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A B S T R A C T

We develop a model-free technique to identify weak sources within dense sensor arrays using graph clustering.
No knowledge about the propagation medium is needed except that signal strengths decay to insignificant levels
within a scale that is shorter than the aperture. We then reinterpret the spatial coherence matrix of a wave field
as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. In a dense network, well-
separated sources induce clusters in this graph. The geographic spread of these clusters can serve to localize the
sources. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a
robust phase-only coherence test statistic combined with a physical distance criterion. The latter criterion
ensures graph sparsity and thus prevents clusters from forming by chance. We verify the approach and quantify
its reliability on a simulated dataset. The method is then applied to data from a dense 5200 element geophone
array that blanketed 7 km × 10 km of the city of Long Beach (CA). The analysis exposes a helicopter traversing
the array and oil production facilities.

1. Introduction

Large and dense sensor arrays are becoming more common as the
cost for sensor and communications hardware decreases. Examples of
such arrays are the USArray initiative in seismology with 500 stations
covering large parts of the continental US [1] or the seismic exploration
array with 5200 sensors as presented here. As array sizes increase the
occurrence of within-aperture source events that cause coherent signals
over only a small fraction of all sensors becomes more common.

This work addresses the problem of localizing such weak sources in
a complex and unknown environment. For known or well-characterized
media this problem has been addressed using frameworks such as
matched field processing (MFP), maximum likelihood methods, or
migration techniques in, e.g., acoustics [2–5], seismology [6–10],
infrasound acoustics [11,12], and electromagnetics [13,14]. The ei-
gen-structure of the array covariance matrix or its inverse plays an
important role in these approaches, in particular for data-adaptive
implementations using, e.g., MVDR [15] or MUSIC [16]. A possible
solution to locate sources in dense networks without relying on
medium information is the spatiotemporal analysis of signal intensity
[17,18]. However, using power alone cannot detect sources near or
below the noise floor.

We present a model-free analysis approach that can work also for
weak signals through the use of coherent averaging. The only assump-
tion made is that source signals enter the noise floor within a distance
that is much smaller than the array aperture. That requirement is

realistic for large arrays based on wave propagation in moderately
attenuating media such as the earth. We follow a graph-based analysis
paradigm [19,20]: The sensors are arranged as vertices in a graph with
edges between vertices existing if the corresponding sensors share a
common coherent signal. Thus the graph connectivity matrix is defined
as the support of the array coherence matrix.

For long observation times, we demonstrate that finding weak
within-aperture sources is tantamount to identifying connected com-
ponents in this graph (here referred to as clusters). Such clusters can be
found through an eigenvalue decomposition of a matrix (the graph
Laplacian) that is derived from the connectivity matrix [21]. In the
limited-data case stochastic fluctuations in the coherence can create
spurious connections in the graph, thus leading to large connected
components, a well-known phenomenon studied in random graph
theory. To prevent such spurious clusters from forming we additionally
limit the connectivity to the physical neighborhoods of the sensors.

The general applicability of the method comes at the cost of lower
precision compared to model-based localization methods: a source is
only identified through the sensors on which it has had a significant
impact. For the large geophone array (analyzed above 10 Hz) we find
that the sensor clusters mostly correspond to a small fraction of the
array, indicating that high-frequency sources are well determined. We
are not aware of any existing techniques that identify such sensor
subsets that sense a common source.

The rest of this paper is organized as follows: Section 2 defines the
coherence hypothesis test, introduces some graph concepts, and
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describes how a graph is constructed from the array coherence matrix.
In Section 3 a proof is given that within-array sources induce clusters
in that graph in the asymptotic case assuming sufficient spatial signal
decay. We verify and test the reliability of finding sources using these
clusters on simulated data in Section 4. This is followed in Section 5 by
an application to real data from a 5200 sensor geophone array that
covered 70 km2 of the city of Long Beach (CA) with a sensor spacing of
about 100 m.

2. Coherence matrix defines a graph

Consider a large aperture array with N sensors distributed densely
over spatial locations r{ }i i N=1, …, . The arrays we consider are quasi-
uniform, but different configurations are applicable. This section first
describes a hypothesis test to find the support of the coherence matrix
of these sensors and then describes how to use this support to construct
a graph and find its clusters. Finally, we investigate the clustering
behavior in a source-free network.

2.1. Coherence hypothesis test

2.1.1. Robust coherence
We compare the behavior of two definitions of magnitude of

coherence for uncorrelated and heteroscedastic signals, i.e. stochastic
signals with time-varying variance. Consider a zero-mean signal uj(t)
observed at location rj and captured by a window of Q samples at
intervals tΔ . Its discrete Fourier transform over a period T Q t= ΔW

during the m-th window (snapshot) is defined as:

∑x m f w u mQ t q t e( , ) = ( Δ + Δ ) ,j
q

Q

q j
π q t f

=0

−1
−ı2 ( Δ )

(1)

where the frequencies are discretized f k Q= , = 0,…, /2k
TW

and the

weights wq control spectral leakage [22]. All the considerations in this
paper are made in the Fourier domain.

