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Abstract—In this paper, we explore a sequential Bayesian bound
for state-space models focusing on hybrid continuous and discrete
random states. We provide an analytic recursion for the sequential
Weiss–Weinstein (SWW) bound for linear state-space models with
solutions for Gaussian, uniform, and exponential distributions as
derived, as well as for a combination of these. We compare the
SWW bound for discretized states with the corresponding bound
for the continuous states. The SWW bound is contrasted with the
sequential Cramér–Rao bound for Gaussian distributions. Prac-
tical issues of SWW bounds are discussed and numerical simula-
tion results provide insights into their behavior.

Index Terms—Analytic sequential Weiss–Weinstein lower
bound, Bayesian estimation, exponential distributions, uniform
distributions, Gaussian distributions.

I. INTRODUCTION

R ECENT investigations in the area of joint field and state
estimation can be categorized as deterministic [1]–[3]

and stochastic [4]–[8] approaches. In this paper, we follow a
stochastic approach in a Bayesian framework. The study of
lower bounds on the mean-square error matrix of a Bayesian
estimator [9]–[12] entails various bounds [13]–[16].
We are interested in a Bayesian lower bound for state esti-

mators which are applicable jointly to discrete and continuous
random state variables. Additionally, the bound shall support
the corresponding probability densities with finite support. Dis-
cretization of physical models described by partial differential
equations [4], [5] or by static formulations induce discretized
states [17]. These models often feature loosely coupled state
variables. Due to the loose coupling, these models are inter-
preted as reduced-order models. Sequential Cramér–Rao (SCR)
bounds were developed [6], [18] for continuous random states.
It turns out that the regularity conditions for the applicability
of the Bayesian Cramér–Rao (CR) bound are too restrictive for
discrete states [19].We seek bounds with relaxed regularity con-
ditions which are applicable to discrete state variables. This re-
quirement guides us to the Weiss–Weinstein (WW) bound [13],
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[15], [20], [21]. The temporal evolution of states is described
by a state-space model and motivates the extension of the WW
bound to a sequential formulation (SWW) [22], [23].
Apart from the underlying theory of SWW bounds [23], [24]

and the application to fault-prone systems [25], [26], we are
not aware of any explicit analytic results for specific probability
densities nor their rigorous derivations.
This paper is organized as follows. In Section II, the use of

the WW bound is introduced leading to the general formulation
of the SWW bound. In addition to the referenced literature, we
motivate the use of the SWW bound for hybrid continuous/dis-
crete distributions and densities with finite support. We provide
a general description of the bound utilizing the expectation op-
erator. Furthermore, we emphasize foundations, which we need
for the proofs in the subsequent sections. After definitions of
discretized and hybrid models in Section III, key contributions
of our paper follow:
• We provide an analytic SWW recursion for a linear state-
space model (Section IV).

• The SWW bound for Gaussian distributions (Section IV),
uniform distributions (Section V), and exponential distri-
butions (Section VI) is presented.

• The SWW bound for discrete models, where the dis-
crete states stem from discretization of continuous states
(Section III to Section VI).

• Practical issues are addressed in Section VII: special prior
distributions, the choice of SWW’s test point matrices, the
computational effort, and partly deterministic noise.

• The final example (Section VIII) demonstrates the SWW
bound for a three-dimensional state-space model for dif-
ferent probability distributions and compares them to a
Bayesian filter (Kalman or particle filter).

Several lemmas are summarized and proved in the Appen-
dices.

II. BAYESIAN LOWER BOUNDS

This section is inspired by [13], [23]–[26] and introduces the
sequential SWW bound. We address hybrid discrete/continuous
state vectors and emphasize properties for subsequent sections.

A. Preliminaries on Probability Theory

Let us assume a probability space with the
sample space , the Borel algebra and the measure

. The expectation of a function is defined
using the probability measure by

(1)
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We assume a probability measure consisting of a continuous
and a discrete part [27], [28], i.e.,

(2)

with . Inserting (2) into (1), the latter
one splits into one integral with Lebesgue measure

and another one with
counting measure where and is
the indicator function. We arrive at

(3)

with the probability density function (PDF)
and the probability mass function (PMF)

.

