denoting the lag and spectral distance, respectively,29,30

CðhÞ ¼ h!ðrÞ!ðrþ hÞi

SðkÞ ¼
ð1

#1
CðhÞe#i2pkh dh: (8)

Since a convolution in the spatial domain is equivalent to
a product in the spectral domain and the Fourier transform of
a real and even function is also a real and even function, the
decomposition of the power spectrum is symmetric and can
be calculated by its square root. Thus, the spectral methods
generate random fields subject to specific covariance charac-
teristics by multiplying the square root of the power spectrum
by a set of complex Gaussian numbers, N ' CN ð0; 1Þ,
where CN ð0; 1Þ denotes the standard complex normal distri-
bution. Spectral methods perform the computations efficiently
due to the FFT algorithm. However, equidistant grids are
required. Besides, care should be taken on the selection of the
random numbers generated in the spectral domain to obtain
real-valued fields in the spatial domain.14,15,18,23,24

B. The FFT-MA generator

The numerical method used herein to generate discrete,
stationary, random fields for the perturbations is called the
fast Fourier transform-moving average (FFT-MA).18 The
FFT-MA method combines the advantages of the spectral
methods and of the MA approach. It performs the computa-
tions in the spectral domain using the efficient FFT algo-
rithm while preserving the generation of the random
numbers in the spatial domain as in the MA framework,

! ðrÞ ¼ mðrÞ þ F#1
$ ffiffiffiffiffiffiffiffiffi

SðkÞ
p

FfnðrÞg
&
: (9)

Briefly, the steps of the FFT-MA random field generator
algorithm involve:

(1) Calculation of the discrete covariance function CðhÞ on
a spatial grid with spacing at least half of the characteris-
tic length in each direction; see Sec. III C. It is important
to perform the discretization symmetrically to obtain a
real and even covariance function. Zero-padding at least
to the extent of a characteristic length is required to
avoid wrap-around effects.

(2) Generation of Gaussian random numbers from the
standard normal distribution on the spatial grid
nðrÞ ' N ð0; 1Þ.

2792 J. Acoust. Soc. Am., Vol. 134, No. 4, October 2013 Xenaki et al.: Detection of oil in sea water



(3) Fourier transform CðhÞ and nðrÞ to obtain the power
spectrum SðkÞ and the spectral representation of the ran-
dom numbers NðkÞ, respectively. Since CðhÞ is real and
even, SðkÞ is real and even as well.

(4) Computation of the square root of the power spectral
density as in spectral methods GðkÞ ¼

ffiffiffiffiffiffiffiffiffi
SðkÞ

p
.

(5) Inverse Fourier transforms the product GðkÞNðkÞ giving
the convolution product gðrÞ & nðrÞ.

(6) Generation of the random field !ðrÞ ¼ mðrÞ þ gðrÞ
& nðrÞ according to the MA framework.

Compared to spectral methods the generation of the ran-
dom numbers in the spatial domain allows local perturbations
which will practically affect the field values on the grid to the
extent of the correlation length. This is not possible in spectral
methods where changing a random number in the spectral do-
main affects the whole spatial domain. Similar to the spectral
methods, the FFT-MA algorithm requires regular grids in
each direction (i.e., equidistant spacing) in the spatial domain.

C. Covariance models

The implemented FFT-MA algorithm can generate one-
dimensional (1D), two-dimensional (2D), or 3D random
fields with a Gaussian, Eq. (10), exponential, Eq. (11), or
spherical, Eq. (12), covariance,31,32

CðhÞ ¼ r2e#3h2=l2 ; (10)

CðhÞ ¼ r2e#3h=l ; (11)

CðhÞ¼ r2 1# 3

2

h

l
#1

2

"
h

l

#3
 ! !

if h( l

0 if h> l;

8
><

>:
(12)

where h ¼ jhj is the lag distance (isotropic case), r2 ¼ Cð0Þ is
the variance, and l is the characteristic length. The spherical co-
variance function becomes zero at a distance equal to the char-
acteristic length. The Gaussian and exponential covariance
functions reach the zero value asymptotically and have
decayed by 95% at a distance equal to the characteristic length.

