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Particle filtering for passive fathometer tracking

Z.oi-Heleni Michalopoulou
Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102
michalop@njit.edu

Caglar Yardim and Peter Gerstoft
Marine Physical Laboratory, Scripps Institution of Oceanography, La Jolla, California 92093-0238
cyardim@ucsd. edu, gerstoft@ucsd.edu

Abstract: Seabed interface depths and fathometer amplitudes are
tracked for an unknown and changing number of sub-bottom reflectors.
This is achieved by incorporating conventional and adaptive fathometer
processors into sequential Monte Carlo methods for a moving vertical
line array. Sediment layering information and time-varying fathometer
response amplitudes are tracked by using a multiple model particle filter
with an uncertain number of reflectors. Results are compared to a classi-
cal particle filter where the number of reflectors is considered to be
known. Reflector tracking is demonstrated for both conventional and
adaptive processing applied to the drifting array data from the Bound-
ary 2003 experiment. The layering information is successfully tracked
by the multiple model particle filter even for noisy fathometer outputs.
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1. Introduction

Extracting information about ocean environment using ambient noise is first demon-
strated in Refs. 1 and 2. Passive fathometer data processing®® enables ocean bottom
profiling using only the ocean ambient noise that is generated by wave breaking. The
fathometer output is the cross-correlation of this downward traveling sea surface noise
with the reflection of itself from the seabed. This requires a coherent processing tech-
nique such as beamforming on the vertical line array (VLA) recording the noise.
Beamforming allows the array to look up and down while rejecting the signals from
other angles. Recently, adaptive beamforming such as minimum variance distortionless
response (MVDR) beamforming® is used to improve the fathometer results. The fa-
thometer output gives strong correlation of upward and downward traveling noise at
certain time delays corresponding to reflections from sediment interfaces. The ampli-
tudes of the peaks also relate to geoacoustic parameters.’

The acoustic pressure p and the steering vectors w across the array elements
are used to compute the upward and downward traveling noise for conventional beam-
forming. At frequency f, the steering vector entry for the mith array element (m=0
for the deepest hydrophone®) is Wy, = exp(imkdsin 0), where d is the array element sep-
aration distance, k,= 2nf/c is the wavenumber, ¢ is the sound speed, and 0 is the steer-
ing angle where 0 =90° is upward looking.

To observe the noise generated from the sea surface above the array, 6 =90°
is needed. Similarly, observing the noise reflecting from the sea bottom requires
0=—90°. This results in upward and downward looking steering vectors w; and wy,
with wy =wj, where * denotes complex conjugate. Therefore, the upward n, and
downward n, traveling noise across the array will be

n, = pr and ny = w?p = wﬂp7 (1)
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where superscripts H and T represent the complex conjugate transpose and transpose,
respectively. Arbitrarily defining w = wy, the correlation between the two noise terms is
Ceom(f) =ngnl! = (w'p) (pr)H: wIRw, #))
using conventional beamforming, where R =pp"! is the data cross spectral density ma-
trix. Note that the result is slightly different from the one of a conventional beam-
former output due to the transpose instead of the complex conjugate in the first term.
The noise coming from broadside angles is typically much stronger than that
from end-fire directions.”® Thus adaptive beamforming can improve the fathometer
results by suppressing the noise from unwanted directions. The MVDR fathometer is
shown to perform significantly better than the conventional fathometer.® The MVDR
weights w relate to w as

- R_IWU R_IWﬂ

W = and V~Vﬂ = s with V~Vu ;é V~V?r (3)

wiR 'wy wiR 'w,
The correlation between the upward and downward adaptively beamformed noise
gives

Corvar (f) = WE Rwﬂ : (4)

The time domain fathometer response is given by computing Egs. (2) and (4) for the
frequencies inside the desired bandwidth and then calculating an inverse Fourier
transform.

2. Passive fathometer particle filtering

Sequential Bayesian methods enable tracking in dynamic, non-stationary ocean envi-
ronments. These include both the Kalman family of filters and sequential Monte Carlo
methods known as particle filters (PF).>!® The PF gets its name from particles
{x;}f\i’lz {x}, s xivp }, each x, representing a possible solution for the tracked parame-
ters. Each possible solution has a weight proportional to its likelihood £(x,), computed
using the current data y,. The filter estimates both the time-varying (or space-varying)
parameters and the evolving uncertainty in these estimates by tracking the posterior
probability density function (PDF) p(x;]y;...y,)-