B. Bayesian Bounds

In the following, we denote a hybrid continuous/discrete
probability density by

and call it simply probability density (PD).
Especially when no measure is specified this notation allows
the consideration of continuous and discrete random variables.
We use the notation whenever we assume the existence
of a density for the random variable . To simplify notation,
we use , , and

. In the sequel, is the -dimensional parameter
vector to be inferred from the perturbed measurements

(4)

with a mapping and measurement noise . The resulting es-
timation error of estimate is defined by

(5)

The Bayesian lower bound is a lower bound for the mean-square
error (MSE) of any Bayesian estimator. With being a
real-valued measurable function satisfying ,
the mean-square error matrix [13] is lower bounded by

(6)

where is a non-singular matrix. The elements of all
matrix must be finite. The relational operator indicates that
the difference between left and right hand sides is a positive
semi-definite matrix. The function is a sensitivity func-
tion termed score which defines specific Bayesian bounds.
1) Cramér–Rao Bound and Bobrovsky–Zakai Bound: For

the Cramér–Rao lower bound (CR) the score of a continuous
random parameter is defined by

(7)

with the assumption that for all
and . The th element of is denoted by .

Furthermore, the first and second derivatives of with
respect to must exist and be absolutely integrable. Inserting
(7) into (6) gives [13]

(8)

with being the Bayesian information matrix.

For discrete , the in (7) is approximated by the difference
quotient

(9)

where , and only the
elements of the unit vector is unity. Variables specify the
sample period if the densities are discrete approximations of
continuous ones. This allows the use of hybrid continuous/dis-
crete densities . One alternative to the score (7) is

(10)

with . This score is a special case of
Bobrovsky and Zakai’s [29] (BZ) choice of score,

(11)

Here, is the likelihood ratio

(12)

which is equivalent to the Radon–Nikodym derivative of prob-
ability measure with respect to . The BZ lower bound
is [29]

(13)

where
(14)
(15)

The specific choices of the test points and influence the
lower bound on the mean-square error of elements and .
The Radon–Nikodym derivative (12) exists if and only if

is absolutely continuous with respect to . This means that
the support of is part of the support of . This is not the case
for truncated densities such as the uniform density. Thus a more
general bound is necessary.
2) Weiss–Weinstein Bound: The Weiss–Weinstein (WW)

lower bound is a generalization of the BZ bound. In the sequel,
we use the score

(16)

where (cf. [13], [20], [30] with ).
Inserting (16) into (6), the WW bound is given by

(17)

where

(18)

with the negative non-metric Bayesian Bhattacharyya distance
(BD) between and , [31], [32],

(19)
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The corresponding Bayesian Bhattacharyya coefficient
(20)

lies between zero and unity. The more uniform the density
is, the closer is to unity. The more general WW score

in [13] is linked to the more general -Chernoff divergence and
its coefficient [33].

C. Sequential Weiss–Weinstein Bound

The sequentialWeiss–Weinstein bound is the extension of the
WW bound to a process with discrete time
[22], [23]. The evolution over time is described by a state-space
model

(21a)
(21b)

with a mapping and state noise . We first consider the
joint WW bound for the prior and history of states

for deriving a recursive algorithm to iteratively
compute the WW bound of every time step . A block-diagonal
matrix defines the test point matrix

. . . (22)

The matrix corresponds to in (17) at
time . Using the error vector , the
mean-square error matrix

(23)

The overall matrix can be partitioned into

(24)

with and is the zero-ma-
trix of size . Matrix captures informa-
tion from the times , the time and
the transition between them. The matrices in (24) are due to
the Markovian property, i.e.,

For the time , we have , i.e., the bound of
the prior.
In the remainder of this section, we derive a recursive update

for the WW bound at time , i.e.,

(25)

In addition to (24), we consider the time interval and
partition the overall matrix

(26)

Matrix captures the time , the time and
the others the transition between the time instances. Using the
Schur complement, the right lowest part of is given by the
inverse of

(27)

We compare it with

(28)

The sequential update becomes

(29a)
(29b)

for all . Matrix whereas is set to the
co-variance of the prior. According to (19) and (26),

(29c)

with

(29d)
(29e)
(29f)
(29g)

and (29h) at the bottom of the page with

(29i)

In contrast to [22], we use Expectation (1) in (29h) and this
entails an additional density in the denominator.
Inspecting (29h) and (26) leads to Proposition 1.
Proposition 1: Given a time-invariant state-space model with

time-invariant noise distributions and sub-matrices .
Then and for .

