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Abstract Although naturally occurring vibrations have proven useful to probe the subsurface, the
vibrations caused by traffic have not been explored much. Such data, however, are less sensitive to
weather and low visibility compared to some common out-of-road traffic sensing systems. We study
traffic-generated seismic noise measured by an array of 5200 geophones that covered a 7 × 10 km area in
Long Beach (California, USA) with a receiver spacing of 100 m. This allows us to look into urban vibrations
below the resolution of a typical city block. The spatiotemporal structure of the anthropogenic seismic noise
intensity reveals the Blue Line Metro train activity, departing and landing aircraft in Long Beach Airport and
their acceleration, and gives clues about traffic movement along the I-405 highway at night. As low-cost,
stand-alone seismic sensors are becoming more common, these findings indicate that seismic data may be
useful for traffic monitoring.

1. Introduction
The ambient seismic wavefield has received much interest in the recent past both for its natural sources
[Gerstoft et al., 2006a; Koper and de Foy, 2008; Kedar, 2011; Hillers et al., 2012] but also as a new probing signal
for the solid Earth [Sabra et al., 2005; Gerstoft et al., 2006b; Moschetti et al., 2007; Riahi et al., 2013; Weemstra
et al., 2013] and to predict earthquake ground motion [Denolle et al., 2014]. In comparison, anthropogenic
seismic noise has received little attention so far [e.g., Groos and Ritter, 2009] or was only used indirectly for
site amplification studies [Bonnefoy-Claudet et al., 2006; D’Amico et al., 2008] or subsurface imaging [Nakata
et al., 2011]. Seismic traffic noise, in particular, is an interesting observable: in contrast to traffic sensing
systems based on video, infrared, acoustics, or radar, the vibrations caused by traffic are less affected by bad
weather and limited visibility [Wang et al., 2014].

In this work we study traffic-generated seismic energy in a geophone array that was deployed in the city
of Long Beach (California, USA) as part of an industrial seismic survey. The array consisted of 5200 sensors
that were spaced about 100 m apart and recorded with a sampling frequency of 250 Hz. Figure 1 shows the
array configuration and a snapshot of seismic power across the network as measured on Monday, 7 March at
17:36 h. Originally designed for industrial active source imaging, the data have also been studied for passive
source seismological purposes [Lin et al., 2013; Schmandt and Clayton, 2013].

A large part of anthropogenic noise is typically of high frequency (>5 Hz) and may often be scattered and
attenuated at relatively small distances. Previous work on seismic vehicle noise was thus based on denser
sensor networks compared to the Long Beach array [Stafsudd et al., 2007; Wang et al., 2014]. However, the
design does allow to study the time evolution of seismic power with a spatial resolution smaller than typical
city blocks and road sections. At high frequencies this seismic power can be used as an indicator for seismic
source proximity since seismic energy created by a surface source in Long Beach only dominates the wave
field up to a distance comparable to the receiver spacing.

Moving seismic sources along given paths are then revealed through the use of a spatiotemporal analysis of
seismic power. This allows us to study the Long Beach metro train movements, see departing and landing
aircraft in the Long Beach airport, and even track certain slow moving vehicles along the I-405 highway.

2. Data Set and Processing

The seismic data were acquired by a geophone array that was deployed over an area of about 7 × 10 km
in Long Beach (California, USA) as part of an industrial seismic survey (see Figure 1). The array consisted of
5200 geophones (OYO CT32D vertical velocity sensors with 10 Hz corner frequency) that were spaced about
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Figure 1. Snapshot of seismic noise power on Monday, 7 March at 17:36 h local time (averaged over 1 s), dB scale relative
to (m/s)2/Hz. The green paths indicate the Blue Line Metro track (black diamonds are metro stations), the I-405 highway,
and a Long Beach Airport runway. Geophone locations (green triangles) and the grid of major roads (gray paths) are
indicated.

100 m apart and recorded with a sampling frequency of 250 Hz. We analyze 1 week of the data in 2011 from
5 March at 16 h to 12 March at 8 h (161 h, time indications always refer to local time).

