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[1] Estimation of the range- and height-dependent index of refraction over the sea surface
facilitates prediction of ducted microwave propagation loss. In this paper, refractivity
estimation from radar clutter returns is performed using a Markov state space model for
microwave propagation. Specifically, the parabolic approximation for numerical solution
of the wave equation is used to formulate the refractivity from clutter (RFC) problem
within a nonlinear recursive Bayesian state estimation framework. RFC under this
nonlinear state space formulation is more efficient than global fitting of refractivity
parameters when the total number of range-varying parameters exceeds the number of
basis functions required to represent the height-dependent field at a given range.
Moreover, the range-recursive nature of the estimator can be easily adapted to situations
where the refractivity modeling changes at discrete ranges, such as at a shoreline. A fast
range-recursive solution for obtaining range-varying refractivity is achieved by using
sequential importance sampling extensions to state estimation techniques, namely, the
forward and Viterbi algorithms. Simulation and real data results from radar clutter
collected off Wallops Island, Virginia, are presented which demonstrate the ability of this
method to produce propagation loss estimates that compare favorably with ground truth
refractivity measurements.
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1. Introduction

[2] The determination of microwave propagation con-
ditions in the troposphere is important for assessing the
performance of both communications and radar systems.
In general, radar coverage over the sea surface is
determined by the atmospheric refractive index, n, which
although very close to unity, depends on meteorological
conditions. Although in a well-mixed atmosphere,

microwave propagation is typically limited to the line
of sight, in coastal regions where hot, dry air is advected
from the land over cool, humid air near the sea surface, it
is not uncommon for the refractive index to decrease
very quickly with height. Under such conditions, ducted
propagation can occur, resulting in propagation beyond
the horizon. Figure 1 illustrates the effect of ducting on
radar backscatter returns from the sea surface off the
Virginia coast. Figure 1 is a plot of power versus range
and azimuth from a 3 GHz radar pointed at the horizon.
The significant clutter returns from ranges well beyond
the approximately 48 km (30 mile) horizon are the result
of surface-based ducting conditions. Prediction of prop-
agation loss to points above the sea surface over the
coverage area shown in Figure 1 can be achieved using
an estimate of the profile of index of refraction as a
function of height, range, and azimuth in a computational
electromagnetic propagation model.
[3] Conventional methods for estimating modified

refractivity, M, defined by M = 106 � (n � 1), where
n is the refractive index, can be split into two categories:
(1) direct sensing techniques which involve the measure-
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ment of atmospheric pressure, temperature and humidity
to determine the index of refraction; and (2) remote
sensing techniques which infer refractivity more indi-
rectly. Instruments for making direct measurements
include radiosondes [Rowland and Babin, 1987], micro-
wave refractometers, and rocketsondes. A drawback of
these devices, however, is that they are often expensive
and/or difficult to deploy [Halvey, 1983]. Moreover,
these measurements tend to provide estimates of refrac-
tivity versus height at a single range while propagation
depends on range-varying profiles at each azimuth.
Among remote sensing methods, Doppler spread radar
returns have historically provided very detailed pictures
of the dynamics and structure of the turbulent boundary
layer which, in principle, can be used to infer refractivity.
In practice, however, the Doppler spread returns are
often contaminated by nonturbulence-related compo-
nents [Skolnik, 1980]. Alternatively, lidar can provide a
means of estimating profiles of atmospheric water vapor
that can then be used to infer refractivity. However the
performance of lidar is severely restricted by background
noise levels and high extinction (e.g., cloud) conditions.
Ground-based point-to-point microwave propagation
measurements using multiple transmitter/receiver pairs

[Tabrikian and Krolik, 1999], as well as the usage of
ground-based measurements of GPS signals as the sat-
ellites rises and sets on the horizon in inferring refrac-
tivity [Anderson, 1994] has successfully overcome the
single time and space line representation of refractivity.
The inferred profiles would be characteristic of the
integrated refractive effects along the vertical and hori-
zontal paths. In this regard, inferring refractivity from
radar clutter provides an extension of these strategies
where now the radar itself is used as a remote sensing
device.
[4] The desirability of not having to use additional

equipment to estimate refractivity motivates the estima-
tion of range and height varying refractivity from clutter
(RFC). Previous work concerning the phenomenology of
sea clutter returns from extended ranges associated with
ducting conditions has been discussed in the work of
Gossard and Strauch [1983]. In addition, it has been
shown that temporal and spatial variations of radar
echoes are related to temporal and spatial variations in
the layers of the refractivity profile [Richter, 1969]. The
advantage of RFC, as discussed in this paper, is that it
provides a synoptic characterization of the duct over the
spatial extent of the radar and it overcomes the necessity

Figure 1. Plan position indicator data from SPANDAR radar on Wallops Island, Virginia, at
2110 UT on 2 April 1998.
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of additional data and/or sensing devices. In addition,
RFC has the added advantage of being able to sense
range-varying refractivity at a temporal sampling rate
that can track changes in atmospheric conditions.
[5] In previous work, RFC estimation was made by

using a maximum a posteriori (MAP) approach to jointly
estimate the refractivity and the spatially varying back-
scatter cross section [Tabrikian et al., 1999]. The main
drawback of the method proposed in that paper was that
only linear variations in refractivity parameters could be
obtained. When the algorithm was modified to track
more complicated range-varying refractivity, the estima-
tion was found to be computationally intractable. Sub-
sequent methods to improve estimation of more
complicated range-varying behavior of refractivity was
undertaken by formulating the RFC problem as a non-
linear state space problem whose solution was obtained
using sequential importance sampling technique for state
space estimation [Vasudevan and Krolik, 2001]. The
approach provided a quick and efficient method of
estimating complicated range-varying refractivity. How-
ever, the method failed to update previous estimates of
refractivity with the arrival of new data and hence the
accuracy of the estimates decreased rapidly with increas-
ing range. More recently, a genetic algorithm (GA)
approach to estimate refractivity RFC has been proposed
[Gerstoft et al., 2003a, 2003b]. In that work, the authors
have presented a method to model the range and height
varying refractivity of the environment using a total of
11 parameters [Gerstoft et al., 2003b] while imposing
some prior constraints [Gerstoft et al., 2003a] in order to
increase the accuracy of results over the coverage area of
the radar. The parameters are estimated by performing a
global search using a nonlinear GA optimization ap-
proach. In contrast to the need for global optimization, in
this paper the range-recursive nature of the parabolic
equation is exploited to yield a potentially more compu-
tationally efficient solution. More recently [Barrios,
2004], a method has been proposed which utilizes the
rank correlation between the clutter power observed and
the density of raypaths to estimate refractivity. The
approach discussed in that paper is designed primarily
for surface-based ducts because of its utilization of land
clutter to estimate refractivity over a coverage area which
includes a land-sea boundary. The method presented in
this paper has the added advantage that, in principle it
can be used over both sea and land-sea transition by
virtue of the Markovian modeling of the range-varying
refractivity profile.
[6] The remainder of this paper is organized as fol-