Let xi(m) and xj(m) be a sequence of snapshots of two such signals
in the frequency domain, m M= 1,…, . The sample covariance is
defined as
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with the actual covariance reached for infinite snapshots:
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The sample covariance estimate will be affected by the variances in xi
and xj that are unrelated to any physical relation between the two
sensors. A customary attempt to reduce the impact of such variations is
to compute the coherence as a normalized covariance. We compare two
definitions of magnitude of coherence. A full-sample normalized
coherence:
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and a version relying only on phase-information:
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The coherence (5) only relies on phase information and is invariant
against heteroscedasticity, i.e. signals with time-varying intensity [23].
This is important because such signals are common in seismic and
acoustic time-series. To illustrate the effect of heteroscedasticity we
consider three scenarios for xi and xj as shown in Table 1, where xi and

xj are uncorrelated and each i.i.d. complex Gaussian with a variance
that depends on the snapshot index. Fig. 1A shows the simulated pdf of
Cij

c
for the three scenarios (based on 106 realizations). The pdf of the

sample coherence Cij
c
substantially deviates from the stationary case for

the two non-stationary scenarios considered. This instability with
respect to heteroscedasticity makes Cij

c
a poor choice for a hypothesis

test against independence. Fig. 1B shows the pdf of Cij for the same
scenarios as before and demonstrates how the distribution of this
statistic is invariant for the considered heteroscedasticity scenarios.

2.1.2. Hypothesis test
We describe a hypothesis test with robust test-statistics to establish

the support of the array coherence matrix Γij Eq. (3). We test for the
two alternative hypotheses:

H Γ H Γ: = 0, : ≠ 0,ij ij0 1 (6)

i.e. the signals observed at locations ri and rj are uncorrelated (H0) or
correlated (H1). We use the magnitude of the robust sample coherence
Cij Eq. (5) to test the hypothesis. If H0 is true, then Cij will be
distributed according to a pre-computable PDF (Fig. 2 shows the
PDF for M=19 derived by simulation). The hypothesis H0 is accepted if
C c≤ij α and rejected otherwise. The threshold coherence magnitude cα
is set such that the probability of falsely rejecting the hypothesis is α,
formally c α= cdf (1 − )α

−1 , where cdf (·)−1 is the inverse of the cumula-
tive distribution function of Cij estimated by simulation (blue plot in
Fig. 2).

Fig. 3 shows how cα decreases monotonically with increasing
number of snapshots M. For M = 19 we have c = 0.484α . Note that if
the travel time difference between two sensors exceeds TW then the
contribution of that source to the coherence is zero. While a large M is
preferred for statistical reasons, due to the non-stationary sources M
cannot be too large.

To provide an idea about the likelihood of falsely accepting the null-
hypothesis (e.g. a misdetection) Fig. 2 also shows the simulated PDF of
Cij for the case where there is a signal present: x s n= +i i and
x s n= +j j where P s= var( )s and P n n= var( ) = var( )n i j and
SNR P P= / = 3s n , i.e. H1 is true. The false acceptance probability for
H1 is 0.0768 (area under orange curve below cα).

2.2. Graph preliminaries

An undirected (symmetric) and unweighted graph G consists of N
vertices v{ }i i N=1… and edges e{ } ∈ {0, 1}ij j i≥ where e = 1ij means that vi
and vj are connected. The edges define a binary and symmetric
connectivity matrix E with E e=ij ij. The number of edges connecting
to vertex vi is its degree di. The mean vertex degree γ of a graph is the
average over the vertex degrees of all its vertices. If γ approaches a
constant as N increases the graph is sparse [24].

A connected componentU G⊂ is a subset of vertices and edges in G
for which every pair of vertices v v U, ′ ∈ is connected directly or
indirectly through a sequence of edges in U (see Fig. 4). Finding

Table 1
Three scenarios considered for M=19 snapshots of the noise processes xi and xj (see
Fig. 1). xi(q) refers to the q-th snapshot of process xi.

