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A low signal to noise ratio (SNR), single source/receiver, broadband, frequency-coherent matched-
field inversion procedure recently has been proposed. It exploits coherently repeated transmissions
to improve estimation of the geoacoustic parameters. The long observation time improves the SNR
and creates a synthetic aperture due to relative source-receiver motion. To model constant velocity
source/receiver horizontal motion, waveguide Doppler theory for normal modes is necessary.
However, the inversion performance degrades when source/receiver acceleration exists.
Furthermore processing a train of pulses all at once does not take advantage of the natural incre-
mental acquisition of data along with the ability to assess the temporal evolution of parameter
uncertainty. Here a recursive Bayesian estimation approach is developed that coherently processes
the data pulse by pulse and incrementally updates estimates of parameter uncertainty. It also
approximates source/receiver acceleration by assuming piecewise constant but linearly changing
source/receiver velocities. When the source/receiver acceleration exists, it is shown that modeling
acceleration can reduce further the parameter estimation biases and uncertainties. The method is
demonstrated in simulation and in the analysis of low SNR, 100–900 Hz linear frequency modu-
lated (LFM) pulses from the Shallow Water 2006 experiment.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4892788]
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I. INTRODUCTION

Based on the signal measured at a receiver that is some
distance away from the source, the general idea of geoacous-
tic inversion is to optimize the waveguide geoacoustic model
parameters by minimizing the difference between the meas-
ured and the replica (modeled) acoustic fields. In doing this,
seafloor properties are estimated without resorting to costly
direct measurements such as coring. Knowing the seafloor
acoustic properties is important for various applications such
as sonar performance prediction.

Recently, a single-source/receiver, broadband, fre-
quency coherent matched-field inversion procedure was pro-
posed in Ref. 1. It exploits coherently repeated transmissions
to improve estimation of the geoacoustic parameters in low
signal to noise (SNR) conditions. The long observation time
improves the SNR and creates a synthetic aperture due to rel-
ative source-receiver horizontal motion. However, due to the
temporal extent of the data observation, source/receiver
motion has to be taken in account using waveguide Doppler
theory where each horizontal wavenumber or mode under-
goes a different Doppler shift.1–3 Though successful, the
approach is limited to constant source/receiver radial veloc-
ities. Therefore the assumptions are violated in the region
near the closest point of approach (CPA) or when the radial
velocities change. This paper improves the broadband syn-
thetic aperture geoacoustic inversion approach for cases
where the radial velocity of the source/receiver changes.

This is done through pulse-by-pulse coherent processing that
in turn allows different source/receiver velocities.

Furthermore processing a train of pulses all at once does
not take advantage of the natural incremental acquisition of
new data along with the ability to assess the temporal evolu-
tion of parameter uncertainty. Here an equivalent pulse-by-
pulse coherent processing approach using Bayesian updating
is developed. With the Bayesian formulation, the estimated
posterior distribution provides quantitative uncertainty anal-
ysis.4 It also may be used to infer uncertainties in another
usage domain (e.g., transmission loss5). This recursive
Bayesian approach allows new data to be added incremen-
tally without having to wait for all data to be present before
processing can take place.6 At present, most single source
and receiver methods,1,7–18 except Ref. 19, do not use the
Bayesian approach for uncertainty analysis.

The improved method is well suited for rapid environ-
ment assessment using a moving source and/or receiver as
depicted in Fig. 1. The source or receiver may be towed hori-
zontally by a ship or an autonomous underwater vehicle
(AUV). Alternatively, a battery powered acoustic source
may be dropped onto the ocean bottom to aid AUV-based
geoacoustic inversion.20 AUV-based inversions recently
have been gaining research interest due to their operational
attractiveness.21–24

The theory of waveguide Doppler and modal propaga-
tion is reviewed briefly in Sec. II, followed by the formula-
tion of the inversion problem. Simulation results are
presented in Sec. III. Section IV presents results from the
analysis of low SNR, 100–900 Hz LFM data from the
Shallow Water 2006 experiment.
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II. THEORY

An overview of the recursive Bayesian approach is illus-
trated in Fig. 2. At the lth measurement yl, the likelihood
pðyljmÞ of the lth measurement conditioned on any particu-
lar set of model parameters m is computed (Sec. II B). This
means computing the difference between the measured field
yl and the replica (modeled) field. Taking into the account of
source/receiver motion, the replica field is generated using
the waveguide Doppler model in Sec. II A.

The recursive Bayesian estimation approach is derived
in Sec. II C. The general idea is to propagate the past poste-
rior probability density pðmjy1:l#1Þ as the prior information
to improve the current posterior probability density pðmjy1:lÞ
with the current likelihood pðyljmÞ via Bayes’ rule. The pos-
terior density is represented with a set of samples of m and
weights that are updated recursively as new measurements
become available. However, as the posterior density evolves
with the measurements, the importance density sampling the
posterior density needs to adapt correspondingly where sam-
ples are added to the high probability regions of the posterior
density. Sections II D and II E address the implementation
of the recursive Bayesian estimation approach using adapt-
ive importance sampling (AIS) of the time-evolving poste-
rior density.

The assumptions for the forward model and inversion
approach are listed in Table I.