Figure 2 compares the three covariance models in the
isotropic case. For short lag distances near the origin the

Gaussian model has a parabolic behavior, suitable for model-
ing regular phenomena due to the smooth decay, while the
exponential and the spherical model decay linearly.32

In the multidimensional case, the implemented FFT-MA
algorithm can generate fields with geometric anisotropy as
well.31 In this case, the characteristic length is direction-
dependent. A linear coordinate transformation involving a
rotation and a scaling is used to include anisotropy in the
expressions of Eqs. (10)–(12).32

D. Examples

A variety of covariance models can be used to determine
the spatial properties of the generated field. In modeling this
gives flexibility in representing different qualities of the field
as smoothness or irregularity, isotropy or anisotropy. Figure 3
shows realizations of 2D anisotropic random fields with
Gaussian, exponential, and spherical covariance. The field with
a Gaussian covariance exhibits smooth characteristics while
the field with an exponential covariance is more irregular.

The random numbers and the covariance parameters are
dissociated and can be altered either separately or simultane-
ously. This is possible since the generating field is Gaussian
and the resulting field is a linear transformation of the
Gaussian field. The separation of the random and covariance
parameters gives great flexibility which is useful for inverse
methods. Figure 4 shows realizations of 2D anisotropic fields
with Gaussian covariance generated by retaining the set of
random numbers and altering the characteristic length. As the

FIG. 2. 1D Gaussian (full line), exponential (dotted line), and spherical
(dashed line) covariance functions as a function of the lag distance h. The
variance is r2 ¼ 1 and the characteristic length is l ¼ 4.

FIG. 3. Realizations of 2D anisotropic random fields with (a) Gaussian,
(b) exponential, and (c) spherical covariance on a grid of 50) 50 pixels.
The mean field is m ¼ 0 with variance r2 ¼ 1, major characteristic length
lmax ¼ 20 pixels in the horizontal direction and anisotropy factor (the ratio
of the minor to the major characteristic length) 0.2 for all models.

FIG. 4. Perturbation of covariance parameters only. Realizations of 2D an-
isotropic random fields with Gaussian covariance on a grid of 50) 50 pixels.
The mean field is m ¼ 0 with variance r2 ¼ 1 and anisotropy factor 0.2 in all
cases. The major characteristic length is occurring in the horizontal direction
and is (a) lmax ¼ 10, (b) lmax ¼ 20, and (c) lmax ¼ 30 pixels.
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characteristic length increases the spatial features are merged
to larger formations but they appear at the same location.

The ability not only to alter the set of random numbers
separately from the covariance parameters but also to perform
local alterations is the main improvement of the FFT-MA
algorithm with respect to spectral methods. This is due to the
generation of random numbers in the spatial domain. Figure 5
exhibits the effect of a local alteration of the random set.

In conclusion, the FFT-MA algorithm provides an effi-
cient and flexible method for implementing physical models
of random fields.

IV. MODELING AND DETECTION OF VOLUME
INHOMOGENEITIES

The random field generator and the propagation model are
the necessary tools in simulating backscattered returns from
weak scatterers. After choosing a receiving configuration, the
backscattered returns are post-processed using beamforming to
localize the scattering region from the received signals.

Active sensing (i.e., a pulse is used to insonify the area of in-
terest) and a monostatic configuration (i.e., the transmitter and the
receiver array are collocated) are considered here. A multibeam
sonar is chosen as the transmitting and receiving configuration.

Following the specifications in Ref. 33, the considered
transmitter emits a 200 kHz narrowband sinusoidal signal.
The pulse is gated with a Hamming window of 120 ls length
incorporating 24 periods. The duration of the transmitted
pulse, Ts, dictates the range resolution, Dr ¼ cTs=2. The
source level is 200 dB re 1 lPa at 1 m. The transmitter has a
directivity pattern characterized by constant response within
an angle of 140* in the across-track plane and a much nar-
rower opening angle of 2* in the along-track plane.