(29h)
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D. Linear Models

We condense, reformulate, and expand Assumption 1, Class
1, and Lemma 5 of [22]. This enables Section III to draw on the
following lemmas.We further utilize Expectation (1) and finally
approach linear models.
Lemma 2: If the expectation in (29h) can be factored into

independent expectations, i.e.,

(30)

where

(31)

then

(32)

Proof: Let us focus on (29h). We first recast (29h) as (33)
and omit all zero vectors and . To compute , Part
(33a) and (33b) at the bottom of the page, are separable. Part
(33a) is an expectation . To com-
pute and we assume independent expectations (30).
Thus, Part (33a) and Part (33b) are also separable. Part (33a) is
an expectation . For in (29h), the expecta-
tion . For , ,
and , the expectations are equal. Thus the

cancels in (29h). What raises is identical to .
Lemma 3 (Linear Transition Equation): Given a linear state-

transition equation

(34)

Then the conditions for (30) are fulfilled.
Proof: Integrating over the transition densities (as in (1))

(35)

with and the conditional probability measure
. Observe that (35) is independent of time .

Additionally to the transition equation in Lemma 3, we ad-
dress the measurement equation.
Corollary 4 (Linear Measurement Equation): Given the

linear transition equation (34) and the measurement equation

(36)

Let the state and measurement noise be independent.
Then

(37)

with

(38a)

(38b)

i.e., the expectation over splits into expectations
w.r.t. .

Proof: The factorization corresponding to the transition
densities have been proved with Lemma 2. Dually, the factor-
ization of the integrals concerning the measurement noise are
proved in the following.
Due to the additivity of the measurement function,

(39)

with .
Due to the independence of and and their independence

from time , (33) is separable into factors due to innovation
and measurement noise.
Next we assume independence between continuous and

discrete random sub-vectors of the innovation noise vector, say

(40)

(33a)

(33b)
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Corollary 5: With (34), (36), and (40), Equation (37) factor-
izes further into

(41)
where denotes the expectation over continuous probability
distributions whereas denotes the expectation over discrete
ones.
In the remainder of our paper, we compute the expectations

in (41) for different noise and priors.

E. Sequential WW Bound for the Linear Transition Model

Recursion (29) simplifies if the transition function is
linear. Applying the matrix inversion lemma to (24) gives

(42)

Substitution of (42) and (32) into (27) leads to

(43)

with and [22].

III. MODELS

In the remainder, we use Corollary 4 and 5 to derive analytic
SWW bounds for different noise and prior. The solutions are
general in the sense that the structure is the same for different
distributions. Furthermore, we investigate the SWW bound for
the case of states and noise quantized uniformly from contin-
uous distributions. We prove that SWW bounds of continuous
and uniformly quantized states are equal for suitable choices of
. We assume uniform quantization with step size , i.e.,

ZZ and the probability densities are sampled and
normalized.
Similar to the continuous linear state-space model (34) and

(36), we define the discrete model

(44a)
(44b)

(44c)

and the hybrid model

(45)

where , and are PDFs of interest. Factors and
normalize the densities. Variable is the number
of states.