A. Waveguide Doppler theory model for acceleration
dynamics

In a waveguide, the impact of Doppler is complicated
due to multipath. Discussions of waveguide Doppler include
Refs. 2, 3, and 25–28. In this paper, waveguide Doppler due
to source/receiver motion on a signal propagating in a range-
independent waveguide is adapted from Schmidt and
Kuperman.2,3 Each horizontal wavenumber or mode under-
goes a different Doppler shift. The scenario considered is
depicted in Fig. 1. Based on constant source and receiver
velocities and depth constraints, and a positive-exponent
Fourier transform convention, the waveguide Doppler
shifted field via a normal mode representation is1
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r0 is the source-receiver separation at t ¼ 0. vs, vr, zs, and zr

are the radial source and receiver velocities and depths,
respectively. qðzsÞ is the water density. kn and Wn are the
modal wavenumbers and modal functions evaluated at prop-
agation frequencies x. For numerical efficiency, construct-
ing the field in Eq. (1) is facilitated by some approximations
to the propagation modal wavenumbers and functions that

FIG. 1. Horizontally stratified ocean with a horizontally moving source and
receiver. The source is moving at initial velocity vs1 and bearing us1, while
the receiver is moving at initial velocity vr1 and bearing ur1. The range ori-
gin is the source position at time zero when the source begins transmitting.

TABLE I. Assumptions for the forward model and inversion approach.

Waveguide Doppler model (see Ref. 1 and Sec. II A)

) Range independent environment

) Known source spectrum

) v=c* 1, source/receiver speed v is much less than the acoustic wave
propagation speed c

) vsl and vrl are constant and horizontal

) Source-receiver displacement (due to motion) is much less than the

source-receiver separation. Therefore the radial velocities are approximately
constant vrl ¼ jvrlj cos url; vsl ¼ jvslj cos usl

) Wðz; xÞ $ Wðz; xrÞ $ Wðz; xsÞ
) Cutoffs or additions of modes due to Doppler shifts are neglected

) knl $ krn= 1# vrl=urnð Þ½ ( $ ksn= 1# vsl=usnð Þ(
$

where knl is approximated

through Taylor’s first order expansion

) Source/receiver acceleration is constant and much smaller than source/re-
ceiver speed

Recursive Bayesian inversion (see Secs. II B and II C)

) Initial prior knowledge of the parameters

) Underlying model parameters are constant for all measurements

FIG. 2. Recursive Bayesian approach. The lth measurement is yl, and m is
the vector of model parameters. For illustration purpose, m is depicted here
as a scalar. The posterior density pðmjy1: lÞ is represented with a set of sam-
ples of m and weights. The importance density changes by introducing new
samples from other densities as the posterior density evolves.
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are computed instead at the receiver frequency xr [see Eqs.
(1) and (3)]. xðknÞ

s is the mode-dependent source frequency
mapping function used to construct the field at xr. urn

¼ dxr=dknðxrÞ is the nth modal group velocity and krn

¼ knðxrÞ is the nth modal wavenumber, both evaluated at
xr. SðxsÞ is the source spectrum of L pulses representing the
amplitude and phase of the moving point source. Tr is the
pulse repetition interval (PRI) and ScðxsÞ is the spectrum of
the common or repeated source transmission.

When the source traverses past the receiver, the radial ve-
locity vs changes even though the source velocity vs is constant
(see Fig. 3). As shown later in Sec. III, acceleration needs to be
modeled to perform a meaningful inversion near the CPA.
However, modeling acceleration is non-trivial as it results in
time-dependence in the modal wavenumbers and modal func-
tions.29 As an approximation to a constant acceleration, a prac-
tical approach is to assume multiple short duration
transmissions, e.g., multiple pulses as in Eq. (4), where the
source/receiver radial velocities are assumed piecewise con-
stant for the lth pulse but linearly changing from pulse to pulse.
Therefore the field can be generated for each pulse and coher-
ently combined for L pulses to form the received spectrum.
Substituting Eqs. (4) and (2) into Eq. (1) and introducing pulse
number dependent radial velocities, the replica field may be
represented as a sum of L fields wlðr; zr; xrÞ such that
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and
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8
>><

>>:
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Each pulse is propagated in the forward model with its
corresponding values of vsl and vrl then coherently combined
in Eq. (5). Note that all L pressure fields still are referenced
to t ¼ 0. In Eq. (8), the horizontal wavenumber knl depends
on mode n and pulse number l. Hence there also are mode
and pulse number dependent frequency mappings when trac-
ing back to xs in order to construct the field at xr, see Eq.
(7). As an approximation to a constant acceleration, the
source/receiver radial velocities vsl and vrl [Eqs. (9) and
(10)] are modeled to be piecewise constant for the lth pulse
but linearly changing from pulse to pulse. as and ar are the
source and receiver radial accelerations, respectively.