The receiver comprises Nm ¼ 256 hydrophones arranged
in a uniform linear array (ULA) with dm ¼ 1:6 mm spacing.
Delay-and-sum beamforming with Hamming weighting is
applied34 to impose directivity to the receiving array. The
sound speed profile is assumed constant. The half-power beam
width defines the angular resolution of the beamformer. The
beam width at broadside is sin#1½0:886ðk=NmdmÞ, - 18 with
uniform weighting34 and 1.4* with Hamming weighting. Even

though Hamming weighting degrades the angular resolution of
the beamformer, it is chosen since it significantly suppresses
the maximum sidelobe level from #13 dB with uniform
weighting to#43 dB.

Sound attenuation due to dissipation in sea water is
accounted for by introducing an imaginary part to the acoustic
wavenumber.11 The absorption coefficient is calculated
according to the Francois-Garrison equation.35,36 The attenua-
tion is attributed to absorption from pure water and from the
chemical relaxation of magnesium sulfate which is the main
absorption mechanism at frequencies within the range of 10
to 500 kHz. The absorption coefficient is a ¼ 50 dB/km for
salinity 35 ppm, temperature 6*, pH 8, depth 50 m, and fre-
quency 200 kHz, corresponding to a sound speed of 1470 m/s.
Even though the absorption for the oil contaminants is
expected to be larger, the excess of attenuation is neglected
since the sound propagates mainly into sea water.

Dynamic focusing is considered to relate the focusing
distance with the travel time (r ¼ ct=2), resulting in an infi-
nite depth of field.37,38 Time-varied gain (TVG) is applied to
compensate for spreading loss and absorption making the
received signals independent of the scatterer’s distance. This
corresponds to multiplication of the received signals, pr,
with a range dependent function f ðrÞ ¼ r2ea2r . In the pres-
ence of additive ambient noise, pr ¼ ps þ n, the application
of TVG to the received signals is expected to amplify not
only the signal, the scattered pressure ps, but also the noise
with increasing range. Nevertheless, ambient noise is
neglected since the scattered pressure, Eq. (6), is much
higher than additive noise in the received signal due to the
high source level and the high-frequency considered.

Since the transmitter of the sonar has a narrow directiv-
ity pattern in the along-track plane, only the 2D across-track
plane is modeled. The model grid extends horizontally from
x ¼ #100 to 100 m and vertically from z ¼ 0:5 to 100 m
with spacing dx ¼ dz ¼ 0:05 m in both directions. The
beamforming grid spans from h ¼ #708 to 70* with spacing
dh ¼ 1:48 and from r ¼ 0:5 to 100 m radially with spacing
dr ¼ 0:1 m. A range dependent correction, 1=rdhdr, is
applied to the reconstructed values on the beamforming grid
to compensate for the increasing width of the grid cells with
increasing range. The beamformer values are interpolated to
the model grid after the reconstruction. The resolution cells
become wider as the jxj and z values increase resulting in
lower resolution for distant locations. The range resolution is
constant and equal to 0.1 m.

For acquiring a 3D image, a planar array is required,
increasing the complexity of the processing. In this case
sparse arrays is an option.39

A. Volume heterogeneity

A 2D field of volume inhomogeneities is considered
representing the water column with a region of contamina-
tion characterized by a different covariance structure than
the rest of the field.3 The average compressibility and density
are constant throughout the field.

It is often assumed that the compressibility fluctuations
are proportional to density fluctuations with a position-

FIG. 5. Local alteration of the random numbers. (a) and (b) realizations of
2D anisotropic random fields with Gaussian covariance, mean m ¼ 0, var-
iance r2 ¼ 1, major characteristic length lmax ¼ 20 pixels in the horizontal
direction and anisotropy factor 0.2. The realization in (b) is generated by the
same set of random numbers except from a window of 10) 10 pixels (black
square) where the random numbers are locally perturbed. (c) The difference
between the realizations in (a) and (b). The region of perturbation aug-
mented by the characteristic length in each direction is marked with a
dashed rectangle.
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independent proportionality factor.19 Besides, compressibility
fluctuations are larger than density fluctuations in fluids.22

Therefore, only compressibility fluctuations are considered in
the model of volume reverberation.