Scenario Variance xi Variance xj

Stationary σ (1⋯19) = 1i
2 σ (1⋯19) = 1j

2

Heteroscedastic 1 σ (1⋯5) = 10i
2 σ (1⋯5) = 10j

2

σ (6⋯19) = 1i
2 σ (6⋯19) = 1j

2

Heteroscedastic 2 σ (1⋯5) = 10i
2 σ (1⋯14) = 1j

2

σ (6⋯19) = 1i
2 σ (15⋯19) = 10j

2
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connected components is a basic task in graph analysis [25] and is an
example of spectral clustering for non-overlapping clusters. In this
context the connected components are found using the eigen-vectors of
the graph Laplacian, which is derived from the connectivity matrix E
[21]. We assume now that there are K fully connected components Uk

in G, i.e. each vertex in Uk connects to all other vertices in Uk. Let
u uu = [ ,…, ]k k

N
k T

1 be the vertex indicator vector of Uk (u = 1i
k if v U∈i

k k

and 0 otherwise). The connectivity matrix of G is then (see Appendix
A):

∑E u u= ,
k

k k
T

(7)

where k indexes the set of connected components of G. Note that any
graph where the same vertices are connected in groups has the same or
a smaller support than E.

Finally, consider the random, unweighted graph G N p( , )0 with N
vertices where all pairs of vertices have the same probability p of being
connected. The mean vertex degree in G N p( , )0 is therefore
γ N p= ( − 1) because every vertex can connect with all N − 1 other
vertices with equal probability. A large fraction of vertices in a random
graph tend to be connected when γ > 1 with about 90% being
connected when γ > 2.5 [24]. Such a high connectivity, e.g. 90%, will
thus occur above a threshold probability of

p N= 2.5/( − 1),0 (8)

i.e. for an edge probability above p0 most vertices will be connected.
This upper limit decreases as the graph grows larger. For a graph with
N=300 vertices this threshold is already below 0.01. As we will see
later, preventing large clusters from forming by chance is important
because the clusters will be used to detect sources within a sensor
network.

2.3. Constructing an array graph

Armed with the hypothesis test in Section 2.1.2 we construct a
coherence graph G0 with the following connectivity matrix:

⎧⎨⎩E C c= 1 if >
0 otherwise,ij

ij α0

(9)

i.e. two vertices are connected if the corresponding signals exhibit
significant coherence. This straight-forward construction of an array
graph, however, is insufficient because of the statistical fluctuations of
the hypothesis test. Even if the array is sensing N uncorrelated noise
signals the probability of observing C c>ij α is α for all receiver pairs.
This means that G0 is a random graph G N α( , )0 . As seen in Eq. (8) a

Fig. 1. (A) The PDF of the sample coherence (4) for uncorrelated signals xi and xj. A
stationary and two heteroscedastic scenarios are considered (see Table 1). (B) The pdf of
sample coherence (5) for the same three scenarios (lines overlap).

Fig. 2. The PDF (blue) of the magnitude sample coherenceCij (5) for uncorrelated noise,

Γ = 0ij , for M=19. The decision threshold cα=0.484 is exceeded with probability α=0.01.

The PDF (orange) of Cij for the case of Γ ≠ 0ij with a common signal present in the noise

of the two recordings (SNR = 3). (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)

Fig. 3. The decision threshold cα (α = 0.01) as a function of number of snapshots M. For
M=19 we have c = 0.484α .

Fig. 4. A sample graph G with N=9 vertices (circles) and four edges (lines). The
connected component U consists of the vertices and edges within the dashed area. Vertex
vj has degree dj=3 and vi degree dj=2. The mean vertex degree
γ = (5*0 + 1 + 2*2 + 3)/9 = 8/9.
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graph with, say, 300 sensors will likely have a giant connected
component if α > 2.5/(300 − 1) = 0.008. For graphs constructed with
a less conservative threshold any attempt to find smaller connected
components that are not due to chance is thus futile.

We modify (9) to define a localized coherence graph G c( )α with
connectivity matrix:

N⎧⎨⎩E C c i j= 1 if > and ∈ ( )
0 otherwise,

ij
ij α

(10)

where N j( ) is the index set of the nearest neighbors of sensor j. For a
regular lattice, the nearest neighbors are here limited to eight sensors
as shown in Fig. 5. Besides being coherent any two connected sensors
are thus also required to be spatial neighbors.

Enforcing spatially short connections limits the number of neigh-
bors any vertex can connect to in a way that is independent of the
global graph size and the graph therefore remains sparse for large
arrays. The criterion equation (10) thus reduces the chance of forming
clusters by chance, even for values of α that are above the threshold
suggested by (8). Sensor clusters can still have a spatial extent beyond
that given by the nearest neighbors as long as the vertices in the cluster
are contiguous in space.