B. Likelihood functions

The broadband data model for frequency-coherent
match-field based geoacoustic inversion can be expressed as
L measurement vectors,

yl ¼ aEðnÞdlðmÞ þ gl ¼ ablðn; mÞ þ gl; (12)

where yl ¼ ½ylðxr1Þ , , , ylðxrJÞ(T is the K-point fast Fourier
transform (FFT) of the observed time series capturing the lth
pulse for J discrete frequencies. Note the lth pulse Fourier
transforms are synchronized to the first pulse transmission
time (t ¼ 0) so that only one timing error n between the
source and receiver clocks needs to be resolved. EðnÞ is a
diagonal matrix for correcting the timing error, EðnÞ
¼ diag½eixr1n , , , eixrJn(. m is the subset of forward model pa-
rameters that are being estimated (see Fig. 1). a is a scale
factor representing the unknown source level. To introduce
source/receiver motion or waveguide Doppler, the corre-
sponding replica field dlðmÞ ¼ ½wlðxr1; mÞ , , ,wlðxrJ; mÞ(T
is generated using Eq. (6) with vector m. It is assumed the
model parameters m, a and n do not change between meas-
urements and thus the joint likelihood function will sharpen
as L increases.

The distribution of the error vector gl ¼ ½glðxr1Þ , , ,
glðxrJÞ(T defines the likelihood function. It is assumed that
gl for l ¼ 1;…; L are independent and identically distributed
(i.i.d.) across L measurements. Error consists of both ambi-
ent noise and modeling errors. For low SNR processing, the
colored ambient noise will be considered the dominant

FIG. 3. (a) Top view of a constant velocity source with changing radial ve-
locity to the receiver due to the geometry of source/receiver positions. (b)
Source–receiver range and radial velocity curves near CPA. Here the change
in source radial velocity in the dotted box approximately is linear with time
corresponding to a constant acceleration.
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source of error. The frequency-dependent noise is modeled
as a wide sense stationary noise u½n( with power spectral
density PuuðxrÞ. PuuðxrÞ is estimated from noise only data
prior to the pulse transmissions.

Taking a K-point FFT of u½n(, let the lth error vector gl

be the FFT of u½n( evaluated at frequencies ½xr1 , , ,xrJ ( with
J - K. We will define the frequency domain noise gl as
complex Gaussian with mean E½gl( ¼ 0 for xr 6¼ 0 and
autocovariance30

Cg ¼ E½glg
H
l ( ¼ cdiag½Puuðxr1Þ , , , PuuðxrJÞ(; (13)

where c is a scale factor for scaling the noise spectrum in
the data inversions. Thus it is assumed that the error
vector gl . CN ð0; CgÞ. Factoring Cg ¼ c~Cg with ~Cg

¼ diag½Puuðxr1Þ , , , PuuðxrJÞ(, the joint likelihood function
of the L measurements can be expressed as (based on i.i.d.
measurements)

L ~mð Þ¼ p y1 :Lj ~m
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where supervector y1:L ¼ ½yT
1 ;…; yT

L (
T and ~m ¼ ½mT; c;

a; n(T. To simplify the notation, m is now redefined to also
include c, a, and n. For this empirical Bayesian estimation
problem, a and c are estimated jointly with the model param-
eters,5 instead of incorporating their maximum likelihood
estimates (MLE) as in Ref. 1.

C. Recursive Bayesian estimation

In low SNR conditions, long time integration is neces-
sary for acceptable parameter estimation uncertainty. The
time-dependent source-receiver range can be recast into a set
of initial value and constant parameters. This reformulation
includes initial value parameter such as initial source range
r0 at ðt ¼ 0Þ [Eq. (11)], initial velocities vs1 and vr1 and con-
stant accelerations as and ar [Eqs. (9) and (10)] for use with
the waveguide Doppler model [Eqs. (5) and (6)]. Thus the
need to track31,32 the time-dependent source-receiver range
is circumvented, and the measurements accumulate and
improve the likelihood/posterior densities. It is assumed that
other model parameters, such as the seafloor properties, do
not change for the L measurements.

Recursive Bayesian estimation (see Fig. 2) is inspired
by recursive Bayesian online learning and particle filter theo-
ries.6,33–36 With initial prior knowledge of the parameters
pðmÞ and Bayes’ rule, the joint posterior probability density
function (PPD) of the model parameters for l pulse measure-
ments is6

p mjy1 : l

' (
¼

p y1 : ljm
' (

p mð Þ
p y1: lð Þ

(15)

¼
p yljm
' (

p mjy1 : l#1ð Þ
' (

Ð
p yljm
' (

p mjy1 : l#1ð Þ
' (

dm
: (16)

Equation (16) shows that the joint posterior density condi-
tioned on l measurements can be updated recursively from
the lth likelihood and the joint posterior density of the l# 1
measurements. Thus Bayesian updating of pðmjy1 : lÞ can
be done all at once [Eq. (15)] or recursively over time
[Eq. (16)]. In addition, assuming constant geoacoustic
model parameters for all l, no model mismatch error and no
bias error between the replica and measured fields, the var-
iance of the maximum a posteriori (MAP) parameter
estimate,

var½m̂ðLÞMAP( < var½m̂ðL#1Þ
MAP ( < , , , < var½m̂ð1ÞMAP(; (17)

where

m̂ðLÞMAP ¼ arg max
m

pðmjy1:LÞ ¼ arg max
m

pðmÞ
YL

l¼1

pðyljmÞ:

(18)

Ideally, the posterior density converges to a Dirac delta func-
tion centered at the true parameter value as L approaches infin-
ity.6 Practically, it is difficult to attain the true parameter value
as there will be some model mismatch error or bias in the esti-
mator. In addition, only a limited number of measurements can
be processed before time-dependent variations in the model pa-
rameters and model mismatch errors become significant.