lows. In section 2, a simple parameterization of the index
of refraction is described which covers a variety of
different ducting conditions. This is followed by presen-
tation of a nonlinear recursive state space model for the
electromagnetic field which is derived from the split-step

Fourier algorithm used to solve the wave equation in
inhomogeneous media. Section 3 describes the Monte
Carlo recursive Bayesian particle filtering approach used
to estimate range-varying refractivity from sea clutter
returns. Finally, section 4 is a discussion of simulation
results and the demonstration of the method using real
radar data collected off the Virginia coast.

2. Statistical State Space Modeling of

Tropospheric Propagation

2.1. Tropospheric Refractivity Model

[7] Although the marine atmospheric boundary layer
(MABL) variability which causes microwave ducting is
often complex in nature, for the purposes of propagation
studies, it is often represented at a given range by bilinear
and/or trilinear height-dependent refractivity profiles
[Rogers, 1996]. In the absence of ducting, standard
propagation conditions are represented by a linear profile
which appears upward refracting in Earth-flattened coor-
dinates [Anderson, 1994; Rogers, 1996]. In the presence
of a surface-based duct, the sudden change in refractivity
which defines the duct is most commonly modeled by
the MABL structure shown in Figure 2. This simple
trilinear parameterization is quite versatile in its ability to
include refractivity representations of the standard Earth
atmosphere, surface-based ducts, elevated ducts and
evaporation ducts. Surface-based ducts are ducts which
are formed at heights within a few hundred meters of the
surface of the Earth while ducts whose heights reach up
to 5000 feet are termed as elevated ducts. Evaporation
ducts are similar to surface-based ducts, but their heights
are restricted to values ranging up to 40 m. Evaporation
ducting is not readily discernable from a radar’s plan
position indicator (PPI), but still results in frequency-
dependent extensions of radar range.
[8] Instead of determining the refractivity at each point

over height at a given range, it has been shown [Rogers,
1996] that the parameterization of the profile can be
limited to a few variables without adversely affecting
performance. The refractivity structure for the MABL
shown in Figure 2 is parameterized into 3 basic
parameters, namely, the base height, thickness and the
M deficit. The base height is defined as the height from
the surface of the sea to the lower boundary of the
trapping layer. The thickness is defined as the distance
between the lower and the upper boundaries of the
trapping layer. M deficit is the difference in the modified
refractivity values at the two boundaries of the trapping
layer. The base height and the M deficit to a large degree
account for the magnitude of the ducted field. The base
height, thickness and M deficit determine the height of
the duct in the troposphere and the number of rays that
would be trapped in the duct. In addition, they also affect
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the curvature of rays in the trapping layer. A fourth
parameter is the slope of refractivity in the lowest layer.
The above trilinear model is versatile in its ability to
model typical ducting conditions that have been ob-
served. For example, when the base height reduces to
zero, we end up with a bilinear surface-based duct, which
models the scenario where the internal boundary layer
(IBL) controls propagation. When the base height rises to
values above 1000 ft, the trilinear structure models the
behavior of an elevated duct. In practice, the refractivity
profile often changes with range. In this paper, a range-
varying extension of bilinear/trilinear profile is achieved
here by modeling the parameters as a Markov process.
This modeling, while being physically plausible, has the
added advantage of facilitating computationally efficient
estimation of range-varying refractivity. In the above
modeling, it is assumed that the value of the modified
refractivity at the sea level is known to be at 340 M units.
The reason for this assumption is that the authors have
found that the most important information is in the slopes
of the refractivity rather than their absolute values. As a
result, any commonly observed value in the range of
280–360 can be used. In addition, the value of the
refractivity in the third layer is assumed to be constant
value of 0.113 M units/m. This is a valid assumption
since most electromagnetic fields that enter this region
makes no contribution to the field being measured at the
surface. Hence, for purposes of modeling, any realistic
observed value that does not make any significant con-

tributions of electromagnetic signals at the surface can be
used.

2.2. Nonlinear State Space Formulation of Field
Propagation

2.2.1. State Equation Formulation
[9] The most commonly used approach to model wave

propagation in the troposphere is the Fourier split-step
solution to the parabolic equation [Dockery and Kuttler,
1996; Dockery, 1998]. This numerical solution is a
forward solver with the ability to handle vertical and
horizontal inhomogeneities in the refractive profile and is
capable of delivering accurate propagation loss estimates
in complicated environments.
[10] Let u(rk, z) be the electric field at range rk and

height z. Then, the field at range rk+1 and height z,
denoted by u(rk+1, z), is given by the Fourier split-step
solution to the parabolic wave equation,

u rkþ1; zð Þ ¼ exp j
ko

2
h2 þ 2z

ae
� 1

� �
dr

� �

� F�1 exp �j
p2dx
2ko

� �
F u rk ; zð Þf g

� �
; ð1Þ

where F is the spatial Fourier transform along the height z,
dr = rk+1 � rk is the range increment, ae is the radius of
the Earth, h is the refractive index as a function of height
and range, ko is the wave number and p is the spatial
frequency, or transform variable. It should be noted that