To characterize the spatial extent of each connected component Uk

a two-dimensional Gaussian probability density function is estimated
from the sensor locations of the vertices of Uk with mean and
covariance, respectively:

∑ ∑
U U

m r Σ r m r m= 1
| |

= 1
| |

( − )( − ) ,k k
i U

i k k
i U

i k i k
T

∈ ∈k k (11)

where U| |k is the number of vertices in Uk. The source area is the region
where the point source is likely located and is here defined as the ellipse
that contains a probability mass p of the Gaussian defined in (11):

Ω p χ pr r m Σ r m( ) = { |( − ) ( − ) < ( )},k k
T

k k I
−1 2

(12)

where χI
2 is the cumulative inverse χ2-distribution with two degrees of

freedom (because the Gaussian is 2D). An effective source diameter deff
of a disk with the same area A Ω( )k as the source ellipse Ωk is defined
as:

d A Ω π= 2 ( )/ .keff (13)

For a source within the array aperture Ω is the geographic area within
which the source is estimated to be.

As will be seen in Section 4 this definition of source area works well
for the simulation considered, but source directionality, physical
obstacles or attenuation heterogeneities in the propagation medium
can cause Ω to be not centered around a source. Sensor geometry such
as array gaps and boundaries will also cause a cluster to move away
from its source. In those special cases the identified clusters can,
however, still serve to select a data subset for follow-up analysis with
other array processing methods since by definition its sensors contain
significant signal levels from a common source. E.g. conventional
beamforming using just the data from the vertices in Uk.

2.4. Size of connected components in noise-only array

As discussed before the distance constraint in (10) prevents
connected components to form by chance even in large arrays. We
demonstrate this for a rectangular array of size 2.8 × 2.8 km with sensor
spacing of ∼100 m and 841 sensors (gray triangles in Fig. 6). We
consider M = 19 snapshots of random complex Fourier coefficients, as
this is the number of snapshots also used later in the analysis, Sections
4 and 5. For each vertex, the M=19 snapshots are simulated as random
complex numbers drawn from the complex Gaussian distribution and
the sample coherence matrix Cij Eq. (5) is formed. The corresponding
array graph G c( )α=0.01 is constructed and the number of vertices and
edges of the connected component with the most vertices is stored. The

procedure is repeated 200,000 times. Fig. 7 gives the fraction of
simulations where the vertices exceeded a given number. For the later
analysis for noise affected array data we are interested in a minimum
size criterion that rejects as many random components as possible
while not being overly conservative. Note that large values for these
criteria will increase the cluster size and hence the resolution with
which sources can be localized.

Requiring a minimum of seven vertices seems a safe criterion
because none of the simulations gave rise to such large components.
But this would unduly limit the size of the smallest resolvable cluster.
The smallest tolerable minimum cluster size is four vertices, which
occurred in 10.8% of simulations. This fraction seems high at first, but
upon closer scrutiny we find that of the clusters in these simulations
only 9.3% contained four or more edges, with all the others having
three edges. We therefore settle on a minimum criterion of four vertices
and four edges, in which case only 10.8% × 9.3 %= 1.0% of random
simulations would pass the criterion.

3. Sources induce graph clusters

The relation between sources within an array and the clusters of a
graph constructed from the array data has been presumed so far.
Combining signal features for clustering purposes to analyze sources
was used implicitly in a heuristic approach in [26] for the difficult case
of an ad hoc and dynamic sensor network with communication
constraints. In this section we make the relation between sources and
network clusters explicit for the asymptotic case of infinite observation
time without communications constraints but under the assumption
that source-to-receiver coherence is insignificant after some physical
distance.

Consider again a large aperture array with N sensors distributed
densely over spatial locations r{ }i i N=1, …, . It is assumed that there are
weak sources within the aperture that produce signals that propagate
through space. For a given frequency the channel between any such
source location ρ and sensor location ri is characterized by a Green's
function, ρg r( , )i . Let the vector ρ ρ ρg gg r r( ) = [ ( , ),…, ( , )] ∈N

T N
1 be

the frequency domain response of the array to a source at location ρ.
Consider then ρk to be the location of K sources ρ{ }k k K=1, …, with an
associated response ρg g( ) ≡k k and source signals sk. The measured
signal at the N array sensors is thus modeled as:

∑ sx g n= + ,
k

K

k k
=1 (14)

Fig. 5. Connections between a sensor are only allowed to its nearest neighbors. The eight
nearest neighbors (red open triangles) are shown for two example sensor locations (red
triangles). (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this paper.)
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where n nn = [ … ] ∈N
T N

1 is a multivariate i.i.d. noise process. From
(14) the covariance matrix is:

∑ ∑

∑

Γ s s s s

s

xx g g nn g g D

g g D

= = * + = * +

= 〈| | 〉 + ,

H

k l

K

k l k l
H H

k l

K

k l k l
H

k

K

k k k
H

, =1 , =1

=1

2

(15)

where (·)H is the complex conjugate transpose and 〈·〉 is the expectation
over infinite time. Here we exploit the mutual independence between
the source and noise processes s n n n s s δ i j* = 0, * = * = , ∀ ,i j i j i j ij ,
and D is a diagonal matrix with Dii the noise variance of sensor i.