D. Recursive Monte Carlo integration and importance
sampling

The posterior density pðmjy1 : lÞ is used to compute met-
rics of interest such as the MAP estimates, posterior means,
variances and marginal PPDs of the model parameter mi

(Refs. 4 and 37) [see Eqs. (18) and (19)–(22)]. A way of gen-
erating these metrics is Monte Carlo integration and impor-
tance sampling.38–41 Compared to Markov Chain Monte
Carlo methods that sequentially sample the posterior density,
the primary appeal of importance sampling is the ability to
carry out large-scale sampling of the posterior density in par-
allel. These metrics also can be updated as new data is made
available [see Eqs. (27)–(29)],

li ¼
ð

mipðmjy1 : lÞ dm; (19)

r2
i ¼

ð
ðmi # liÞ

2pðmjy1:lÞ dm; (20)

pðmijy1:lÞ ¼
ð

dðm0i # miÞpðm0jy1:lÞ dm0; (21)

pðmi; mjjy1:lÞ ¼
ð

dðm0i # miÞdðm0j # mjÞ
%pðm0jy1: lÞ dm0:

(22)

For a parameter of interest such as the water column sound
speed profile (SSP), cw, that is inferred from the inversion
and is a function of empirical orthogonal functions (EOFs)
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and coefficients,1,42–44 cw ¼ CðmÞ, the probability distribu-
tion of cw is4,5

pðcwjy1: lÞ ¼
ð
d½cw # CðmÞ(pðmjy1: lÞ dm: (23)

As shown later in Sec. IV A, Eq. (23) is used to plot the SSP
estimation uncertainty in Figs. 12–14. Using the Monte Carlo
integration method,38–41 these integrals are of the form,

ð
h mð Þp mjy1: l

' (
dm ¼ E h mð Þ½ ( $

1

Q

XQ

q¼1

h mqð Þ; (24)

where the samples fmq; q ¼ 1;…; Qg are drawn from the
distribution pðmjy1: lÞ. Drawing samples from pðmjy1: lÞ is
difficult as it usually is a non-standard and high dimensional
probability density function (PDF).39,40 Alternatively, a stand-
ard or importance density xðmÞ may be used to generate the
samples. This is known as importance sampling.38–40 Therefore

ð
h mð Þp mjy1: l

' (
dm $

XQ

q¼1

h mqð Þ~wq
l

XQ

j¼1

~wj
l

; (25)

where

~wq
l ¼

p y1: ljmq
' (

p mqð Þ
x mqð Þ (26)

are the unnormalized weights, and they correct under- and
over-represented samples drawn from xðmÞ instead of
pðmjy1: lÞ. However, Eqs. (25) and (26) are non-recursive.
As new data is made available, the weights may be com-
puted recursively as33–35

~wq
l ¼ pðyljm

qÞ~wq
l#1: (27)

Let normalized weights be wq
l ¼ ~wq

l =
Pj¼Q

j¼1 ~wj
l. Equation

(25) becomes

ð
hðmÞpðmjy1: lÞ dm $

XQ

q¼1

hðmqÞwq
l : (28)

Equations (27) and (28) are recognized as an implementation
of Eq. (16). The PPD can be approximated by33,34

pðmjy1: lÞ $
XQ

q¼1

dðm#mqÞwq
l ; (29)

and it approaches the true PPD as Q!1. For comparison,
see Eqs. (21) and (22).

E. Adaptive importance sampling

The PPDs, pðmjy1: lÞ, evolve with each new pulse. Thus
the importance density is a function of l and should adapt
correspondingly to sample the evolving PPDs effectively.
One solution is to employ a Gaussian mixture for the impor-
tance density. Let the importance density be given by45,46

xðm; lÞ ¼
Xl

n¼0

bnxnðmÞ; (30)

where the mixture coefficients bn ¼ Qn=Q, Qn is the number
of samples generated from the nth Gaussian density xnðmÞ
and Q ¼

Pl
n¼0 Qn, and thus

Pl
n¼0 bn ¼ 1.

Conventionally, Gaussian mixtures are used in adaptive im-
portance sampling (AIS) to match the arbitrary and non-
evolving PPD (in Bayesian applications).45,46 The mixture coef-
ficients, means and covariance matrices of xnðmÞ are adaptively
improved based on the previous Monte Carlo draws that sample
the same PPD. In addition, the number of densities in the mixture
remains constant. However, adapting the mixture coefficients
bn, means and variances of xnðmÞ is computationally demanding
for each pulse measurement in the application discussed here.
This is because each adaptive iteration requires hundreds or
more forward model evaluations, and many iterations are needed
for the AIS density to converge to the current posterior density.

A simple alternative use of the Gaussian mixture that
directly uses the posterior information is proposed here. The
main difference between previous AIS implementations45,46

and our proposed AIS is that the importance density here
(Figs. 4 and 7) iteratively adapts as the PPD pðmjy1: lÞ
changes with l. The pseudo code for recursive Bayesian esti-
mation using AIS is provided in Table II. There are lþ 1
mixture components for a PPD conditioned on l measure-
ments (see Eq. 30 and Fig. 4).