We use a section of the Metro Blue Line (roughly between Wardlow Station and Pacific Coast Highway
Station) to illustrate our processing workflow. In the first step all receivers within 105 m of the metro track
are selected. The velocity recordings u(t) are converted to time series of seismic power, P(t):

P(t) = 1
2K + 1

K∑
k=−K

u2(t + k ⋅ Δts) , (1)

where Δts is the sampling period and T = (2K + 1)Δts = 1 s is the window size and also chosen as the sam-
pling period for the power (Figure 2a). The full frequency content of the geophone recordings is therefore
considered (5–125 Hz). Second, we normalize P(t) to have a standard deviation of one, Pa(t) = P(t) − !∕",
where ! and " are sampling mean and standard deviation of P(t) over the analysis period (typically less
than 1 h). This step equalizes the time series variations among the traces and thus mitigates the effect of
extremely noisy locations. Third, we compute a moving average with window length TMA = (2L − 1)T = 30 s
and subtract it from Pa(t):

Pb(t) = Pa(t) − 1
2L − 1

L∑
l=−L

Pa(t + l ⋅ T) . (2)

This enhances variations in seismic power at time scales below TMA such as passing vehicles while also
reducing weakly varying portions such as continuously running machinery (see Figure 2b). In the fourth step
the time series are spatially interpolated to a location x along the track using a distance-inverse weighting:

Pb(x, t) =
∑

|x−xi|<r

wi ⋅ Pb(xi, t) , (3)
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Figure 2. The processing steps are illustrated on data from a 4.5 km section of the metro track for Monday, 7 March
between 17:00 h and 17:20 h (local time), increasing distance indicates southward movement. (a) Seismic power
computed at all sensors with sampling period 1 s. Sensor ID is only loosely related to location along track. (b) After
tracewise normalization and subtracting a moving 30 s average from the traces. (c) Traces are interpolated to the metro
track, scaled to dB and lowest 70% are cropped. The sensor IDs are now mapped to physical distance along track.
(d) Spatiotemporal filter reduces speckle noise and enhances motion along positive spatial direction. (e) A stencil defining
four space-time areas around (0 m, 0 s). Positive areas capture trajectories for velocities between 5 and 80 m/s, negative
areas relate to corresponding negative velocities. Color scales always map from the minimum to the maximum of
the data.

where xi is the location of sensor i, r = 105 m, and the weights are wi = #∕|x − xi| with # such that the
weights sum to one (for x = xk we set wi = $ik). Figure 2c shows Pb in dB scale with the lowest 70% of values
cropped (minimum is set to 0 dB) which reduces weak interferers.

The fifth processing step is a spatiotemporal filter that emphasizes signals that persistently move in positive
spatial direction over several seconds. These signals are local and often intermittent in the spatiotemporal
domain, and we therefore chose a local filter that operates directly in that domain. We define a stencil m(x, t)
in a small spatiotemporal neighborhood Ω around (x = 0, t = 0). The area covering all trajectories moving
with positive velocity between 5 and 80 m/s through the center is given an equal positive weight in m(x, t).
Similarly, the area of negative velocities is weighted negatively (Figure 2e). For a point (x0, t0), let D(x0, t0)
be the difference between the average power in the positive and negative areas defined by centering m
around (x0, t0):

D(x0, t0) =
∑

(x,t)∈Ω
m(x, t) ⋅ Pb(x + x0, t + t0) , (4)

where the positive and negative areas in m(x, t) are scaled such that Σ(x,t)∈Ωm(x, t) = 0. We define a filter
that sets Pb(x0, t0) to zero if D(x0, t0) < %, where % is a filter design parameter and in this case was set to 1 dB
based on empirical tests. Note that D can be computed effectively using digital image filtering techniques
[e.g., O’Gorman et al., 2008, p. 61], interpreting Pb as an image and m as a filter mask. After filtering the
speckle and stationary sources are mostly reduced and motion in negative spatial direction (northward in
this case) is removed (Figure 2d).

The spectral content and signal decay from moving sources is studied to validate using the full-frequency
band (0–125 Hz) and interpreting seismic power as a source proximity indicator. We analyze two receivers
slightly South of Wardlow Station at distances 15 and 155 m from the metro track (red circles in Figure 1).
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Figure 3. Median PSDs at four locations (red circles in Figure 1). (a) 7 March between 17 and 18 h, in a quiet area at the
northern end of the metro track, 15 m and (b) 155 m from the track. Dash-dotted lines give the 25th–75th percentile
range of background noise. (c) 6 March between 21 and 22 h close to the center of the airport runway. (d) 8 March
between 01:45 and 02:15 h at a location less than 30 m from the I-405 highway.