Sequential Bayesian methods have been previously used in geoacoustic inver-
sion and relevant applications.'' '® Passive fathometer tracking was one of the first
suggested geoacoustic applications.!” The classical PF assumes a fixed model and
tracks the associated parameters. However, in many applications, there can be multiple
models, each with unknown and different parameters. This requires a multiple model
particle filter (MMPF).'® This filter includes an extra parameter in the state vector that
denotes which model each particle uses. The filter not only tracks the model parame-
ters but also the most suitable model itself. Multiple model estimation has been applied
to spatial arrival time tracking'®'® and multilayer geoacoustic tracking.'* The spatial
arrival time tracking approach, which forms the basis for this work, implements filter-
ing based on importance sampling and tracks both amplitudes and arrival times, also
integrating a model transition matrix. The multilayer geoacoustic tracking technique
implements a trans-dimensional inversion via reversible-jump Markov-chain Monte
Carlo.

When comparing data and observations via the likelihood function, higher-
order models (more reflectors) will generally be favored as they provide a better fit to
the data. To balance this, higher order models are penalized by incorporating factor
1/N™ as part of the prior PDF, where N is the length of the data vector and m;, is the
number of interfaces; this is the foundation of the Bayes Information Criterion. The
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prior distribution allows the best match with the smallest model order to be selected.”
The other part of the prior stems from the previous estimate and the state equation,
which are discussed in the following text.

The state and measurement equations for fathometer tracking are given as:

X, =X 1 +V; (5)
Y, = h(x;) +w;, (6)

where v, and w, are state and measurement noise and h(-) is the fathometer (either con-
ventional or MVDR) processor. For the PF, the state vector is composed of the reflec-
tor depths z and the fathometer output amphtudes a at each of these boundaries for
the selected number of reflectors, giving x,f[rz, a, For the MMPF, model para-
meter m, is also included with x,=[m, z) a, The lengths of vectors z, and a, are
determined by m,.

The MMPF is based on sequential importance resampling (SIR).!® For expedl-
ence, amplitudes a, are computed with the help of marginalization;>"** that is, our
MMPF implementation calculates a, at each step using maximum likelihood estimation.

The SIR has three stages at each step ¢

(1) Predict: Starting with the particle set from the previous step {xl 1} a new set of

=1’

predictions {x,}ﬁ\;”l is created for ¢ by sampling from the transitional density
p(x/|x,—1). This is done by propagating each x!_, through the state equation [Eq. (5)]

together with a random realization from v,. _ N A

(2) Update: Compute the normalized weight of each particle via w = L(x])/ S L(x7)
using Eq. (6) and y,.
The set of particles and their weights {x,,w,} represent the posterior density.
Quantities such as maximum a posteriori (MAP) estlmates, mean, variance, or mar-
ginal PDFs can be computed using the posterior given by

]V[,
p(Xilyp...y,) = Z wd (X — X;). (7)
P

(3) Resample: A resampling stage is needed to keep numerical stability in SIR. This stage
redistributes samples, so that the number of samples in a region of state space is pro-
portional to the posterior density of that region. This creates a larger number of sam-
ples from high likelihood regions. More details can be found in Refs. 18, 9, and 10.

For the MMPF,!%?® a model transition matrix IT,, is needed. The entries of
I1,, give the probabilities of particles belonging to a given model to switch to another
model. Therefore, an MMPF SIR has an extra model transitioning step before the
“Predict” stage. A typical MMPF step involves:

(1) Model transitioning: Again, start with {xr 1} , where particle i follows model m!_,.
Predict the models of new particles m, at ¢ usmg the model transition matrix. This
implies that some state variables x; can exit or more state variables can be “born,”
with the model order decreasing or increasing, respectively. The dimension of the
state vector is, thus, appropriately modified.

(2) Model conditioned-SIR: Using the newly predicted model 7! for each particle, run a
model conditioned-SIR exactly as given in the preceding text. Penalization via the
prior weighs model orders appropriately.

3. Passive fathometer tracking on Boundary 2003 drifting array data

The ambient noise used in this paper is collected by the drifting array in the NURC
Boundary 2003 experiment. The array consists of 32 hydrophones with 0.18 m spacing.
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The array drifts at 70-80m depth with an average reference hydrophone depth of
73.5m. Frequency bandwidths of 200-4000 Hz and 50-4000 Hz are used for conven-
tional and MVDR fathometers, respectively with a sampling frequency of 12kHz.®
The lower usable frequency in the conventional processor is limited due to the broad-
side shipping noise at frequencies below 200 Hz. The MVDR has much better side-
lobe suppression and, hence, the side-lobe leakage can be tolerated at frequencies as
low as 50 Hz. For both cases, 1.4s snapshots with a total averaging time of 90s are
used. The conventional fathometer results are given in Ref. 3 and the adaptive beam-
forming results using both MVDR and white noise constraint fathometers are given in
Ref. 6.