The initial density x0ðmÞ is used in a preliminary explora-
tion of pðmjy1Þ. x0ðmÞ is chosen to be a Gaussian density
N ððsu þ slÞ=2; diag½ðsu # slÞ=2(2Þ, where su and sl are upper
and lower boundaries of the parameter search space. Using im-
portance samples drawn from x0ðmÞ and the first pulse mea-
surement, m̂ð1ÞMAP and the covariance matrix C1 of m can be
approximated [see Eqs. (18), (19), and (31)]. While retaining
the old importance samples for a new pulse, an additional set of
importance samples is included using the density
x1ðmÞ ¼ N ðm̂ð1ÞMAP; C1Þ. Then, using

P1
j¼0 Qj importance

samples from x0ðmÞ and x1ðmÞ, m̂ðlÞMAP, and C1 can be updated.
It is important to note that both m̂ðlÞMAP and Cl first are

approximated from the PPD pðmjy1: lÞ using the previous
Pl#1

j¼0 Qj importance samples and the current pulse measure-

ment embedded in the updated weights wq
l . Subsequently,

importance samples are drawn from N ðm̂ðlÞMAP; ClÞ to sample
the PPD pðmjy1: lÞ more effectively. Then, using past and

present importance samples
Pl

j¼0 Qj, m̂ðlÞMAP and Cl can be

updated. Cl is computed from [see Eqs. (18) and (19)]39,41

Cl $
XQ

q¼1

ðmqÞðmqÞTwq
l # lll

T
l : (31)

The importance density xðm; lÞ now is dependent on l.
The weight corrections [Eq. (26)] should be applied after the
weight recursion but before the weight normalization. Let
un-corrected and un-normalized weights be redefined as
ŵq

l ¼ pðy1: ljmqÞpðmqÞ and the new recursion be ŵq
l

¼ pðyljmqÞŵq
l#1. The weights then are corrected by ~wq

l
¼ ŵq

l =xðmq; lÞ before normalization. Importance sampling
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potentially can have numerical stability issues in the weight
correction ~wq

l ¼ ŵq
l =xðmq; lÞ if xðmq; lÞ is very small.

Retaining the older densities in the mixture has the desirable
effect of increasing the tails of the overall density while
maintaining the main mass of samples in the high PPD
region.39,40

The overall effect of this cumulative update of m̂ðlÞMAP
and Cl and accumulation of Gaussian densities is an AIS
process. The last Gaussian density added will have a covari-
ance that is an estimate of the covariance of the current PPD.

III. RECURSIVE BAYESIAN SIMULATION

This section will demonstrate the recursive Bayesian esti-
mation approach that coherently processes the data pulse by
pulse and incrementally updates estimates of parameter

uncertainty. It also approximates source/receiver radial accel-
eration by assuming piecewise constant but linearly changing
source/receiver velocities. When source/receiver radial accel-
eration exists, it is demonstrated that modeling acceleration
[Eqs. (5)–(11)] can further reduce the parameter estimation
biases and uncertainties. The ocean model is illustrated in Fig.
1 and model parameters are tabulated in Table III. Based on
the theory presented in Sec. II A, this simulation models a
constant velocity moving source that is slowing down radially
with respect to the static receiver for L ¼ ½1;…; 64( pulses
(see Fig. 3). The range-independent geoacoustic parameters
were based on previous SW06 inversion results.1,43,44,47,48

The source emits 100–900 Hz LFM pulses with 1 s pulse
width and PRI. Thus vs64 ¼ 1:52 m/s. [see Eq. (9)]. The noise,
Eq. (13), was generated to be similar to the measured power
spectrum of SW06 ambient noise data. The frequency sam-
pling is 5 Hz starting from 100 to 700 Hz. KRAKEN is used to
compute the modes and wavenumbers.49

The sediment parameters (qsed; c1; s, and ased) are esti-
mated using the recursive Bayesian estimation procedure in
Sec. II D, while the rest of the model parameters are assumed
known. The parameter search space is kept small so that
exhaustive-search based on 244 samples (instead of random
importance samples) can be used to plot the true PPDs.
Source acceleration is modeled in the replica field using Eq.
(9). We first show that the method does indeed reduce the
parameter uncertainty as L increases. Using Eqs. (21), (22),
(27), and (28), Fig. 5 shows both one-dimensional (1-D)
(along the diagonal) and two-dimensional (2-D) (off-diagonal)
marginal PPDs. In the 2-D PPDs, the densities are contoured
according to their percentage highest posterior density
(HPD) regions.4,37 This percentage HPD is also equal to per-
centage of the total probability. The PPDs of the model pa-
rameters are not Gaussian. This is due to the non-linear
relationship between the acoustic field and the geoacoustic
parameters. Comparing the posterior densities in Figs. 5(a)
and 5(b), the reduction in the HPD regions indicates that
there is much improvement. The 2-D PPDs also provide in-
formation about the correlation between any two parameters.

FIG. 4. Importance density evolution with l.

TABLE II. Pseudo code for recursive Bayesian estimation using adaptive
importance sampling.