Figure 2. Refractivity modeling of the marine atmospheric boundary layer (MABL).
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the split-step Fourier solution to the parabolic equation
can be interpreted as multiplying the Fourier transform of
the field at rk by an exponential term that amounts to
Fresnel diffraction of the wave in free space between the
two ranges rk and rk+1. The inverse Fourier transform of
this product, i.e., the field propagated in free space to
rk+1, is then multiplied by the phase changes brought
about by aberration due to the inhomogeneous refractive
medium. It should be noted that the phase aberration
term contains the index of refraction profile between the
two ranges. Thus, given the field at a range k, the field at
range rk+1 is nonlinearly related to the index of refraction
of the medium between the two ranges.
[11] As described previously, without loss of general-

ity, let us assume that the index of refraction at range rk is
parameterized into L = 4 parameters, namely, the base
height bk, thickness tk, M deficit dMk and slope of
refractivity in lower layer _Mk. The values taken by these
parameters are assumed to be a piecewise range-
independent approximation to the profile between the
ranges rk and rk+1. Let gk = [bk, tk, dMk, _Mk]

T be the
vector of these refractivity parameters at range rk. Since
the index of refraction is a function of physical quantities
such as pressure, temperature and humidity, it is assumed
here that the parameters of the refractivity do not
undergo drastic changes over small range intervals.
Moreover, the correlation of the refractive process sug-
gests characterizing the relationship between the param-
eters from one range step to another by a Markov
process. Then, the relationship between the refractivity
parameters over range can be expressed as

gk ¼ gk�1 þ wk ; ð2Þ

where wk models the uncertainty in the variations of
refractivity parameters over range. For simplicity, it is
assumed to be a zero-mean Gaussian process with
covariance matrix

P
g.

[12] Let uk = [u(rk, z1), u(rk, z2),. . .,u(rk, zM)] be the
vector of complex field values at heights z1, z2,. . .,zM at
range rk. The field as given in (1) is a function of all the
refractivity parameters up to range rk�1. Thus (1) can be
written as

uk ¼ f g1; g2; . . . ; gk�1; u0ð Þ; ð3Þ

where the function f(.) represents the repeated application
of the split-step solution to parabolic equation given in
(1) out to range rk and u0 is the field distribution at the
starting range r0. In equation (3), the vector of
refractivity parameter gk has L unknown parameters at
each range rk. Thus as the range increases, the number of
unknowns increases by L times the number of range
increments. Thus, for example, for L = 4, if the
refractivity parameters change every kilometer, then
with this approximation, by the time we reach 20 km,

which is the distance to the horizon for shipboard radar
systems, the total number of parameters to be estimated is
80. Normally, estimates are required out to 150–200 km.
As a result, the number of parameters to be jointly
estimated is around 600–800. This is clearly a
prohibitive number of parameters to estimate given the
limited extent of the radar clutter data and computational
resources.
[13] In order to expedite the solution for the g1,

g2,. . .,gk, note that in the split-step solution to the wave
equation, the field at range rk can also be modeled as a
Markov process if the complex field at the previous
range step rk�1 is included as part of the state vector. In
particular, using equation (1), equation (3) can be written
as

uk ¼ H uk�1; gk�1ð Þ; ð4Þ

where H(.) corresponds to the split-step operation as
represented by equation (1). Combining equations (1),
(2), and (4), we get the new state equation

gk
uk

� �
¼ gk�1

H uk�1; gk�1ð Þ

� �
þ wk

0

� �
: ð5Þ

[14] In the above formulation, it can be seen that the
source and refractivity profile up to range rk�1 are
incorporated into the field at rk. A significant reduction
in the dimensionality of the field vector uk at each range
step rk is possible when one utilizes the fact that because
typical M deficits are on an average below 60 M units,
only rays that have a grazing angle less than 1 degree
typically propagate within the duct. In light of the above,
instead of using the complex field vector over height z at
each range, the complex vertical frequency wave number
coefficients vk = F{uk} are used instead, where F is the
spatial discrete Fourier transform. An upper bound on the
number of significant vertical wave number coefficients
is given by the spatial frequency aperture-bandwidth
product. This is analogous to the time-bandwidth product
dimensionality of an approximately time and bandwidth
limited process. The maximum vertical wave number is

knmax
¼ k sin qmaxð Þ; ð6Þ

where qmax is the maximum angle that actually
propagates in the medium. The vertical spatial aperture
in this case is the maximum expected duct height zmax.
Given this maximum vertical wave number, the discrete
Fourier transform size used in the PE solver of equation
(1) is determined using the spatial frequency-aperture
product given by

zmaxknmax
¼ Nf p; ð7Þ
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where zmax is the maximum height to which propagation
loss prediction is required and Nf is the Fourier transform
size. For the current problem, the maximum angle that
propagates in the duct is typically less than 1 degree and
assuming the height to which propagation loss predic-
tions are required is 200 m, the transform size is 64.
Letting K denote the total number of clutter range bins,
the advantage of using a Markov model with vertical
wave number coefficients in the state vector is therefore
that KL refractivity parameters can be solved recursively
by updating a state vector of size dim(knmax

zmax) + L 	
KL at each range versus a joint nonlinear optimization
over all KL parameters. This yields a significantly more
computationally efficient approach.
[15] Letting vk denote the vector of vertical wave

numbers coefficients over height at range rk, then in
the spatial frequency domain, equation (4) can be written
as

vk ¼ F H F�1 vk�1ð Þ; gk�1

� 	� 	
¼ T vk�1; gk�1ð Þ; ð8Þ

where F is the discrete spatial Fourier transform, H(.)
corresponds to the split-step operation as represented by
equation (1) and T(vk�1, gk�1) ¼4 F(H(F�1 (vk�1), gk�1)).
Combining (2) and (8) into one equation, we have

gk ¼ gk�1 þ wk

vk ¼ T vk�1; gk�1ð Þ: ð9Þ

[16] It should be noted that no state noise is applied to
the second equation in (9) since this equation corre-
sponds to the deterministic split-step PE computation.
Finally, defining xk ¼4 [gk, vk] as the state vector at range
rk, the state equations in (9) can written compactly as

xk ¼ h xk�1ð Þ þ mk ð10Þ

where h (�) is the nonlinear relationship between the
state at range rk and rk�1 and mk = [wk, 0]

T is the state
noise which is zero-mean Gaussian with covariance

matrix
P
m

¼
P

g 0

0 0

� �
.