Power spectral density (PSD) are estimated in 1 s time segments on 7 March between 17 and 18 h for
segments with and without a train passing event. For the receiver next to the track, Figure 3a shows
the median PSD of the background noise (black, no trains) and segments where a train passes (green,
22 train passages in total). The aggregate metro train spectrum is 5–10 dB higher than the background
over 5–100 Hz. At 155 m from the track (Figure 3b) the metro passages have only a small effect (<1 dB) in
the 10–20 Hz band. Thus, only receivers within 150 m from the track are used and no bandpass filtering
is applied. At 20 Hz and assuming a weathered layer velocity of 400 m/s this corresponds to about
150 m/( 400 m/s

20 Hz
) ≃ 8 wavelengths.

3. Metro Schedule

We apply the above workflow to the full length of the metro track within the array for a 1 h analysis period
starting on 7 March at 17:00 h. Seismic power time series are computed and interpolated to the track
(equation (4)) and cropped at 8 dB below the maximum. The result is a summary of vibrational activity along
the train track with the spatiotemporal structure of the metro already visible (Figure 4a): it enters from the
north, moves southward, loops in downtown Long Beach, and returns northward (the spatial coordinate
increases accordingly). The raw seismic power is, however, strongly affected by stationary and transient
noise generated by nonmoving infrastructure or moving sources not aligned with the track. There are par-
ticularly large levels of interference in the downtown Long Beach loop between 6.5 and 9 km (see also
Figure 1). Outside the loop the moving sources have two directions due to the topology of the metro track.

The processing substantially removes speckles (in space-time) and continuous, nonmoving noise sources
(e.g., near Wardlow Station), as seen in Figure 4b. Metro train movement is visible even between Willow
Street and Anaheim where the metro moves along Long Beach Boulevard, a main traffic road. Analysis of
northbound trains moving along this road (south of Willow Street Station) gives velocities of 16–18 m/s
(35–40 mph) while velocities in the following section to the north (isolated tracks) increase to 20–25 m/s
(44–55 mph). The source movement is interrupted for a few minutes around the metro stations, but also on
some other locations which coincide with traffic crossings. During rush hour the train frequency from Los
Angeles to Willow Street Station (<3.2 km and >12.6 km) is twice that of the section farther south. The red
circle in Figure 4b can be matched with a power anomaly north of Pacific Coast Highway Station in Figure 1.
The limits of the workflow are reached in downtown Long Beach where no signal is recovered.
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Figure 4. Seismic power measured along the metro track during rush hour on 7 March from 17 to 18 h. (a) Raw seismic
power is compared to (b) the spatiotemporally filtered version. The metro enters the array from the north (0 km), proceeds
to the downtown Long Beach loop at 6.6 km, and leaves the loop again at 9.3 km to travel back northward. Black lines
indicate metro stations along the track. The red circle in Figure 4b indicates a section that is visible as slightly elevated
levels on the power snapshot map in Figure 1(north of Pacific Coast Highway Station).

4. Long Beach Airport Runway

Next we describe how aircraft motion can be extracted from runway sensors, allowing to estimate
some runway velocities. The analysis includes 74 receivers within a 105 m distance of the main
southwest-to-northeast runway at Long Beach Airport. Seismic power is computed from 21 to 22 h on
Sunday, 6 March, and shown in Figure 5a. Stationary and continuous noise is a common occurrence in the
airport seismic power measurements, but some weak subvertical streaks are visible that hint at aircraft
motion.

To account for the faster velocities expected on an airport runway, the power sampling period is reduced
to 0.5 s and the spatiotemporal filtering is adapted for velocities between 10 and 200 m/s and a higher
threshold value of 3 dB is used due to the increased signal-to-interference ratio near the runway. The
processed seismic power is shown in Figure 5b: four large and five smaller streaks are clearly visible. The PSD
of these passing aircraft are compared with background noise in Figure 3c for a receiver half-way down the
runway (red circle in Figure 1). A strong power increase between 10 and 20 dB is observed over 5–110 Hz,
confirming that the full-frequency band can be used.