Preliminary exploration of PPD pðmjy1Þ

Draw Q0 samples fm1 , , ,mQ0g from density
x0ðmÞ . N ððsu þ slÞ=2; diag½ðsu # slÞ=2(2Þ
Initialize weights ŵq

0 ¼ pðmqÞ

Recursive Bayesian estimation

for l ¼ 1 to L

Using current lth measurement yl

and the past importance samples Q ¼
Pl#1

j¼0 Qj:

Update weights ŵq
l ¼ pðyljmqÞŵq

l#1

Correct weights ~wq
l ¼ ŵq

l =xðmq; l# 1Þ
Normalize weights wq

l ¼ ~wq
l =
Pj¼Q

j¼1 ~wj
l

Using the ðl# 1Þ th importance density xðm; l# 1Þ
Approximate MAP estimate m̂ðlÞMAP Eq. (18)

Approximate PPD covariance Cl Eqs. (19) and (31)

Draw Ql importance samples from density

xlðmÞ . N ðm̂ðlÞMAP; ClÞ:
For the new Ql importance samples:

Compute weights ŵq
l ¼ pðmqÞ

Ql
j¼1 pðyjjmqÞ

For all importance samples Q ¼
Pl

j¼0 Qj:

Correct weights ~wq
l ¼ ŵq

l =xðmq; lÞ
Normalize weights wq

l ¼ ~wq
l =
Pj¼Q

j¼1 ~wj
l

Bayesian statistical estimation for y1:l

Finalize MAP estimate m̂ðlÞMAP Eq. (18)

Finalize covariance Cl Eqs. (19) and (31)

Compute PPD estimate Eqs. (21), (22), and (29)

Compute Bayesian inference Eqs. (23) and (29)

endfor

TABLE III. Baseline model parameters.

Simulation model parameters Value

Source range at t ¼ 0, r0 (m) 600

Source depth, zs1 (m) 30

Receiver depth, zr1 (m) 45

Source initial radial velocity, vs1 ðm=sÞ 1.9

Receiver initial radial velocity, vr1 ðm=sÞ 0

Source radial acceleration, as ðmm=s2Þ #6

Receiver radial acceleration, ar ðmm=s2Þ 0

Water depth, zw (m) 78

Sediment depth, hsed (m) 22

Sediment density, qsed ðg=cm3Þ 1.8

Sediment attenuation., ased ðdB=kÞ 0.2

Sediment top velocity, c1 ðm=sÞ 1640

Sediment velocity slope, s ð1=sÞ 0

Bottom density, qbot ðg=cm3Þ 2.2

Bottom attenuation., abot ðdB=kÞ 0.2

Bottom velocity, cb ðm=sÞ 1740
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Recursive Bayesian estimation is repeated with no
source acceleration modeled [as ¼ 0 in Eq. (9)] in the replica
field while the measured field contains as ¼ #0:006 m/s. As
the number of pulse measurements increases, the replica-to-
measured field mismatch increases and the MAP and PPD
estimation results deteriorate and deviate from the baseline
values [see Fig. 6(a)]. This is due to the replica field not
modeling pulse-number (l) dependent radial velocity
changes. In addition, the importance sampling utilized in
this recursive Bayesian formulation also will have difficulty
sampling the high probability regions of parameter space
because there is a range of possible radial velocities to
match. As a result, the MAP estimates and 1-D marginal
PPD plots in Fig. 6(a) were adversely affected and provided
little or biased information about the geoacoustic properties.

On the other hand, if source acceleration is modeled in
the replica field, the joint PPD of the model parameters will
evolve and be more informative (peaky) as the number of
pulse measurements increases, Eq. (16). Equivalently, this is
observed in Fig. 6(b) in the evolution of the 1-D marginal
PPDs with increasing number of pulse measurements.

Figures 5(b) and 6(b) are repeated using the AIS
approach starting with only 3000 samples that eventually
grows to 18 120 samples [see Figs. 5(c) and 6(c)].
Comparing Figs. 5(b) and 5(c) and 6(b) and 6(c), the AIS

PPDs look similar to the true PPDs, and they gradually will
converge to the true PPD as more AIS samples are added.
This has demonstrated that AIS is effective in estimating the
PPD using 15 times less importance samples than the num-
ber used for the exhaustive sampling method. Figure 7 shows
how the AIS importance distribution xðm; LÞ adaptively
changes with L to follow the evolving PPD.

These simulations have demonstrated the reduction of
biases and uncertainty of parameter estimates as L increases.
There are two contributions to this improvement. One is the
coherent gain from processing multiple pulses. The other is
the spatial gain when the source moves toward the receiver.
A way to check the incremental contribution due to spatial
gain is to carry out a parameter sensitivity analysis compar-
ing static and moving source–receiver configurations for 64
pulses (see Fig. 8). As the synthetic aperture created in this
simulation is short (109 m), the synthetic aperture/spatial
gain is not significant compared to the gain from processing
multiple pulses.

IV. EXPERIMENTAL DATA ANALYSIS

The SW06 experiment was carried out near the shelf
break on the New Jersey continental shelf from July to
September 2006. The sequence of transmission in Ref. 1 do

FIG. 5. (Color online) True marginal PPD via 244 exhaustive-search based samples with SNR fixed at 0 dB and number of LFM pulses (a) L ¼ 1 (b) L ¼ 64.
(c) Estimated marginal PPD via AIS 18 120 samples with SNR fixed at 0 dB and number of LFM pulses L ¼ 64.