2.2.2. Measurement Equation Formulation
[17] Having incorporated the propagation model in the

state equation of (10), the measurement equation can be
used to model the clutter return. A general expression for
the radar clutter return, y(rk), at slant range bin rk is given
by

y rkð Þ ¼
Z
r0

Z
w0

H rk ; r
0;w0ð Þb r0;w0ð Þdr0dw0 þ n rkð Þ; ð11Þ

where b(r0, w0) is the complex coefficient of the sea
surface, and the impulse response of the radar, H(rk; r

0,
w0), defines the output at rk due to a point source at
ground range and bearing (r0, w0) on the ocean surface.
Note that H(rk; r0, w0) is a function of both radar
parameters such as the beam former weights and pulse
shape, as well as propagation model parameters such as
refractivity. Because of surface roughness, b(r0, w0) may
be modeled as a complex zero-mean random process.
Additive noise at the receiver is denoted by n(rk) and is
modeled as complex zero-mean Gaussian distributed
and uncorrelated with the clutter b(r, w). The impulse
response H(rk; r

0, w0) can be modeled approximately as
H(rk; r, w

0)  L(rk; g1, g2,. . ., gk)h(r; r
0, w0), where L(rk;

g1, g2,. . .,gk) is the two-way propagation loss which
depends on unknown refractivity profile vector para-
meters, g1, g2,. . .,gk, and h(r; r0, w0) is the impulse
response determined assuming propagation through free
space and using the radar’s beam and pulse width.
Thus, for a series of n pulses, the radar return from
equation (11), sampled at range bins (r1, r2, . . .,rK), is
given by

yn rkð Þ ¼ an rkð ÞL rk ; g1; g2; :::; gkð Þ þ un rkð Þ; ð12Þ

where n = 1, 2,. . .N is the number of pulses
transmitted by the radar. The clutter return at the nth
snapshot (corresponding to the nth pulse transmitted)

an(rk) =
R R

W
h(rk; r

0, w0) b(r0, w0)dr0 dw0is modeled as a

complex Gaussian random variable with a variance sa
2

which is assumed to be a constant over range. The
variance of this clutter coefficient is the backscatter
cross section of the sea surface and depends on the sea
state, grazing angle, and the frequency at which the
radar operates. Again, L (rk; g1, g2,. . ., gk) is the two-
way propagation loss, which is a function of the
unknown refractivity parameter vectors g1, g2,. . ., gk
which we are trying to estimate.
[18] Although (12) describes the complex clutter re-

turn, a more common output of radar systems is the plan
position indicator (PPI) output, defined as the clutter
power averaged in decibels (dB) over the number of
radar pulses. The PPI is thus defined by

zk ¼
10

N

XN
n¼1

log10 yn rkð Þj j2: ð13Þ

[19] It can be shown (see Appendix A) that under the
model of (12), zk in (13) is well approximated by a

Gaussian distribution with mean zk =
10

log 10ð Þ log (jL(rk; g1,
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g 2 , . . .,g k ) j2 sa
2 + su

2 ) � 10g
log 10ð Þ and v a r i a n c e

10
N log 10ð Þ

 �2
�2

6
þ log 2ð Þ � gð Þ2

h i
, where g is Euler’s num-

ber. Given L(rk; g1, g2,. . ., gk), the returns from different
nonoverlapping range bins are uncorrelated since they
illuminate different surface scatterers. The mean of this
process is thus a range varying function of propagation
loss and depends on the vector of refractivity parameters
g1, g2,. . ., gk in a nonlinear manner. In terms of an
observation equation, the PPI output at range rk, can be
written up to an additive constant in terms of the state
vector xk from (10) as

zk ¼
10

log 10ð Þ log CHG xkð ÞGH xkð ÞC
�� ��2s2

a þ s2
u

h i
þ ek

¼ b xkð Þ þ ek ;

ð14Þ

where G(xk) = F�1 (vk) is the inverse discrete Fourier
transform of the wave number coefficients in the state
which recreates the field distribution at range rk over height,
C= [0, 1, 0, 0, . . .0]T is the vector used to select the intensity
of the field near the sea surface from the state vector xk and
where b(xk) ¼4 10

log 10ð Þlog (jCHG(xk)G
H (xk)Cj2 sa2 + su

2) is
the mean of zk, a nonstationary function of range. The fields
must be sampled just slightly above the surface because of
the zero boundary condition at the surface. From (10) and
(14), note that the RFC problem has been modeled as a
nonlinear continuous state space estimation problem. The

objective is now to estimate the parameters of the
refractivity gk from the PPI observations.

3. Recursive Bayesian Estimation

[20] The classic approach to state estimation in non-
linear state space models is the extended Kalman filter
(EKF), which consists of linearizing the state and/or
measurement equations using Taylor’s series expansions
[Gelb, 1974; Anderson and Moore, 1979]. In RFC, an
extended Kalman filter approach is problematic because
the parameters of interest, i.e., refractivity, appear in the
complex exponential in equation (1) which when
linearized leads to instability of the EKF and very poor
estimates of range-varying refractivity parameters.
[21] For discrete-state sequence estimation problems,

the evolution of the state can be described by a lattice
where a column of nodes represents the finite number of
possible state values at a particular time. Using the
Markov property of the state sequence, a computation-
ally efficient method of computing the joint maximum a
posteriori (MAP) estimate of the state sequence is the
Viterbi algorithm [Forney, 1973], based on dynamic
programming. Even though the number of possible
sequences grows exponentially with the length of the
sequence, the computational complexity of the Viterbi
MAP estimate grows only linearly. At least formally, a
MAP RFC estimate could be achieved by discretizing the
elements of the state xk, which contains the refractivity
parameters and electromagnetic field, at range, rk, on
fixed grid. Let xk,j denote the state vector sampled on a