We assume that there is a distance δ smaller than the array
dimensions such that ρg r( , )i is small if ρ δr∥ − ∥ >i 2 , i.e. signals
cannot be detected beyond δ. This is used to form connected graph for
each source. If all sources are separated by at least

ρ ρδ δ k l2 , ∥ − ∥ > 2 ∀ ≠k l 2 , then the corresponding support sets of
the sources do not overlap.

Let v( ) be the support indicator function of a vector or matrix v.
The lack of overlap of the gk and the support-indicator function
properties (see Appendix B) allow us to write the support of the sum
in (15) as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑ ∑sΓ g g g g g g( ) = | | = ( ) = ( ) ( ) .

k

K

k k k
H

k

K

k k
H

k

K

k k
T

=1

2

=1 =1 (16)

We now define E Γ= ( )ij as the connectivity matrix of a graph G
with N vertices (sensors), i.e. there is an edge between vertices i and j if
E C= ( ) = 1ij ij . As shown in Appendix A such a graph G will have
exactly K connected components, i.e. K non-overlapping subsets
S G∈k whose vertices are indicated by g( )k . The connected compo-
nents thus correspond to the sensor clusters that sensed the K sources.

Finding connected components is a standard task in graph analysis
[25]. In Sections 4 and 5 we use an approach from spectral clustering
[21] which uses the eigendecomposition of the graph Laplacian, which
is derived from the connectivity matrix as

L K E= − , (17)

with K a diagonal matrix with EK = ∑ii j
N

ij=1 . Let the eigen-decom-
position of L be

L USU= .T (18)

Following [21], Proposition 2] there will be exactly K eigenvectors with
eigenvalue 0 and the column vectors in U corresponding to those
eigenvectors will each indicate one of the K connected components
through its non-zero entries.

Fig. 6. Simulation layout showing 841 sensors in a regular configuration (gray
triangles). The four sources are located at the center of the red circles. An interpolated
map of signal power across the array averaged over M = 19 snapshots is shown in the
background. The log-normally distributed noise power prevents the sources from
appearing as distinguished peaks. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)

Fig. 7. Histogram over the largest cluster size in 200,000 random realizations of a
localized coherence graph G c( )α . In most random graphs the largest cluster has three

vertices. Of all simulations 11% contained at least one cluster that had four or more
vertices, but only 0.08% had four or more vertices as well as four or more edges.

Fig. 8. (A) The sensor graph constructed from the simulated data for SNR = 10 and
α = 0.01. The plot shows the array (gray triangles) with the graph edges (gray lines).
Connected components with more than four vertices and four edges are highlighted with
an ellipse Ω (0.50) following Eqs. (11) and (12). In addition, for a North–South line of

sensors (yellow asterisks) all nodes connecting to it are shown (black asterisks). (B) Non-
zero entries of the localized coherence matrix Cij for the column of nodes in (a) (yellow

asterisks). Only the 32 nearest elements to the diagonal element are shown. (C) The
connectivity matrix Eij corresponding to (B). (For interpretation of the references to color

in this figure caption, the reader is referred to the web version of this paper.)
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4. Verification on simulated data

Consider a homogeneous half-space with medium propagation
velocity c = 340 m/s and a square array on its surface with aperture
2.8 km × 2.8 km. The sensors are placed in a regular lattice configura-
tion spaced 100 m apart, i.e. N = 29 × 29 = 841 sensors at positions
r r,…, N1 (Fig. 6). Four point-sources are simulated at random locations
ρk (red circles) with uncorrelated complex Gaussian source signals,
with signal power s t σ k( ) ∼ (0, ), = 1,…,4k k

2 , with signal power
σ R=k

2 . Furthermore, each sensor is affected by some additive noise
n t σ i N( ) ∼ (0, ), = 1,…,i i

2 . The noise intensities σi
2 are spatially

uncorrelated and follow a log-normal distribution, as empirically
observed in real data [18]. The time-domain observation at location
ri is:

⎛
⎝⎜

⎞
⎠⎟∑

ρ

ρ
u t

s t
c

n t

r

r
( ) =

−
| − |

∥ − ∥
+ ( ).i

k

k
i k

i k
i

=1

4

2 (19)

The signal-to-noise ratio is defined at a distance of 100 m to the source
as SNR = R

P1002 , where P is the average noise power over all sensors.

The simulated data is transformed into the Fourier domain, x m( )i ,
using (1).