FIG. 6. (Color online) True 1-D marginal PPD evolution with L ¼ ½1;…; 64(: (a) Acceleration not modeled in the replica field, (b) acceleration modeled in
the replica field. (c) Estimated 1-D marginal PPD evolution with L ¼ ½1;…; 64( with acceleration modeled in the replica field and 3000–18 120 AIS samples.
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not have enough acceleration to demonstrate the effects of
modeling motion dynamics. Hence a new sequence that is
closer to the CPA was selected for analysis. The data set has a
linearly changing radial velocity moving source and a static
receiver over a range-independent track, see Figs. 9 and 10.
The acoustic data were recorded on JD238 2040 coordinated
universal time (UTC) (t ¼ 0) from a 44.6 m deep single re-
ceiver (Channel 8) of a vertical line array (VLA1). The data
set consisted of 64 LFM pulse (100–900 Hz) transmissions
from a 29.5 m deep J–15 source towed by the R/V Knorr at an
initial radial velocity of 1.6 m/s and radial acceleration of
#0:006 m/s2. The LFM pulse width was 1 s and was repeated
every second. The initial R/V Knorr global positioning system
(GPS) range to VLA1 was 525 m with a CPA distance of
410 m and the source is known to be trailing 115 m behind the
ship’s GPS mast. Based on the ship and VLA1 positions, the
actual source to VLA1 distance at t ¼ 0 is estimated to be
603 m. In addition, by factoring in that the source is trailing
115 m behind the GPS antenna, the actual radial velocity
between source and VLA1 is 1.9 m/s. Correspondingly, the
towed source displacement with respect to VLA1 or synthetic
aperture is [1.9 m/s # 64 s/2 % (0.006 m/s2)]% 64 s ¼ 109 m
long.

The water depths measured at the source and receiver
were 78 and 79 m, respectively. Water column SSPs are im-
portant and considered sensitive parameters in geoacoustic
inversion. In the simulation, the SSP was assumed known to
simplify and compute the true PPD. The true PPD confirms
empirically that AIS in the inversion adequately samples the
PPD (see Fig. 5). In the SW06 experimental data, the

measured SSP is known to be range dependent and is not a
good substitute for an averaged range independent SSP. In
addition, due to the lack of conductivity, temperature and
depth (CTD) measurements during this period and location,
sound speed profile inversion was included using empirical
orthogonal functions42–44 (EOFs) based on SSPs derived
from thermistors along the SHARK array (see Fig. 9).1

A. Data preprocessing and inversion results

Pre-processing of the single receiver data for all L
pulses includes LFM pulse matched filtering for coarse
synchronization (Fig. 11). The data then are sliced accord-
ing to the synchronization and FFT’d to obtain the meas-
ured field yl for each pulse in the frequency domain. The
matched filter output is not used in the inversion itself.
Finally, the frequency domain data are phase-adjusted
according to the synchronization times such that coherent
combination will follow Eq. (5). This makes the timing ref-
erence the same for all frequency domain data. For compu-
tational reasons, the frequency sampling interval is 5 Hz
from 100 to 700 Hz. As explained in Ref. 1 and in Sec. II

FIG. 7. AIS importance distribution xðm; LÞ marginalized onto ased for
L ¼ ½1; 32; 64(.

FIG. 8. Likelihood function pðy1: 64jmiÞ while fixing the remaining model
parameters to the baseline values (see Table III) for moving/static source-
receiver configurations.

FIG. 9. (Color online) SW06 experiment site, bathymetry, source, and re-
ceiver positions on JD238 (26 Aug 2006) 2000–2059 UTC.

FIG. 10. R/V Knorr range and radial velocity to VLA1. Highlighted is the
period of time corresponding to the 64 s data analyzed.
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A, the advantage of the waveguide Doppler model is that
the forward model is computed on the receiver frequencies.
To construct the replica field for a receiver frequency, the
forward model has to trace backward to multiple source
frequencies due to mode-dependent Doppler shifts. This is
done analytically using the backward frequency mapping
in Eq. (7). The forward and backward mapping relation-
ships between the source, propagation and receiver fre-
quencies are provided in Table IV.1

The lower and upper bounds for the model parameters
priors were set for the forward model depicted in Fig. 1
based on the background information at the experiment
site,1,19,43,44,47,48 see Table V. Importance samples are drawn
from Gaussian mixtures, and uniform priors are assumed.
The 18-parameter recursive Bayesian inversion was done for
L ¼ ½1;…; 64( using an initial 240 000 importance samples
ðL ¼ 1Þ that eventually grows to 840 000 importance sam-
ples ðL ¼ 64Þ. Note that a high number of importance sam-
ples is necessary for good PPD estimation.4 On the other
hand, MAP estimates require considerably fewer importance
samples than required for PPD estimation.41

Table V tabulates the inversion MAP results using
waveguide Doppler without and with acceleration modeled
for the 64 LFM pulses. For the inversion results using the
acceleration model, the estimated sediment thickness, veloc-
ity, and density are consistent with other published
results1,19,43,44,47,48 at the VLA1 site. For example, these
inversion results range from 1600 to 1670 m/s for the top
sediment velocity and 20 to 25 m for the sediment thickness.
In addition, the geometric parameters (r0; zs; zr; vs1; as;
and zw) results also agree very well with the measured or
best known values. However, the gradient of the sediment
velocity remains inconclusive.19 There have been negative,
zero, and positive gradient sediment profile inversion
results obtained by different investigators. The negative

gradient sediment profile results here are similar to the
results in Ref. 44.