Figure 3. Discrete state space.
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deterministic set of grid points indexed by j = 1,. . ., J, at
range rk. The resulting lattice for this discrete state space
is shown in Figure 3. Defining p(x1,. . .,xKjz1,. . ., zK) as
the joint posterior density of the states up to range K,
f (zkjxk) as the likelihood of state xk, k = 1,2,. . .K and
p(xkjxk�1) is the transition probability associated with a
transition from jth state at range k� 1 to ith state at range k,
the MAP state sequence estimate is defined by

argmax
x1;x2;...;xK

flog p x1; . . . ; xK jz1; . . . ; zKð Þg

¼ argmax
x1;x2;...;xK

XK
k¼1

log f zk jxkð Þ þ log p xk jxk�1ð Þ
( )

:

ð15Þ

[22] The Viterbi method finds the optimal path recur-
sively by computing

Wi kð Þ ¼maxj Wj k� 1ð Þ þ log pxk jxk�1
xk;ijxk�1;j

� 	� �
þ log fzk jxk zk jxk;i

� 	
; ð16Þ

where Wi(k) is the weight of the optimal path terminating
at xk,i. The sum in equation (15) corresponds to
computing weights Wi (k) for a particular path through
the lattice in Figure 3. Note that the total number of state
sequences evaluated by equation (16) is JK which grows
exponentially in K. However, the computational com-
plexity of the Viterbi algorithm grows only linearly with
K which gives a dramatic reduction in computation. For
Markov discrete state sequences, the Viterbi algorithm is
guaranteed to find the global MAP estimate.
[23] In the case of a continuous state space, as given in

equations (10) and (14), we seek the global maximum to
the continuous posterior density f (XkjZk), where Xk =
x1, . . .,xk is a state sequence and Zk = z1, . . ., zk is the
sequence of scalar observations out to range rk. This
maximum could theoretically be estimated using a
dense discrete grid of sequence values. To uniformly
sample L + I parameters (where L is the number of
vertical wave number frequencies propagating and I is the
number of refractivity parameters) in xk usingN values per
parameter, requires J = (L + I)N grid points. If the RFC
problem were solved using a fixed discretization scheme,
we would require an exceptionally large number of grid
values, e.g., N = 3000, that would render the problem
computationally intractable. In this paper therefore we
pursue a particle filtering approach [Godsill et al.,
2001], the idea is to construct a grid based on
realizations Xk

(i) drawn from an appropriate probability
distribution, where we denote the ith state sequence
realization by Xk

(i). If the support of the density from
which these realizations are drawn includes the unknown
maximum, then the maximum over the resulting grid has

been shown to asymptotically approach the global
maximum in the limit that the number of realizations
drawn (and thus the number of grid points) approaches
infinity but in practice the solution converges much more
quickly [Godsill et al., 2001].
[24] Suppose that the number of realizations (a.k.a.

‘‘particles’’) drawn is J. The number of possible
trajectories in the lattice formed by these realizations is
then JK. The posterior density can then be efficiently
maximized over these JK sequences by use of the Viterbi
algorithm. An appropriate sampling density must be
selected from which to draw the state realizations. In this
work, for simplicity, we choose the prior distribution as
given by equation (10), augmenting the sequence of each
realization Xk�1

i with a new state value xk
i , which,

because of the Markov property, depends only upon the
immediately preceding state value xk�1

i . An initial prior
p(X0) given by

p X0ð Þ ¼ U g0ð Þd v� v0ð Þ; ð17Þ

which is utilized to obtain the initial distribution of the
state space, which comprises the refractivity parameters
g0 and the wave number coefficients v0. A uniform prior
on the refractivity parameters U(g0) distributed over the
parameter space is assumed. The prior on the initial wave
number spectrum, v0, corresponds to the radar antenna
pattern. From (17), the priors on g0 and v0 are assumed to
be independent.
[25] The state space at any range k is generated from the

state space at range k � 1 by passing the state particles
xk�1,i at range k � 1 through the state equation (10) to
obtain the particles at range k. This transition is indicated
by the dotted black lines in Figure 4. This results in a
grid, as illustrated in Figure 4, which is the randomly
sampled version of continuous state space (as compared
to the fixed which is shown in Figure 3). It should be
noted that with fine enough sampling in the fixed state
space model of Figure 3, the lattice encompasses all
possible trajectories whereas in the randomly sampled
continuous state space shown in Figure 4, the lattice
encompasses all possible trajectories only as the number
of samples goes to infinity.
[26] Using the randomly sampled grid, the MAP RFC

estimate, by analogy with the discrete state space model,
is given by

argmax
x ið Þ
1
;x ið Þ

2
;...;x ið Þ

k
8i

n
log p x ið Þ

1
; . . . ; x ið Þ

K
jz1; :::; zK

 �o
¼

argmax
x ið Þ
1
;x ið Þ

2
;...;x ið Þ

k
8i

XK
k¼1

log f zk jx ið Þ
k

 �
þ log p x

ið Þ
k jx ið Þ

k�1

 �h i( )
;

ð18Þ
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where x1
(i), x2

(i), . . .,xk
(i) is the state sequence correspond-

ing to the ith sample in the randomly sampled state space
grid of Figure 4. Again, the Viterbi algorithm is used to
find the optimal path along all the trajectories by
recursively computing

W
ið Þ

k ¼ maxj W
jð Þ

k�1 þ log pxk jxk�1
x

ið Þ
k jx jð Þ

k�1

 �n o
þ log fzk jxk zk jx ið Þ

k

 �
: ð19Þ

[27] As mentioned previously, as the number of sam-
ples increases, we cover all possible trajectories in the
continuous state space and in the limit that the number of
samples goes to infinity, the MAP estimate for the
continuous state space problem converges to the true
MAP estimator [Godsill et al., 2001]. The advantage of
the particle filtering approach is that in practice only a
fraction of the number of samples are required when
compared to a fixed gridding method.
[28] The algorithm in the MAP RFC method using the

Viterbi approach is summarized as follows.
[29] 1. Generation of the randomly sampled distribu-

tion of the continuous state space.

a. For 1 � i � N, x0
(i) ¼4 p(x0)

b. For 1 � k � K and 1 � i � N,

xk
(i) = h(xk�1

(i) ) + mk(
i)

[30] 2. Viterbi algorithm for MAP sequence estimation.

a. For 1 � i � N,

W0
(i) = log pxkjxk�1

(x0
(i)) + log fzkjxk (zkjx0

(i)),

b. For 1 � k � K and for 1 � i � (L + M),

Wk
(i) = max

j
{Wk�1

(j) + log pxkjxk�1
(xk

(i)jxk�1
(j) )}

+ log fzkjxk (zkjxk
(i))

ck
(i) = argmax

j¼1;2;3;...N
{Wk�1

(i) + log pxkjxk�1
(xk

(i)jxk � 1
(j) )}

c. At the last range bin, i.e., k = K,

î kMAP
¼4 argmax

i¼1;2;3;...; LþMð Þ
Wk

(i)

x̂kMAP
¼4 xk

îkMAP

d. Trace back to get optimal sequence of refractivity
parameters across range.