The selection of the parameters is somehow arbitrary
due to lack of experimental information. For the pure water
region an isotropic Gaussian covariance model [Eq. (10)] is
selected with variance r2

j ¼ 0:001 and characteristic length
l ¼ 0:1 m. The contaminated region is expected to have a
higher viscosity and present layering due to oil/water inter-
face tension.40 Therefore, an anisotropic spherical covari-
ance model is selected for the contaminated region with
variance r2

j ¼ 0:01, major characteristic length lmax ¼ 2 m
occurring in the horizontal direction and minor characteristic
length lmin ¼ 0:5 m occurring in the vertical direction.
Figures 6(a) and 6(b) show the insonified area and the beam-
former output.

Figures 6(c) and 6(d) show another case where the inho-
mogeneous fields in the two regions differ only in the char-
acteristic lengths. Namely, the pure water region is described
by an isotropic Gaussian covariance model with variance

r2
j ¼ 0:01 and characteristic length l ¼ 0:1 m. The contami-

nated region is described by an anisotropic Gaussian covari-
ance model with variance r2

j ¼ 0:01, major characteristic
length lmax ¼ 2 m occurring in the horizontal direction and
minor characteristic length lmin ¼ 0:5 m occurring in the ver-
tical direction.

B. Surface roughness

Based on the unified formulation16,17 scattering from
surface roughness is modeled as a special case of spatial het-
erogeneity. Equation (6) is used to calculate the scattered
pressure attributed to surface roughness. In this case the co-
variance characteristics of the roughness at the interfaces are
described by a 1D Gaussian covariance model with a var-
iance of r2 ¼ 0:01 and a characteristic length of l ¼ 0:1 m.

Figure 7 shows the insonified area in the case of two dis-
tinct anomalous interfaces and the beamformer output.

C. Small gas bubbles

Exact formulas can be derived for the scattered pressure
from spheres owing to their simple geometry. When the
wavelength is long relative to the diameter of the sphere, the
Born approximation is valid and the expressions can be sim-
plified for simple scattering. The focus here is on light com-
pressible spheres like gas bubbles in water or oil, for which
the compressibility is larger, jg > j, and the density is much
smaller, qg . q, than the corresponding values of the ambi-
ent fluid. Following Ref. 21, the scattered pressure at r0 due
to a gas sphere at r with radius a smaller than the wavelength
of the insonifying wave is approximated by

psðr0Þ ¼ A
eikr

r

1

3
k2a3 jg

j
þ 3

" #" #
: (13)

Figure 8 shows the beamformed backscattered returns
from 103 bubbles with radius a ¼ 0:5 mm randomly distrib-
uted within the observation grid. The ratio of compressibil-
ities is jg=j ¼ 104 since the compressibility of water is on

FIG. 6. (a) and (c) 2D fields of compressibility fluctuations in the water col-
umn and (b) and (d) the corresponding beamforming reconstructions. The
contamination extends over 50 to 75 m depth characterized by a different co-
variance structure than the rest of the field. (c) and (d) The two fields differ
only in the characteristic lengths.

FIG. 7. (a) 2D field with two rough surfaces at 50 and 75 m, respectively,
and (b) the beamforming reconstruction.
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the order of j ’ 10#10 Pa#1 and of air is on the order of
jg ’ 10#6 Pa#1.

V. INFERENCE OF SPATIAL COVARIANCE
PARAMETERS

In an acoustic backscattering model of volume inhomo-
geneities, a statistical description of the field is more appro-
priate than a deterministic description due to the complex
structure of the inhomogeneities.30,41 Besides, a determinis-
tic description of the field has less to offer when the interest
is in studying volume reverberation in a medium where there
is flow, such as in the water column.

Typically, volume reverberation is described by the sta-
tistical distribution of the backscattering strength. The back-
scattering strength is defined as the ratio of the scattered
intensity to the incident intensity per unit volume in
dB.11,12,30,42,43 This measure is widely used in sonar applica-
tions concerned with target detection and identification44,45

or with the remote classification of weak scattering mecha-
nisms such as seafloor sedimentation by comparison to
known models.12,19,20 The backscattering strength is propor-
tional to the cross spectral density thus related to the statisti-
cal properties of the field.20,44,46 However, for narrowband
measurements the backscattering strength provides a single
measure and additional information for covariance parame-
ters are required to relate the spatial variation of the scatter-
ing field to a covariance model. Herein, an alternative
method is proposed to infer the covariance parameters of the
scattering field directly from the beamforming reconstruction
without using prior knowledge on the spatial covariance.