IV. ANALYTIC SOLUTION FOR GAUSSIAN NOISE/PRIOR
In this section we derive lower bounds for Gaussian [34]

noise and priors , i.e.,

(46)

with the mean , the covariance matrix , and the
weighted norm . For this case, we use
the Bayesian Bhattacharyya coefficient (20)

(47)
For discretized Gaussian densities, ZZ . We make ex-
tensive use of Lemmas formulated in the Appendix A.
Theorem 6 (SWW Bound/Gaussian Distributions): Consider

a linear continuous, discrete, or hybrid state-space model. Let
the prior, the innovation noise, and the likelihood function be
Gaussian and statistically independent. Then the SWW lower
bound (25) for is computed by (43) with (50) at the
bottom of the page, with , which corresponds to

(48a)

(48b)

(48c)

(50)
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For the initial , matrix for (43) is given by (51), shown
at the bottom of the page, with , i.e.,

(49)

Proof: First, the semi-invariant BD (29c) is re-cast into
(29h).According to (22), if and .
Thus we may remove them from (29h). Due to linearity we
invoke Corollary 4. We apply successively Lemmas 14, 15, and
16. Together with (47), we get the analytic solution of the BD.
Inserting this four-times into (29c) givesus oneelement of .
Further details for are given in (52), shown at the

bottom of the page. There the BD for the elements of
is derived. From the beginning we consider the existence of a
PD, either PDF or PMF. This gives the first two lines in (52).
Finally, we insert the last line four times into (29c).
For we use the fact that , and

. The main difference to is the
equality

(53)

Inserting (47) into (50) gives (48).
Observe that the hybrid and discretized models assume that

in (2), i.e., the densities are either continuous or
discrete. For hybrid densities with and due to (3),
the integrals split into discrete and continuous parts.
In the next sections, we observe that the structure of (43),

(50) and (51) is similar for other distributions. Hence, (50) is
discussed in detail.
Let us compare with (8) and (60) in [32], where we

set to Gaussian and to .
This shows that Function is the Bhattacharyya coefficient

. In (50), quantifies the non-constancy of the
densities. The sharper a density is, the lower is.
We observe that the structure of (50) stems from (29c). Ma-

trix reflects the influence of innovation and measurement
noise at time on . Therefore, transition matrix and mea-
surement matrix arise. Matrix addresses
the transition between and . Thus, it is independent of
the measurements and there is no function . Matrix
addresses only time . The structure is the same as of
except that no occurs due to causality.
For Gaussian densities, (50) becomes (48). For small -vec-

tors, . Thus we get

(54a)

It represents the influence of noise on the SWW bound at time
, hence vectors and affect the bound due to

measurement noise at and transition noise at (cf. equation
(34)). The transition between and is represented by

(54b)

and hence the bound is affected by transition noise at , i.e.,
and perturb the matrix. Eventually,

(54c)
represents the noise at time affecting time . This includes
measurement noise at and transition noise at and .
Note that the higher the variance of a Gaussian distribution,

the flatter its density. In (54), the higher the variances, the
smaller the -matrices. Smaller -matrices tends to give a
smaller . This gives an increased bound (25).
Under one condition, the SWW bound for the continuous, the

discretized, and the hybrid models are equal:

(51)

(52)
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Proposition 7 (Equality of Bounds): Given the continuous
model (34), the discrete model (44), and the hybrid model
(45). Let all distributions be either continuous or discretized
Gaussian. If

ZZ (55)

then the SWW bound of all three models are equal.
Proof: Consider the proof of Theorem 6. First, we address

the prior. We compare the integral with respect to the Lebesque
measure for the continuous model with the integral with respect
to the counting measure for discretized and hybrid models. Let

ZZ . If

(56)

then

Next we consider the innovation noise. Inspecting Lemma 14
gives

(57)

and this leads to (cf. Equation (51)). Addition-
ally, inspecting Lemma 16 gives

(58)

The -matrices become equal for all three models.

V. ANALYTIC SOLUTION FOR UNIFORM DISTRIBUTIONS
Similar to previous section, we now provide the analytic

SWW bound for multivariate independent uniform densities
[34], i.e.,

(59)

with indicator function . We utilize

,
else.

(60)

The width of the support is

,
ZZ .

(61)

Note that discretized uniform random vectors have
ZZ whereas discrete

uniform random vectors have ZZ by definition.
Thus, for the i.i.d. continuous uniform distribution and
discretized distributions

(62)

whereas for the i.i.d. discrete uniform distribution ZZ

(63)

Vector denotes the mean of and the one-vector. This
leads to

,
ZZ .