Fig. 6 shows an interpolated map of measured seismic power at
20 Hz over the array at SNR = 1. The simple localization of the sources
by means of finding peaks in this map is prevented by the log-normally
distributed noise power: it leads to many high power locations that are

purely a function of local noise.
Given x m( )i we use (5) to obtain a sample coherence matrix Cij for

M = 19 snapshots. From this a graph G c( )α=0.01 is constructed using
(10) and the connected components with more than four vertices and
four edges (see Section 2.4) are identified as potential source indica-
tors. The location and size of the estimated source area is calculated
from Eqs. (11) and (12) as m and Ω p( = 0.5).

To demonstrate how the connected graph is constructed we focus
on the SNR = 10 and α = 0.01 case in Fig. 8A. Computing the
coherence for a sequence of sensors fromsouth to north (yellow
asterisks) and applying the nearest neighbor localization introduced
in Eq. (10) gives a banded localized coherence matrixCij, Fig. 8B, where
the sensors are numbered column-vice from southwest to northeast.
The center diagonal corresponds to the sensor itself and is set zero, the
first off-diagonal corresponds to the sensor above and below in Fig. 8A.
Since each column has 29 sensors, the 3 sub-diagonals ± 29 entries
away corresponds to the 3 left and right sensors. Testing if C α>ij

defines the graph connectivity matrix Eij according to Eq. (10), see
Fig. 8C. Each element E = 1ij represents a connection between sensors i
and j. The black asterisks in Fig. 8A show all connections other than
those to the yellow asterisks.

In Fig. 9 , we perform a simulation for four fixed sources over a
wide range of SNR and α values. It is apparent how higher SNR and
higher α tend to increase the size and the number of detected clusters.
Note that a cluster indicates all sensors that are sensing the signal with
sufficient strength, explaining why at high SNR a larger cluster size is
obtained. As can be seen with the blue clusters in Fig. 9 for high SNR

Fig. 9. The sensor graph constructed from the simulated data for (first column) SNR = 0.1, (second column) SNR = 1, (third column) SNR = 10, and (fourth column) SNR = 100 and
(first row) α = 0.005, (second row) α = 0.01, (third row) α = 0.05, and (fourth row) α = 0.1. Each plot shows the array (gray triangles) with the gray lines showing graph edges.
Connected components with more than four vertices and four edges are highlighted with an ellipse Ω (0.50) following Eqs. (11) and (12).
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and α this can limit resolution as the clusters of two or even three
distinct sources coalesce into one, occasionally losing some sources in
the process (e.g. bottom right panel). High SNR and low α or low SNR
and high α tend to create spurious clusters but mostly yield cluster
ellipses that capture the true source locations. The clusters formed at
low SNR are likely due to random fluctuations as discussed for a
random graph in Section 2.4. From this visualization we can qualita-
tively infer that the method should be able to detect sources well at
intermediate SNR.

As discussed above the clusters can coalescence for highSNR and α.
However, source clusters tend to be more highly connected near the
location of their coherence-inducing source as opposed to periphery,
especially if the number of nearest neighbors in the localization step,
Eq. (10), is increased. In that case there is evidence that even coalesced
clusters can be disentangled using graph analysis techniques of
community detection [27–29].

The performance over 500 Monte Carlo simulations is quantified
for SNR from 0.5 to 5 and four α values in Table 2. In each simulation
there are four actives sources placed at random locations within the
array, yielding a total of 2000 sources. We compute the fraction of
these sources that are enclosed by the Ω (0.5) ellipse of any of the
detected clusters (source detection rate). To capture how specific these
detections are the area covered by the largest ellipse that occurred in
the simulation is observed. Note that the source detection rate
deteriorates for when moving to high SNR and α. This is attributed
to the coalescence of several ellipses into one larger and more centered
ellipse which can miss some sources as discussed earlier in Fig. 9. Once

a cluster is identified further analysis, e.g. using matched-field proces-
sing on the largest clusters, could identify the source location more
precisely or find several sources within the cluster.

5. Long Beach (CA) geophone array

To demonstrate the above technique we apply it on a geophone
array that was deployed over an area of 7 × 10 km in Long Beach
(California, US) as part of an industrial seismic survey [18,30–34]. The
dataset is purely observational and there is little ground truth available
for it. For this reason, the following exposition will serve as a rough
qualitative assessment of the technique.

The array consisted of more than 5200 geophones (OYO CT32D
vertical velocity sensors with 10 Hz corner frequency) sampling at a

Table 2
Fraction of sources enclosed by a cluster ellipse (source detection rate) based 500 Monte
Carlo simulations (above) and average area spanned by the largest ellipse relative to the
entire array area (bottom).