For k = K � 1, K � 2,. . .., 2, 1,

ik = ck+1 (ik+1),

x̂kMAP
= xk

(ik)

[31] Note that the state equation (10) ensures smooth-
ness in field values is maintained by constraining the
transition probability density p(xk

(i)jxk�1
(j) ). In particular,

Figure 4. Formulation of particle trajectories as state sequences.
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for the case where the PE solver step is deterministic, the
transition probability density takes on the form, (see
Appendix B), given by

p x
ið Þ
k jx jð Þ

k�1

 �
¼ d v ið Þ

k
� f v jð Þ

k�1
; g

ið Þ
k

 � �
j
g

ið Þ
k
¼g

jð Þ
k�1

þwk

� p g
ið Þ
k � g

ið Þ
k�1 þ wk

 � �
: ð20Þ

[32] If instead of estimating the entire MAP sequence
estimate at each range step, we were interested only in
the estimating xk given data up to range rk, alternatively
the solution for xk can be alternatively computed using a
filtering approach which maximizes p(xkjz1, z2, . . ., zk) at
each range rk. Defining, the forward variable, ak

(i) ¼4

p(xk
(i), z0, z1, . . ., zk) where ak

(i) is the joint probability of
the data set z0, z1, . . ., zk and the ith sample of state at
range rk, xk

(i). The forward variable is computed in a
recursive manner using the formula [Therrien, 1992]

a ið Þ
k ¼

XI

j¼1

a jð Þ
k�1p x

ið Þ
k jx jð Þ

k�1

 �" #
p zk jx ið Þ

k

 �
: ð21Þ

Once all the forward variable have been computed, the
filtered estimates can be easily calculated. In order to do
so, calculation of the filtered density function is realized as

a ið Þ
k ¼4 p x

ið Þ
k
; z0; z1;...; zkð Þ

/ p x
ið Þ
k jz0; z1; . . . ; zk

 �
:

ð22Þ

Thus the filtered distributions are obtained by normalizing
the computed forward variables for each of the particle at
each range,

p x
ið Þ
k jDk

 �
¼ w

ið Þ
k ¼

a ið Þ
kPI

i¼1

a ið Þ
k

ð23Þ

The forward MAP estimate based on the marginal
distribution of xk at each range step rk is given by

x̂kMAP
¼ max

i
w

ið Þ
k : ð24Þ

In the next section, the Viterbi and forward MAP RFC
estimates will be compared in simulations and using real
data.

4. Refractivity From Clutter Results

4.1. Simulation Results

[33] In order to evaluate the RFC methods described in
the previous section, simulations were performed using
50 realizations of perfectly trilinear profiles were used to

generate 50 range_varying refractivity profiles bymeans of
a simple Markov process as given in equation (2). The
simulated range-varying refractivity, along with the initial
field which corresponded to the antenna pattern, were then
used to predict the field distributions by making use of the
split-step Fourier solution to the parabolic equation (PE)
given in (1). In the implementation of the split-step PE, the
range increments were 200 m and the Fourier transform
sizes were of the order of 512. The field was determined up
to a height of 200 m with a Hanning window added for
heights beyond 200 m so that any reflections from the
computational boundary were not significant. The PE
solution was used to compute a simulated clutter data using
equation (14). This simulated clutter data was then used as
‘‘data’’ to obtain forward MAP and Viterbi MAP sequence
estimates of range-varying refractivity.
[34] For the estimation of refractivity, the initial prior

on each of the refractivity parameters values was assumed
to be uniform and independent of one another. In partic-
ular, the base height was assumed to be uniform between
10 and 150 m, thickness was assumed to take on values
from 5 to 70 m, M deficit was assumed to be uniform
between 0 and 65 M units, while the slope of the mixed
layer was assumed to be uniform between �0.13 and
0.13 m/M units. Five hundred samples of the prior
distribution were drawn to represent the set of possible
refractivity values at the radar. Similarly, 500 copies of
the radar radiation pattern were used to generate the
vertical wave number spectrum used in the state vector of
equation (9). Thus the 500 samples of the refractivity and
the vertical wave number spectrum together represent the
set of all possible realizations of the state vector at the
radar. Note that this represents a small fraction of the grid
points that would be required for fixed uniform
sampling. Now, the randomly sampled state space shown
in Figure 4 was generated using the method presented in
section 3. Once the randomly sampled state space is
achieved, we use the particle filtering approach to the
Viterbi MAP sequence estimation detailed in section 3 to
produce estimates of range-varying refractivity.
[35] We note that in practice, the transition probability

governing the wave number spectrum was not consid-
ered to be a delta function, but rather a more relaxed
condition of a tight uniform distribution was used. This
allowed for more diversity in the paths through the lattice
which was found to speed convergence. The tight uni-
form distribution was defined such that transition jumps
in the field on the order of 5 dB and less were allowed
while jumps greater than 5 dB were not allowed. Thus
(20) was actually implemented as

p x
ið Þ
k jx jð Þ

k�1

 �
¼ p E log v

ið Þ
k � f v

jð Þ
k�1; g

ið Þ
k

 � � � �
� j

g ið Þ
k
¼g

jð Þ
k�1

þwk
� p g

ið Þ
k � g

ið Þ
k�1 þ wk

 � �
; ð25Þ
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where p(E(log(Fvk
(i) � f(Fvk�1