(64)

Theorem 8 (SWW Bound/Uniform Distributions): Consider
a linear continuous, discrete, or hybrid state-space model. Let
the innovation noise, the measurement noise and the prior be
uniform and independent. Furthermore, let the elements of the
vectors be statistically independent. Then the SWW bound (25)
is given by (43), (51), and (50) at the bottom of a previous page
where all .

Proof: The derivation proceeds as in the proof of Theorem
6 but uses Lemmas 18, 17, and 19 from the appendices.
Corollary 9 (Uniform Prior, Gaussian Noise): Consider a

linear continuous, discrete, or hybrid state-transition equation.
Let be uniform, and both the measurement
and the innovation noise be Gaussian. Then

(65)

in (51).
Proof: The derivation proceeds as in the proof of Theorem

6 but uses Lemma 18.
The finite support of the uniform distribution induces bounds

on the test-point matrix :
Proposition 10 (Box Conditions): Given a linear state-space

model with multivariate independent uniform noise and prior.
Then for all

(66a)
(66b)
(66c)
(66d)

Furthermore,

(66e)

Proof: Bounds (66a) to (66c) stem from (95) in Lemma 17.
Bound (66d) stem in a similar way from (100) in Lemma 19.
If both and , the SWW bound collapses

to the SCR bound [13], [24]. For uniform distributions, the SCR
bound does not exist because of the finite support and this leads
to (66e).
The upper bounds are important constraints on . Assume

that , has a much larger support than the support
of all other . Then the maximum possible

is defined by the minimum through (65).
Proposition 11 (Equality of Bounds): Given the continuous

model (34), the discrete model (45), and the hybrid model (45).
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Let the PDs be independently uniformly distributed. Both, the
discrete and the hybrid model are discretized continuous models
and thus ZZ . If

ZZ (67)

then the SWW bound of the discrete, the continuous, and the
hybrid models are equal.

Proof: The proof proceeds as that of Proposition 7 but uses
Lemmas 17 to 19 instead of Lemmas 14 to 16.

VI. ANALYTIC SOLUTION FOR EXPONENTIAL DISTRIBUTIONS

This section is devoted to the analytic SWW bound for
models with either continuous or discretized multivariate inde-
pendent exponential densities [34], i.e.,

, (68)

Factor normalizes the densities and parameter .
If is continuous, then . Note that is the inverse
of the mean and standard deviation of . It is convenient to
define

,
,
,

(69)

with , , and for discretized densi-
ties.
Theorem 12 (SWW Bound/Exponential Distributions): Con-

sider a linear continuous, discrete, or hybrid state-transition
equation. Let the noise and the prior be defined by a multi-
variate independent exponential distribution.
Then the SWW bound (25) and (43) for the state vector is

given by (50) at the bottom of a previous page where

(70)

Proof: The derivation of the WW lower bound for
Gaussian noise and prior (Theorem 6) leads to the proof:
Starting with (29c), the BD (29h) is computed for the noise
under consideration. A re-cast of the latter one is derived in
(33). Next we use Corollary 5 and get multiplications of expec-
tations. They compute as in Lemmas 20 and 21. Finally, we get
(50) at the bottom of a previous page whereby .
Corollary 13 (Prior): Consider a linear continuous, discrete,

or hybrid state-transition equation. Let
and be independently exponentially dis-
tributed. Then the SWW bound is given by Theorem 12 except
that we utilize in (51) with

(71)

Proposition 7 for Gaussian distributions is not applicable
for exponential distributions due to the additional factor

and the case differentiation in (69).

VII. PRACTICAL ISSUES

In the sequel, we address practical problems arising. Note that
the test-point matrix defines a specific SWW bound of the
SWW family.