Fig. 10. Fraction F of sensor pairs for which the null hypothesis is rejected at α = 0.01
versus sensor separation d r r= ∥ − ∥ij i j 2 (at 20 Hz). The data was taken from a 12 h

period on March 10th 08.00–20.00 h. The shaded area indicates the 10–90 percentiles.
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period of tΔ = 4 ms (array configuration shown in Fig. 11A). For the
most part the array had a quasi-regular layout with a relatively even
spatial sampling.

The ground velocity data stream of each geophone is transformed
following (1) into a sequence of Fourier coefficients x m f( , )i using
Q = 256 samples (T = 1.02 sW ) and a Hanning window wj with time

windows overlapping by T /2W . The coherence matrix Cij (5) is computed
for 41 frequency bins from 9.8 to 48.8 Hz using M = 19 snapshots
(T M/2 × ( + 1) = 10.2 sW ). A matrix with about 5200 ≈ 27·102 6 entries is
therefore computed for every frequency bin and time period. In a
24 hour analysis period there are about 9400 time windows.

First, an analysis of the spatial scale of coherence is performed. The
receiver-pairs are grouped by spatial distance d r r= ∥ − ∥ij i j 2 into bins

of width 25 m. The average spacing is 110 m. For distance bin k (i.e.,
d k0 < − *25 < 25ij ) the fraction of pairs that rejects the null hypothesis

is computed:

F
i j k C c

i j k
=

#{ , in bin | > }
#{ , in bin }

,k
ij α

(20)

where #{} is the cardinality of the set. A high value of F thus indicates
that the signals measured by receiver-pairs within a distance bin tend
to be coherent. The process is repeated for all time segments from
March 10th 08.00–20.00 h (all time indications are local time). Fig. 10
shows F versus receiver-pair distance for frequency 20 Hz. Its value,
and thus coherence, is clearly elevated for shorter distances but reaches
the level α = 0.01 at distance above about 400 m. This indicates that
local coherent phenomena occur regularly in the data. As indicated in
Section 2.1.2 the coherence must drop to zero for travel time
differences above the analysis window length T = 1.02 sW . We can
therefore give a rough estimate of average wave speed across the array
as 400 m/1.02 s ≃ 400 m/s.

Continuing with the coherence matrices at 20 Hz a localized array
graph G c( )α=0.01 is defined and all connected components are identified.
Fig. 11A shows the coherent groups found over four consecutive 10.2 s
analysis windows starting on March 11th, 10:48:48 h. For clarity, only
clusters with more than nine vertices are shown in order to focus on
larger phenomena. The period contains a 40 s stretch during which a
seismic vibrotruck is known to have been operating in the Southeast of
the array, which is confirmed by a cluster in that area. This source
dominated over the background and was also broad-band (about 10–
80 Hz) and therefore corresponds to the type of source that was also
detected with the energy-only approach reported in [18].

Fig. 11. Connected components of the array graph are used to find coherent sensor clusters in the Long Beach geophone array. (A) The clusters at 20 Hz from four 10.2 s windows after
10:48 h on March 11th. The spatial extent of the clusters Ω (0.5) is indicated by dashed ellipses (12). (B) A North-to-South helicopter transect is captured in a sequence of coherent

clusters at 47 Hz over consecutive analysis time periods (starting at 05.53 h). The colors change from red to blue as the analysis windows advance in time. The arrow points to the
receiver from which the spectrogram (C) was computed around the time of increased coherence. Coordinates are given in the Universal Transverse Mercator (UTM) coordinate system.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 12. The median effective diameter deff of detected clusters versus time-of-day

(Thursday, March 10th).
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Fig. 11B shows a sequence of coherent groups at 47 Hz for
consecutive windows starting March 11th at 05.53 h. They show a
north–south transect over 6 km during the course of about 95 s. The
average velocity along the trajectory is 60 m/s (134 mph). Fig. 11C
shows a spectrogram from a receiver within the trajectory of the
moving source computed around the time the coherence was observed.
The observed Doppler shifts of f f/ ≃ 1.4 ≃ (1 + )/(1 − )high low

60
340

60
340 are

consistent with the approximate velocity estimate. The narrow-band
harmonics at multiples of 12 Hz suggest that the passage of a helicopter
was captured.

We perform the above analysis with the same parameterization for
all frequency bins from 9.8 to 48.8 Hz for 24 h starting at 00.00 h on
March 10th. For every detected coherent sensor cluster we store the
mean of the coordinates (11), the area Ω (0.5) of the cluster ellipse, and
the frequency and time at which the cluster is observed. More than
150,000 clusters satisfied the conditions given in Section 2.4 (more
than four vertices and more than five edges) for the analyzed time
period and frequency bands. Only a small fraction these are false
detections and they should be scattered randomly on the map.