Using the Fraunhofer approximation, the range in the
phase term of the far field expression of the Green’s function
[Eq. (4)] can be approximated by the first-order terms of a
second-order binomial expansion,37

jr0 # rj - r # r̂ / r0; (14)

where r ¼ jrj and r̂ ¼ r=r is the unit vector in the direction
of the scatterer’s location.

After application of dynamic focusing and TVG (com-
pensating for the r2 attenuation term), the signals received at
the horizontal sensor locations, xq ¼ ½q# ðNm # 1=2Þ,dm,
q ¼ ½0; 1; :::; Nm # 1,, according to Eq. (6) are

pqðrÞ /
X

h

!jðh; rÞe#ikð2r#xq sinðhÞÞ

/ e#ik2r
X

h

!jðh; rÞvðhÞ; (15)

where r is the radial distance of focus and vðhÞ ¼ eikxq sinðhÞ.
Applying conventional beamforming with Hamming

weighting to the received signals, the beam associated with
the steering angle hf at radial distance r is

bf ðhf ; rÞ ¼ ðwH 0 vðhf ÞÞ† / pqðrÞ; (16)

where wH is the vector of the Hamming weights, † denotes
conjugate transpose, and 0 denotes element-wise
multiplication.

Introducing the beam pattern as a function of the arrival
angle h when the array is steered at hf ,

34

BHðh; hf Þ ¼ ðwH 0 vðhf ÞÞ† / vðhÞ; (17)

the beam bf ðhf ; rÞ is expressed as

bf ðhf ; rÞ ¼ e#ik2r
X

h

!jðh; rÞBHðh; hf Þ: (18)

Thus the beamformer output normalized by the maxi-
mum value in the beamforming reconstruction is connected
to the field values as

boutðhf ; rÞ ¼

'''
X

h

!jðh; rÞBHðh; hf Þ
'''
2

maxðhf ; rÞ

'''
X

h

!jðh; rÞBHðh; hf Þ
'''
2

(19)

or

bðhf ; rÞ ¼
ffiffiffiffiffiffiffi
bout

p
¼

'''
X

h

!jðh; rÞBHðh; hf Þ
'''

maxðhf ; rÞ

'''
X

h

!jðh; rÞBHðh; hf Þ
'''
:

(20)

According to Eq. (20), the square root of the beam-
former output at a point on the beamforming grid contains
the contribution of all the field values on the radial distance
of focus, !jðh; rÞ, weighted by the beam pattern. However,
the more the beam pattern resembles a delta function, the
more the square root of the beamformer output, bðhf ; rÞ, will
be proportional to the corresponding field value, !jðhf ; rÞ.
Thus, the parameters of the spatial covariance of a field of
volume inhomogeneities can be estimated by the statistics of
the square root of the beamforming output.

For a stationary random process, u, the discrete spatial
covariance function can be estimated from a finite number of
samples, N, as47

FIG. 8. (a) 2D field with randomly distributed small gas bubbles and (b) the
beamforming reconstruction.
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ĈðgÞ ¼ 1

N

XN#g

i¼1

ðuiþg # !uÞðui # !uÞ; (21)

where g ¼ 0; 1; :::; N # 1, !u ¼ 1=N
PN

i¼1 ui is the sample
mean and denotes an estimate.

For a 2D field the sample covariance estimate is

Ĉðhx; hzÞ ¼
1

Nx

1

Nz

XNx#n

i¼1

XNz#f

j¼1

ðbcðxi þ hx; zj þ hzÞ

# !bcÞðbcðxi; zjÞ # !bcÞ; (22)

where Nx, Nz denote the number of sample grid points in
the x and z directions, dx, dz are the corresponding grid spac-
ings, n ¼ 0; 1; :::; Nx # 1, f ¼ 0; 1; :::; Nz # 1 and hx ¼ ndx,
hz ¼ fdz are the lag distances in the x and z directions,
respectively.