A. Computational Effort

The non-sequential WW bound (23) computes
elements of , where is the discrete time duration. This
bound is quadratic in time whereas the SWW bound is constant,
linear, or quadratic:
Consider the sequential WW bound (25) for a linear state-

space model with an analytic solution (50).With (43), it requires
the computation of elements in each of the matrices

, , and . The number of operations to compute
each element is independent of . Hence, elements are
computed and the effort is linear in time.
Moreover, if , , and the test-point matrix
is constant for , then . The

computational effort is constant over time. Consider the general
SWWbound (25) with (29), without closed-form solution , and
a state-space model with discrete multivariate distributions of
finite support . The expectation (29h) then simplifies to

sums each summands. At each
, (29h) is computed for 4 matrices , , ,

and of size . Thus, we obtain ,
i.e., the effort is quadratic in time (cf. [35]).

B. Impact of the Test-Point Matrix

The optimal choice of the test-point matrix maximizes
the WW bound. Even without a general optimal solution to this
maximization, we provide some useful guidelines. To keep the
discussion simple, an one-dimensional linear transition model
is considered with Gaussian, uniform, and exponential distribu-
tions, i.e.,

(72a)
(72b)

with , , . For Gaussian and uni-
form distributions whereas for the exponential
distributions , , and .
Fig. 1 plots the SWW bounds and sequential CR (SCR) bounds
vs. at two time steps and [10].
The SCR bounds only exists for the twice differentiable

Gaussian density. In that case, when , the SWW
bound approaches the SCR bound which is the optimum. For
uniform distributions, the test points are box constrained
by (66). Fig. 1 shows only the positive part of this allowed
interval and the point of maximum SWW bound is close
to . Notice that at , where the influence of
the prior is small, that the uniform prior / Gaussian noise case
approaches the all-Gaussian case, i.e., the influence of the prior
fades with time. The markers in Fig. 1 show the optimal
test points obtained numerically. Observe that the high
mode of the exponential density at lowers
its bound.
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Fig. 1. Impact of on the SWW bound for the state (71a) for Gaussian
prior/noise (G/G), uniform prior/Gaussian noise (U/G), uniform prior/noise
(U/U), and exponential prior/noise (E/E). For small , the G/G SWW
bounds approach the SCR bounds. Markers indicate the optimal for
maximum SWW.

For dimensions greater than one, it is more difficult to obtain
optimal matrices . The th row of the transition
matrix specifies its dependency on all states. Similarly, the th
column of the specifies, which states are considered for the
computation of the th-state’s SWW bound. This suggests that
the positions of non-zero elements in should agree with .
The tightness of the SWWbound depends on two contrary ef-

fects of . For illustration, consider a one-dimensional state-
space models with test point . On one hand (Effect
1), small gives Bayesian Bhattacharyya coefficient and
hence in (50) becomes small. The difference (43) becomes
small, which in turn leads to high . On the other hand (Ef-
fect 2), in (25) is a quadratic form where occurs, i.e.,
it lowers the bound.
For Gaussian distributions, if , the coefficients go faster

to 1 than . This is seen by inserting approximation
(54) and (43) into (25) with , , and

i.e.,

(73)

(cf. (4.43) to (4.45) in [10]). Here, the cancels, which is not
true for non-Gaussian distributions whose coefficients are not
approximately linear functions of for . Eventually,
Effect 1 is stronger than Effect 2 and hence the bound is tight.
At , the derivatives of the Bayesian Bhattacharyya

coefficient for i.i.d exponential, uniform, and Gaussian distri-
butions are ordered,

(74)

The smaller the derivatives, the more dominant Effect 2 and the
looser the bound (cf. Fig. 1). Thus the SWW bound for expo-
nential distributions is the loosest (cf. example in Section VIII).

C. Computation of the Prior

Consider a hybrid model (45) where the state is modeled
by

(75)

with time horizon . Function might be a source in an
acoustic field with the sum representing the evolution of the
corresponding acoustic field during time steps [5]. The prior

is computed by marginalizing the joint probability
density

(76)

Fortunately, the explicit computation of the marginal is
not necessary in our context since we are only interested in the
lower bound of the mean-square error and not in the PD itself.
Therefore we assume a known PD at time , i.e., it carries
over the role of the prior. The SWW bound (25) recursively
computes the WW bound until time 0. Clearly, in this time in-
terval no measurements influence the bound, i.e.,

(77)

Due to the existence of a density and the independence of the
states, the expectations (38b) reduces to for

. This causes in (50). Briefly speaking,
our approach uses a simplified version of the SWW recursion
instead of the explicit computation of the prior at time zero.