(j) , gk
(i))))) � U[�5, 5], E is

the expectation operator and F is the inverse Fourier
transform operator.
[36] Example RFC results for the scenario described

are shown in Figure 5. The top plot of Figure 5 is the
comparison of the refractivity estimates with the true
refractivity. The absolute average error between the
estimated refractivity and the true simulated refractivity
was found to be 5.4963 M units. The index of refraction
generated using estimates was then passed through the

split-step PE solution to obtain the field distribution over
the entire area of coverage. The same procedure was
repeated to obtain the field distribution for the true
simulated refractivity. As the final goal of the work was
the comparison of the true propagation loss to the
predicted propagation loss, the propagation loss corre-
sponding to refractivity estimates and the real simulated
refractivity were calculated and they are shown as the
second and third plots of Figure 5. It can be seen that
there is an excellent match between the two propagation

Figure 5. Matched profile result: Viterbi MAP sequence estimation.
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loss plots. Now, in order to quantify performance, we
define the absolute average error up to a scaling constant
as, e¼4

P
r;h

20 log 10
qtrue
qestð Þj j, where q is the term whose

performance is being quantified (e.g., clutter, propaga-
tion loss or any of the refractivity parameter values). It
should be noted that, when we quantify performance for
clutter, the parameter q is a function of range only
whereas, when we quantify performance for propagation
loss, the parameter q is a function of range and height,
the average being computed over the entire domain. The
error unit is decibels only for the case when we are
estimating the error of propagation or clutter loss. Thus
the absolute average error, for the entire area of coverage
extending from 0 km to 100 km in range and from 0 m to
200 m in height, between the propagation loss
corresponding to the refractivity estimates and the
propagation loss corresponding to the true refractivity
was found to be 4.3304 dB. Finally the field values
corresponding to the refractivity estimates were used to
generate an estimated clutter data using equations (1)
and (14), to enable comparison with the true simulated
clutter data generated using the true refractivity profiles
as inputs in equations (1) and (14). The bottom plot of
Figure 5 contains the solid blue line which is the plot of
the data and the estimated clutter data given by the
solid red line. It can be seen that the algorithm is able
to effectively capture the peaks in the data arising
between 50 and 65 km and 70 and 80 km, respectively.
The average absolute error between the estimated
clutter and the real simulated clutter data was found
to be 3.2811 dB.
[37] For over 50 Monte Carlo realizations of range-

varying refractivity, the absolute average error between
the propagation loss using the true refractivity and the
propagation loss using the estimated refractivity are
computed and tabulated. The same was done for the
absolute average error between the true clutter and the
clutter estimate obtained using the estimated refractivity.
The results are shown in Table 1. In addition to the
Viterbi MAP sequence estimate, the forward algorithm

results were also tabulated for the 50 Monte Carlo
realizations. It can be seen that the Viterbi sequence
estimate performs better than the forward Monte Carlo
estimate because of the ability of the algorithm to
update estimates of refractivity at earlier ranges with the
arrival of data at later ranges (i.e., step 2d in the algorithm).

4.2. Performance Under Refractivity Model
Mismatch Using Real Data

[38] In order to test the robustness of the estimator to
mismatches in the perfectly trilinear profile model,
simulated clutter data was created using equations (1)
and (14) using actual refractivity measurements made by
the Applied Physics Laboratory of Johns Hopkins Uni-
versity (APL-JHU) near Wallops Island, Virginia. A
helicopter-borne instrument package was flown to and
fro (multiple times) from the shore to a distance of
approximately 60 km out to sea measuring the refractiv-
ity. Each trip of the instrument package is given a case
number (10,11,12. . .22) as illustrated in Figure 6. The
solid black lines in Figure 6 are some of the real profile
measurements made by the helicopter. Although the
ground truth was measured out to 60 km, the data was
extended to 100 km by selecting the original measure-
ments again by a simple random walk procedure and this
is shown as solid dark lines in Figure 7. The same
assumptions of uniform prior generated in the case of
perfectly matched profiles simulations were used for this
scenario also. Estimates of range-varying refractivity
were then obtained using the Viterbi MAP sequence
estimate from the simulated clutter data. Using these
estimates of refractivity, the propagation loss over the
area of coverage was generated using equation (1). A
typical result for the scenario described is shown in
Figure 7. In the top plots of Figure 7, the range-varying
refractivity estimates (dashed lines) are compared to the
true range-varying refractivity values (solid lines). Note
that the refractivity estimates match closely to the meas-
urements and even capture the range variations of the
refractivity quite accurately. The absolute mean value of
the error between the ground truth refractivity measure-
ments and the estimated range-varying refractivity, taken
over the entire area of coverage, namely, over range from
0 km to 100 km and height from 0 m to 200 m, was
3.8673 M units. Similar to Figure 5 of the matched
profile scenario, the comparison of clutter obtained using
estimates of refractivity in equations (1) and (14) and that
of the of actual clutter, as well as the simulated
propagation loss and the true propagation loss plots are
indicated by the bottom three plots. The absolute average
error between the propagation loss computed using the
estimates of refractivity and those computed using the
ground truth was found to be 6.2493 dB. Finally,
the estimated clutter was generated in the same manner

Table 1. Performance Comparison of Forward MAP Estimate

and Viterbi MAP Sequence Estimate

Number of Trials

Absolute Average
Error in Forward
MAP Estimate, dB

Absolute Average
Error in Viterbi
MAP Sequence
Estimate, dB

Clutter Prop Loss Clutter Prop Loss

50 4.5234 6.8976 3.6922 6.6087
10 6.0145 6.6473 3.7585 6.6013
12 7.127 7.5123 5.9131 7.0747
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Figure 6. Real data profile fits. Dashed line profiles show RFC Viterbi MAP sequence estimates.
Solid line profiles show true helicopter profiles.
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as in the matched profile case and it was compared to the
true simulated clutter as shown in the fourth plot of
Figure 7. The absolute average error between the
estimated clutter and the true clutter for the plot shown
is 2.9162 dB. For 10 Monte Carlo realizations mis-
matched refractivity, the average absolute error in
propagation loss is tabulated in Table 1. As illustrated
in Table 1, even under mismatch, the Viterbi MAP
sequence estimate method performs much better than the
results obtained using the forward algorithm estimates.