The posterior densities of the model parameters are illus-
trated in Figs. 12–14, where only the 1-D (plots along the di-
agonal) and 2-D (plots above the diagonal) marginal PPDs are
shown. Only the most relevant 11 or 12 of 18 parameters are
given in Figs. 12–14. The three EOF coefficients PPDs are
difficult to interpret in terms of the water column SSP uncer-
tainties. Therefore the uncertainties or PPDs of the water col-
umn SSP, using Bayesian inference [Eq. (23)], are plotted
from the PPD statistics of the EOF coefficients.

Comparing Figs. 12 and 14, the reduction in uncertain-
ties between L ¼ 1 and L ¼ 64 is remarkably good across all
parameters. Uncertainty reduction in the water column SSP
also is observed (see Figs. 12 and 14). The largest uncer-
tainty in the water column SSP is between 35 and 45 m
depth. This compares well to the SHARK SSP measure-
ments between 1830 and 2229 UTC where the largest sound
speed variation is around 40 m depth (see Fig. 14). Because
the SSPs are known to be range dependent in SW06, the
SHARK SSP measured at 2040 UTC was not a good substi-
tute for an averaged range independent SSP. The EOFs have
enabled the inversion to optimize for the best average SSP
and the SSP inverted here is consistent with the SSP inver-
sion results from Ref. 1.

In contrast, the MAP results in Table V for L ¼ 64 with-
out using the acceleration model yield more biased geomet-
ric and geophysical (r0; zs; zr, zw, and qsed) results when
compared to measured or best known values. The biased
geometric results are an indication that this inversion is not
reliable. For example, the source range r0 is 50 m short and
the water, source and receiver depth, are, respectively, 4.8,
1.2, and 3.6 m too shallow. These differences cannot be
explained by the effective parameter calculations for a
mildly range dependent environment.50 This further is

FIG. 11. LFM pulse matched filtering for coarse synchronization.

TABLE IV. Mapping relationships for the source, propagation and receiver
frequencies.

Source Propagation Receiver

xðknlÞ
s ¼ xr# knlðvsl # vrlÞ x ¼ xr þ knlvrl xr

xs x ¼ xs þ knlvsl xðknlÞ
r ¼ xsþ knlðvsl # vrlÞ

TABLE V. SW06 data inversion parameters prior bounds and MAP results

for L ¼ 64.

Prior Prior Without With
Model parameters Lower limit Upper limit as option as option

Src range at t ¼ 0, r0 (m) 520 630 550 594

Src depth, zs (m) 27 32 28.8 29.7

Rcv depth, zr (m) 39 46 41.0 42.6

Timing error, n (ms) #50 50 9 #20

Src rad. vel., vs1 ðm=sÞ 1.5 2.0 1.84 1.94

Src rad. accel., as ðmm=s2Þ #7 #5 N/A #6

EOF1 coef. #50 50 22.5 42.3

EOF2 coef. #20 20 6.6 14.0

EOF3 coef. #10 10 0.9 5.2

Sed. thickness, hsed (m) 10 30 20.5 21.5

Sed. dens., qsed ðg=cm3Þ 1 3 2.5 2.1

Sed. attn., ased ðdB=kÞ 0.001 1 0.2 0.3

Sed. top. vel., c1 ðm=sÞ 1550 1700 1644 1655

Sed. vel. slope, s ð1=sÞ #10 10 #3.3 #4.3

Bot. vel., cb ðm=sÞ 1600 2200 1967 1993

Water depth, zw (m) 74 81 74.2 76.9

Src level, a 0.1 0.8 0.2 0.5

Noise level, c 0.5 1.9 1.5 1.1
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supported by the parameter estimation uncertainties or the
95% HPD region results when not using acceleration which
are about 100% more than the results when using the accel-
eration model (compare Figs. 13 and 14). The inverted water

column velocity profile also is different than the results
when using the acceleration model. Thus the quality of the
inversion results without modeling acceleration is lower than
that with acceleration modeled.

FIG. 12. (Color online) SW06 data recursive Bayesian inversion results using the waveguide Doppler model with acceleration modeled in the replica for
L ¼ 1.

FIG. 13. (Color online) SW06 data recursive Bayesian inversion results using the waveguide Doppler model with no acceleration modeled in the replica for
L ¼ 64.
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V. CONCLUSIONS

A broadband, frequency coherent matched-field inversion
procedure for a moving source and receiver at low SNR using
a recursive Bayesian pulse-by-pulse approach has been devel-
oped. This enabled a time-evolving uncertainty analysis of the
model parameters and an approximation for a horizontally
accelerating source and receiver. Through simulation and data
analysis from the Shallow Water 2006 experiment, it was
demonstrated that: (1) Via online uncertainty analysis, param-
eter uncertainty reduces with an increasing number of pulses
and (2) when source/receiver acceleration exists, modeling
acceleration in the inversion can reduce further parameter esti-
mation biases and uncertainties.
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