D. Partly-Deterministic Transition Equations

An interesting problem occurs when some parts of the
transition equation (for instance (21a)) are deterministic, i.e.,
no noise is added. This results in a singular matrix .
This causes the Bayesian bounds to become singular (cf.
Section II-B). For SCR bounds, [18] performs regularization
by assuming additive noise with small variance. This may meet
most physical problems, so does a discretized physical field.

VIII. EXAMPLES

In this section, the following linear state-space model demon-
strates the bounds derived for different distributions:

(78a)

(78b)

The first state depends on itself and the second
whereas the others depend only on themselves. Equation (78b)
measures and .
We plot the diagonals of the SWW bound (25) with the

arbitrary test-point matrix

(79)
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Fig. 2. The SWW lower bounds for the th element of [cf. (78)] for (a)
continuous/discretized Gaussian prior/noise, (b) continuous/discretized uniform
prior/noise, (c) continuous exponential prior/noise, and (d) continuous uniform
prior/Gaussian noise. Additionally, in (a) the SCR bound and in (b)-(d) the
mean-square error of a particle filter are shown. Time shows the prior
error variance.

The computation of Element utilizes vectors and
for . Although Fig. 2 shows only the diag-

onals of , i.e., the bound on the mean-square error, update
(43) demands for the non-diagonal elements of .
We discuss four settings for continuous distributions in Fig. 2:

the all-Gaussian, the uniform prior/Gaussian noise, the all-uni-
form, and the all-exponential case. Their covariance matrices
are and . The Gaussian and
uniform distributions have zero-mean. The means of the expo-
nential distributions equal their standard deviations.
The all-Gaussian case is plotted in Fig. 2(a). The SCR bound

exists and is shown as [10]. The test point and
the SWW bound approaches the SCR bound. The SCR bound
is achieved using a Kalman filter. State is observed and
has the lowest bound. State depends additionally on state

and hence has a higher bound. State is not directly
observed and thus has the highest bound.
The all-uniform case, Fig. 2(b) is similar to the all-Gaussian

case except that the SWW bounds of the observed states are
close together. The test point is the value of the
tightest SWW bound. The all-exponential case is demonstrated
in Fig. 2(c) with . Fig. 2(d) shows the SWW bound
for uniform prior and Gaussian noise with . Com-
pared with the all-Gaussian case we only see a difference at time

(initial phase).
For the non-Gaussian densities, Figs. 2(b)–2(d) show the

mean-square error of an importance-sampling-resampling par-
ticle filter using the transition density as importance function,
20000 particles, and 1000 realizations [10], [36]. The order
of the SWW’s tightness corresponds to the derivative of the
Bayesian Bhattacharyya coefficient (74) at the origin.

We use model (78) and test-point matrix (79) again for dis-
cretized Gaussian and discretized uniform densities. We seek
for settings leading to the same SWW bounds for discretized
and continuous distributions.
Since Gaussian densities have infinite support, using their dis-

cretized versions with quantization step size and
give the same SWWs as the continuous cases (see

Fig. 2).
Thewidth (64) of the continuous uniform density computes to

. Let the discrete uniform density have a width of
the support . Then with (67), the quantization step
size is and the covariance matrix of the discrete
uniform distributions are and

. Now the SWW bound for the discrete
(quantized) uniform distribution equals
that of the continuous case.
The next example demonstrates a hybrid model with discrete
. Therefore, (78a) becomes

(80a)

with

(80b)

Constants and are normalizing factors. Equation (80a)
and (80b) form a hybrid model similar to (45). The quantization
interval equals the test point , and the
continuous distributions are Gaussian as the first example. The
bound for equals the bound for in (78a) and is shown
in Fig. 2(a) (cf. Proposition 7).
We discuss and analyze a different example of a hybrid model

with Gaussian and discretized uniform distributions in [35].