Two portions of the data in Figure 5b are shown in Figures 5c and 5d: the more and less elongated features
show an accelerating and decelerating pattern, respectively, identifying these events as departing and
landing aircraft. We compute a least squares fit of a constant acceleration model (x = 1

2
at2 + v0t + x0)

to these events. For the departing aircraft we estimate an acceleration of 1.0 m/s2 and takeoff velocity of
80 m/s (about 288 km/h). The landing aircraft has an estimated acceleration of −1.8 m/s2 and touchdown
velocity of 69 m/s (about 248 km/h). Note that the above measurements are based on a subjective assess-
ment about when a substantial amount of seismic energy emerges (red circles in Figures 5c and 5d) and
should be interpreted with caution. The range of effective takeoff and touchdown velocities depends on
many factors such temperature, wind, aircraft type, aircraft weight, and flap position. While these factors
are unknown, the observed velocities are reasonable and could correspond to, e.g., an Embraer 175 under
normal circumstances.
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Figure 5. (a) Raw seismic power measured along the runway from southeast (0 km) to northwest (3.3 km). (b) Processed
seismic power. (c) Zoom-in on an aircraft taking off toward northwest (accelerating at 1.3 m s−2, left red box in Figure 5b)
and (d) landing from southeast (acceleration of −1.5 m s−2, right red box in Figure 5b). Dashed line in Figures 5c and 5d is
a fitted acceleration parabola.

During the 161 h that were analyzed there were a total of 297 departures and 314 arrivals with signatures
similar to the ones shown in Figures 5c and 5d. The runway statistics for the analyzed period are no longer
available, but the airport is used by many small aircraft which may not have been detected by this analysis.

5. Traffic

Using data from a single acoustic recording it has been shown that overall traffic density at a point in a
highway can be accurately estimated [Tyagi et al., 2012]. We apply our workflow on the 7.3 km section of the
I-405 highway that crosses the Long Beach array to assess how well individual vehicles may be identified
using our workflow. For the most part that highway section carries two-way traffic on 10 lanes and traffic
density and velocity should vary strongly over the day. There are 97 receivers within 105 m to the lateral cen-
ter of the highway, leaving about 13 sensors for every kilometer of highway. Seismic power is interpolated to
the center of the highway, and the separation of eastward and westward moving sources is attained using
the spatiotemporal filter.

Figure 6a gives filtered seismic power computed for eastward traveling sources on the highway at night
(0 km is to the east). The same parameters are used as for the Metro case, except the dynamic range is con-
strained to 30th–80th percentiles. There are isolated, regularly moving sources that cross the entire highway
section uninterrupted. A histogram of measured velocities from 25 such events is shown in Figure 6b. The
observed average velocity is 26 m/s (58 mph) with standard deviation 2 m/s (4 mph) which is close to
the speed limit of 55 mph for trucks and some special vehicles, implicating such vehicles as vibrationally
dominant sources on the highway. The PSD of these passing vehicles is compared with background noise
in Figure 3d for a receiver 30 m from the highway shoulder. As with the metro and airport examples, a
broadband power increase is observed.

RIAHI AND GERSTOFT ©2015. American Geophysical Union. All Rights Reserved. 6



Geophysical Research Letters 10.1002/2015GL063558

Figure 6. Processed seismic power along the I-405 highway filtered for eastward moving sources on (a) Tuesday night
between 01:45 and 02:15 h, and (c) Monday afternoon between 17:15 and 17:45 h. (b) Histogram of velocities of sources
in Figure 6a. The average velocity is 26 m/s (58 mph).

Filtered seismic power during Monday rush hour is mostly cluttered (Figure 6c). Intriguingly, there are
still some isolated sources visible that move uninterrupted for about 0.5–2 km through the highway. The
velocity for eight such sources is measured and yields an average of 25 ± 3 m/s (57 ± 6 mph). These sources
may be due to trucks or vehicles moving along special lanes reserved for high-occupancy vehicles on the
studied section of the highway. The true cause cannot be verified because no traffic data are available for
this time period.

6. Conclusions

We have studied traffic-related seismic vibrations measured by an urban geophone network with a spacing
slightly shorter than a typical city block dimension. The spatiotemporal structure of vibrational intensity
allows us to measure a metro train schedule, compute runway statistics and aircraft motion parameters, and
even track larger vehicles on a highway at night.

Seismic power is used here as an indicator for source proximity because in most cases this attribute is
sufficient and robust when the source is within a receiver spacing from the source. Although this limits
resolution to about half the sensor spacing, it does enable the tracking of strong moving sources over
several receiver spacings even in the presence of many interferers. This could be further exploited for
real-time traffic monitoring since seismic power is easily computed and transmitting it requires low band-
width (about one measurement per second). As seismic data are becoming more common, they may
therefore be a useful source for large-scale traffic monitoring, in particular since they are less sensitive to
weather and low visibility.
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