In order to obtain the beamformer values on the sample
grid in Cartesian coordinates, bcðx; zÞ, interpolation is used
based on the nearest neighbor method.

Covariance sample estimates are calculated for the field in
Fig. 6(b). The sampling window has dimensions Nxdx ¼ 10 m
(dx ¼ 0:05 m) in the x direction and Nzdz ¼ 1 m (dz ¼ 0:05 m)
in the z direction. The sampling window is chosen such that it
exceeds the correlation lengths in each direction and that it is
small enough to examine areas where the resolution cells have
approximately the same size, thus fulfill the condition of spatial
stationarity. Additional averaging over 20 beamforming recon-
structions is used to improve the statistical estimate. Since the
covariance is expected to be non-negative, only non-negative
values are used.

Figures 9 and 10 show examples of covariance estima-
tion when sampled at the contaminated region characterized
by an anisotropic, spherical covariance model and at the sea
water region characterized by an isotropic, Gaussian covari-
ance model, respectively. The specific samples are centered
to the grid where the beamformer resolution is 1:2 m in the x

direction (due to beam width) and 0:1 m in the z direction
(due to time-gating). Specifically, the sampling windows
extend from #5 to 5 m in the x direction and from 52:5 to
53:5 m and 48:5 to 49:5 m, respectively, in the z direction.
The theoretical [Figs. 9(a), 9(b), 10(a), and 10(b)] and esti-
mated [Figs. 9(c), 9(d), 10(c), and 10(d)] covariance func-
tions are compared in the direction both of the major and the
minor characteristic length for the two fields. The variance
corresponds to the maximum value of the covariance func-
tion at zero lag. The characteristic length corresponds to the
lag where the covariance function has decayed by at least
95% and is denoted by a dashed line in each case.

For the contaminated region (Fig. 9) the sample covari-
ance provides good estimates of the characteristic lengths in
both directions since the characteristic lengths exceed the re-
solution. Contrary, at the sea-water region (Fig. 10) the char-
acteristic length is smaller than the resolution in the x
direction of the beamformer, thus the estimate does not
reflect the actual values of the parameter but rather the reso-
lution limits; note the scale difference on the hx axis.

VI. CONCLUSION

Detection and characterization of submerged oil in the
sea water is studied with a model of backscattering from vol-
ume inhomogeneities. The physical model for the submerged
oil is represented as a random field of compressibility fluctu-
ations which exhibits stationary spatial correlation. A ran-
dom field generator based on the FFT-MA approach is
introduced to implement the physical model. The proposed
algorithm provides great flexibility in different modeling
scenarios. An active, high-frequency, monostatic sonar is
selected to insonify the medium and collect the backscat-
tered returns. The random field is localized with beamform-
ing and inference of spatial covariance is based on the
statistics of the beamforming reconstruction.

The simulation results indicate that inference of the spa-
tial covariance parameters is possible with high-frequency

FIG. 9. (a) and (b) True and (c) and (d) reconstructed covariance function
for the region characterized by an anisotropic, spherical covariance model
with variance r2

j ¼ 0:01, major characteristic length lmax ¼ 2 m in the x
direction and minor characteristic length lmin ¼ 0:5 m in the z direction. The
dashed lines denote the characteristic lengths in each case.

FIG. 10. (a) and (b) True and (c) and (d) reconstructed covariance function
for the region characterized by an isotropic, Gaussian covariance model
with variance r2

j ¼ 0:001, and characteristic length l¼ 0.1 m. The dashed
lines denote the characteristic lengths in each case.
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acoustics, providing a quantitative statistical description of
the random field. Nevertheless, the reconstructions are sub-
ject to resolution limitations of the sonar. The use of high
frequencies, resulting in narrow beam widths, improves the
resolution and allows the detection of small scale character-
istics. On the other hand, the use of high frequencies requires
challenging sonar designs with high power demands, since
high-frequency sound attenuates fast when propagating in
the water, and small interelement spacing.
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