IX. CONCLUSION

The family of Weiss–Weinstein bounds enables the use of
hybrid discrete and continuous state-vectors. The use of the
Bayesian Bhattacharyya coefficient gives a general recursion
for the sequential bound. We provide analytic solutions for
Gaussian, uniform, and exponential distributions and their
discrete approximations stemming from discretized states.
The SWWbound depends on the test-point matrix . An op-

timal gives the tightest bound. The finite support of uniform
densities causes box constrains on . For Gaussian distribu-
tion, the optimal in which it can in certain cases give
the sequential Cramér–Rao bound.
The optimal for uniform distributions lies near the middle

of the box constraint’s interval. The tightness of the bound de-
pends on the derivative of the Bayesian Bhattacharyya distribu-
tion in the origin.
The shape of the transition matrix describes the dependency

between states. Thus, it influences the optimum choice of
that describes the influence of noise on these states. The SWW
bounds for continuous and discretized states are equal for spe-
cific choices of the bound’s test-point matrix . The deriva-
tions concerning discretized states are applicable for discretized
measurements as well.
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Further results are related to practical issues. For linear state-
space models with analytic solutions the computational effort
increases linear with time. Additionally, if the noise statistics
are time-invariant, then the effort is constant. If the prior den-
sity stems from a recursion, it is possible to compute the SWW
bound without explicit prior.

APPENDIX A
GAUSSIAN DENSITIES

The following Lemmas are independent of the discrete
or continuous nature of the densities. The densities are ei-
ther Gaussian densities or discretized Gaussian densities

or . The factor
normalizes the PMF.
We use the weighted inner-product

.
Lemma 14 (Gaussian Innovation Noise): For a Gaussian

innovation noise, the solution of (38a) is

(81)

which is independent of (cf. Lemma 3).
Proof: Let us insert the Gaussian density into (38a), i.e.,

(82)

This simplifies to

(83)
where

,
.

(84)

We substitute

and utilize

(85)

to obtain the final result.
Lemma 15 (Gaussian Prior): For a Gaussian prior, the so-

lution of (38a) is

(86)

Proof: The results follows from Lemma 14 where
and .

Lemma 16 (GaussianMeasurement Noise): For a Gaussian
measurement noise the solution of (38b) is

(87)

which is independently of (cf. Corollary 4).
Proof: Let us insert the Gaussian density into (38b), i.e.,

(88)

This simplifies to

(89)

where

,
.

(90)

We substitute

and utilize

(91)

to obtain the final result.

APPENDIX B
UNIFORM DENSITIES

The following Lemmas are independent of the discrete or
continuous nature of the densities. The densities are either con-
tinuous or discrete uniform densities.

Lemma 17 (Uniform Innovation Noise): For an indepen-
dent uniform density , the solution of (38a) is

(92)

which is independent of .
Proof: Let us insert the uniform density into (38a), i.e.,

(93)
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Due to the existence of a density, we have

(94)

if

(95)

else zero.
Lemma 18 (Uniform Prior): For an independent uniform

density , the solution of (38a) is

(96)

Proof: The results follows from Lemma 17 where
and .

Lemma 19 (UniformMeasurement Noise): For an indepen-
dent uniform density , the solution of (38b) is

(97)

which is independent of .
Proof: We insert the uniform density into (38b), i.e.,

(98)

Due to the existence of a density, we have

(99)

if

(100)

else zero.

APPENDIX C
EXPONENTIAL DENSITIES

We assume both exponential densities and discretized expo-
nential densities and .
The factor normalizes the PMF.

Lemma 20 (Innovation Noise): Given a multivariate inde-
pendent exponential density , the solution of (38a) is

(101)

which is independent of .
Proof: Let us insert the density into (38a) and substitute

,
, and , i.e.,

(102)
where

,
, (103)

normalizes the densities. We further get

,
. (104)

For discrete , we define ZZ. Thus,

(105)

The case in (103) computes to

,
(106)

neglecting for discretized densities. Eventually, this
gives

,
,

(107)

Lemma 21 (Measurement Noise): Given a multivariate in-
dependent exponential measurement noise , the solution
of (38b) is

(108)

which is independent of .
Proof: The proof is similar to that of Lemma 20 except

and the substitution of by
, by and by .
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