4.3. Real Data Results

[39] To test RFC with real clutter, data was collected
on 2 April 1998 using the Space and Range radar
(SPANDAR) located at Wallops Island, Virginia. The
radar transmitter/receiver is approximately 30 m high
and was operating at a frequency of 2.85 GHz with a
pulse width of 1m sec and a pulse repetition frequency of
500 Hz. Real clutter data was measured at azimuths
ranging from 0� to 360� at intervals of 0.4�. At each
azimuth, data was collected from 0 km to approximately

Figure 7. Mismatched profile result: Viterbi MAP sequence estimation.
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Figure 8. Errors in propagation loss for real data cases for Viterbi MAP sequence estimates.
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Figure 9. Errors in propagation loss for real data case for forward MAP estimates.
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260 km at increments of 600 m. Figure 6 shows the
comparison between the range-varying refractivity ob-
tained using the real clutter data and the ground truth
refractivity measurements made using a helicopter as
described earlier. It can be seen from these plots that the
features of the duct, especially its range-varying nature
are captured in most cases. Figure 8 illustrates the average
absolute error between the propagation loss estimates
obtained using the Viterbi MAP sequence estimates of
refractivity and the propagation loss generated by using
the ground truth refractivity data. For completeness, in
Figure 9 we also included the results for the forward MAP
method which performed less well. This is due to the
ability of the MAP sequence estimate to update estimates
at earlier ranges with the arrival of new data thus reducing
the propagation of any error in estimates down the range.
It can also be seen from Figure 8 that the error is minimal
within the duct. The majority of the error contributions
arise in areas outside the duct. The average absolute error
in quantities propagation loss and clutter were calculated
for the 12 real data cases and tabulated in Table 1. Once
again, it can be seen that the Viterbi MAP sequence
estimate gives better performance than the forward MAP
filtered estimates.

5. Conclusion

[40] This paper has shown how recursive Bayesian
estimation when combined with forward and Viterbi
algorithms can be used to solve the problem of estimat-
ing RFC in a sequential manner. This scheme provides as
way of quickly obtaining propagation loss estimates
under complicated ducting conditions. The simulation
and the real data results clearly show that the propagation
loss estimates obtained from RFC are comparable to
those obtained from ground truth refractivity measure-
ments. Comparison of the Viterbi and forward algorithm
results indicate that it is critical to update the estimate of
refractivity at all ranges with the arrival of new data in
order to obtain good performance. In the work presented,
we have represented a continuous state space by sparse
number of samples obtained by sampling from a sim-
plistic prior distribution. Further work is necessary to
determine more sophisticated methods of sampling the
continuous state space in order to obtain very accurate
results and faster convergence of the algorithm by
sampling from distributions that are data adaptive.

Appendix A

[41] Let us define rn (k) ¼4 ynðkÞj j
s2
f
=2
, where

s2
f ¼4Var yn kð Þð Þ

¼ L xk ; gð Þj j2s2
a þ s2

u: ðA1Þ

Then the clutter data can be written as

zk ¼
10

N log 10

XN
n¼1

log rn kð Þð Þ þ 10

log 10
log s2

f=2
 �

:

ðA2Þ

The mean of the random variable statistical model of the
clutter data zk is given by

E zkð Þ ¼ 10

N log 10

XN
n¼1

E log rn kð Þð Þð Þ

þ 10

log 10
log s2

f=2
 �

: ðA3Þ

[42] Since the clutter returns are independent and
identically distributed (i.i.d.), the expectation does not
depend on the snapshots. Hence the above equation
becomes

E zkð Þ ¼ 10

log 10
E log rn kð Þð Þð Þ þ 10

log 10
log s2

f=2
 �

:

ðA4Þ

The random variable (r.v.) rn(k) is chi-square distributed
with 2 degrees of freedom, as it is the modulus squared
of a complex r.v. The term E(log(rn(k))) can be shown to
be equal to (log(2) � g), where g is Euler’s number.
Thus the equation reduces to the form

E zkð Þ ¼ 10

log 10
E log 2ð Þ � gð Þ þ 10

log 10
log s2

f=2
 �

:

ðA5Þ

Substituting (A1) in (A5) and by simple algebraic
manipulation, we get

E zkð Þ ¼ 10

log 10ð Þ log L xk ; gð Þj j2s2
a þ s2

u

 �
� 10g
log 10ð Þ :

ðA6Þ

Similarly, the variance of the clutter data can be proven
to be

Var zkð Þ ¼ 10

N log 10ð Þ

� �2

Var log rn kð Þð Þð Þ

¼ 10

N log 10ð Þ

� �2 p2

6
þ log 2ð Þ � gð Þ2

� �
: ðA7Þ
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Appendix B

[43] The transition probability can be written as

p xk;ijxk�1;j

� 	
¼

Z
p xk;ijxk�1;j;mk

� 	
p mkð Þdmk ; ðB1Þ

where mk is the state noise given in (10).
[44] Now, splitting the terms of the state vector into the

field components and the refractivity parameter compo-
nents, we get

p xk;ijxk�1;j

� 	
¼
Z Z

p uk;i; gk;ijuk�1;j; gk�1;j;wg;wu

 �
� p wg;wu

� 	
dwgdwu; ðB2Þ

where wg and wu are the noise associated with the
refractivity parameters and the field in the state equation.
[45] Assuming that the joint probability of the noise

can be separated as the product of the marginal proba-
bilities, corresponding to noise in refractivity parameters
and that in the field, we get, separating the integrals,

p xk;ijxk�1;j

� 	
¼
Z Z

p uk;ijgk;i; uk�1;j; gk�1;j;wg;wu

 �
� p gk;ijuk�1;j; gk�1;j;wg;wu

 �
p wg

� 	
dwg p wuð Þdwu:

ðB3Þ

However, the conditional distribution on the refractivity
parameter, uk, is simply a delta function since given all
the other terms, it is purely deterministic. Hence the
integral is simplified into

p xk;ijxk�1;j

� 	
¼ p uk;ijgk;i; uk�1;j; gk�1;j;wg;wu

 �
p wg

� 	
jgk;i¼gk�1;jþwk

¼ d uk;i � f uk�1;j; gk;i
� 	� 	

jgk;i¼gk�1;jþwk

� p gk;i � gk�1;i þ wk

� 	� 	
: ðB4Þ
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