Fig. 12 shows the median diameter deff Eq. (13) versus time of day.
The diameters are typically in the range 200–300 m but increase
significantly between midnight and 5am for the higher frequency
clusters (44–48 Hz). We speculate that this may be due to fewer noise
sources at higher frequencies during the night which would increase
the SNR and hence the cluster diameter. Another possibility is that
downward refracting atmospheric propagation conditions, which are
more common at night, were causing signals to propagate farther at
those particular frequencies.

The maps in Fig. 13 show the geographic location of the identified
cluster centers for the 24 h period in the frequency bands 9.8–18.6 Hz
and 43.9–47.9 Hz, each containing 10 frequency bins. Three particular

regions in the map are highlighted. Region 1 contains several pump
jacks and drill rigs while region 2 contains a central pump facility. Note
how the spatial distribution of detections differs for the two bands.
Region 3 highlights the area around the Long Beach convention center.
The localizations there are much less scattered for the low-frequency
band which may indicate that source in those frequencies are more
stationary.

6. Conclusion

We have proposed a model-free technique that can approximately
localize weak sources within dense arrays. The approach requires that
source signals exhibit significant coherence only over a small distance
within the array. The support of the array coherence matrix is
reinterpreted as a connectivity matrix of a graph with sensors as
vertices.

For the long observation times we show that non-overlapping
clusters in this graph indicate sensor groups that are affected by a
common source. The area spanned by these clusters can therefore serve
as a location estimate. The support of the covariance matrix is
estimated from short-time coherence estimates combined with a
nearest neighbor approach. The latter prevents large clusters in the
graph from forming by chance.

The method was verified on simulated data from a dense array with
2.8 km × 2.8 km aperture and sensor spacing of 100 m containing four
simultaneously emitting sources. For signals with SNR = 2 at 100 m
from the source the retrieved localization areas have a diameter of
about 2–3 times the sensor separation (200–300 m). For higher SNR
this diameter increases which limits resolution as the clusters of nearby
sources tend to coalesce. Applied on a real data example from a
7 km × 10 km seismic array with 100 m sensor separation, the method

Fig. 13. All clusters identified during March 10th in the frequency range 9.8–18.6 Hz (A) and 43.9–47.9 Hz (B). Each dot represents the center of a sensor cluster. Of those clusters 90%
consist of less than 19 sensors, corresponding to 0.4% of array sensors.

N. Riahi, P. Gerstoft Signal Processing 132 (2017) 110–120

118



reveals anthropogenic source details such as a helicopter transect and
oil production facilities.
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Appendix A. Connected components and the connectivity matrix

Let G be a graph with N vertices and letU G k K∈ , = 1,…,k be sub-graphs that do not overlap,U U∩ = ∅k l , k l∀ ≠ . Define the indicator vector
of the vertices in Uk as (an italic index i denotes the i-th vertex of G):

⎧⎨⎩u u u i U
i U

u = [ ,…, ] where = 1 if ∈
0 if ∉

k k
N
k T

i
k

k

k1
(A.1)

The following statements are equivalent:

1. The graph G Khas (and only K ) connected components Uk that are not connected with each other, i.e. e = 1ij only if i j U, ∈ k .

2. E has a support that is equal or smaller than u u∑k
K k kT
=1 .

Sketch of proof:. Consider first the fully connected case, i.e. u i U= 1 ∀ ∈i
k k. If the first statement is true, then u u i j U= 1 if , ∈i

k
j
k k or 0 otherwise.

But this means that E u u= ∑ > 0ij k
K

i
k

j
k

=1 only if i j U, ∈ k for some k and the second item is true. The other direction follows a similar logic. Because
the fully connected component contains all possible edges within a set of vertices any lesser connected components will contain a subset of those
edges, i.e. the connectivity matrix can only have fewer non-zero values.□

Appendix B. Algebra on indicator vectors

Define the support indicator function of a vector v ∈ N :

⎧⎨⎩v v v v
v= ( ) where = 1 if ≠ 0

0 if = 0i
i

i (B.1)

and analogously an indicator function V( ) for a matrix V. We then have:

vw vw( ) =H T (B.2)

a av v( ) = (for ≠ 0) (B.3)

V W V W V W( + ) = + − ( ○ ), (B.4)

where ○ is the Hadamard operator (element-wise multiplication) and assuming we do not have V W= − ≠ 0ij ij . Assume that the supports of v and w
do not overlap, i.e. v w 0○ = , the zero-vector. Therefore

vv ww v w v w 0( )○( ) = ( ○ )( ○ ) =T T T (B.5)

is the zero matrix and consequently, from Eqs. (B.4) and (B.5)

vv ww vv ww vv ww vv ww( + ) = + − ( ○ ) = + .H H T T T T T T (B.6)

In other words, if the support of vectors v and w do not overlap, then the support of the sum of their outer products is simply the sum of the
outer products of their support-indicators.
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