MMPF results for conventional and MVDR tracking are shown in Fig. 1;
20000 particles were used. For both cases, the order (number of reflectors) is allowed
to vary. It was assumed that seven, eight, or nine reflectors were present. The transi-
tion matrix determining probabilities of switching (or not) from one number of reflec-
tors to another was:

0.6 02 02
Mm,=|02 06 02], (8)
02 02 06

Figures 1(a) and 1(b) illustrate the fathometer results after the conventional and
MVDR processing, respectively. Figures 1(c) and 1(d) show the same results but now
with the MAP estimates for the MMPF reflector tracks superimposed (dots). It is
observed that the improved resolution of the MVDR facilitates the accurate detection
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Fig. 1. (Color online) (a) Conventional and (b) MVDR fathometer results for Boundary 2003 data. (c) Conven-
tional and (d) MVDR fathometer results for Boundary 2003 data with MMPF MAP tracks superimposed
(dots). MAP estimates of tracked amplitudes for (e) conventional and (f) MVDR fathometer results.
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and tracking of reflectors. The conventional processor may miss reflectors, instead
identifying isolated noise peaks as reflectors. It is worth noting that the PF becomes
more “distracted” by the broadband shipping noise in the conventional case than in
the MVDR case, especially around record 180. Figures 1(e) and 1(f) show the track
results of fathometer amplitudes at all the reflectors for conventional and MVDR proc-
essing, respectively. The amplitudes of reflections near 130 m are large as expected, fol-
lowed by those close to 155m which are less pronounced as confirmed by Figs. 1(a)
and 1(b).

Figure 2(a) illustrates the evolution of the probability mass function (PMF) of
the model order vs record for the MVDR results, demonstrating that the number of
reflectors is consistently estimated as eight or nine. Figure 2(b) focuses on the same
PMFs for records 241-280. A new reflector is detected and tracked at around record
260 as also seen in Figs. 1(c) and 1(d). Significant probability is then assigned to the
order of nine. The reflector becomes weaker shortly after (at around record 270) and
probability is largely shifted to the order of eight. The new reflector had, in reality,
appeared earlier, but was very weak and remained undetected until approximately the
260th record. As the MMPF “learns” of the reflector, significant probability for the
model order shifts to a higher order as expected.

For comparison purposes, we also show here the benefit of using an MMPF
vs a fixed-order PF. Figure 3 illustrates the PF layer tracking when the order is set to
seven [Fig. 3(b)], eight [Fig. 3(c)], and nine [Fig. 3(d)]. Figure 3(a) shows the MVDR
processor output, so that the tracking performance for a fixed order can be evaluated.
When it is assumed that seven reflectors are present [Fig. 3(b)], the performance of the
PF in the first states can be crucial. If the PF starts off by identifying reflectors that
are not present as shown in the figure, it is possible that the algorithm will never
recover with some trajectories “wandering” in the search space. The reason is that
there are no “birth” or “exit” mechanisms, which are key elements of MMPFs but not
simple PFs. These mechanisms enable weak or exiting directories to be removed from
the estimation process and new ones to enter the search. With erroneous reflector

Number of reflectors Record

Fig. 2. (Color online) (a) PMF of the number of sedimentary reflectors for the MVDR results as calculated by
the MMPF; (b) PMF of the number of sedimentary reflectors for the MVDR results for records 45-70.
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Fig. 3. (Color online) Degradation in track quality when conventional PFs are used instead of a MMPF. (a)
MVDR fathometer results for Boundary 2003 data. MVDR results with classical PF MAP tracks superimposed
(dots): The number of reflectors used in the PF is set to (b) seven, (c) eight, and (d) nine.

detection, several true reflectors (around 155m in depth, for example) remain unidenti-
fied. Similarly, when an order of eight is selected, we see errors in the tracking. How-
ever, the case of missing trajectories is not as pronounced as in the previous case
because of the increased order. It should be noted, here, that the true order for this
problem is largely eight. When an order of nine is selected [Fig. 3(d)], the PF attempts
to locate a trajectory that often does not exist. Thus in addition to the problem of the
lack of an exit-birth mechanism, more errors are made because additional, non-
existing tracks are forced in the estimation process. In summary, unless the order is
well known, a comparison of Figs. 1 and 3 demonstrates the significant advantage of
implementing an MMPF rather than a fixed-model PF.

4. Conclusions

Ocean bottom profiling from a drifting vertical array was performed using a multiple
model passive fathometer particle filter. The method was demonstrated on Boundary
2003 data for tracking the evolving layer structure with an unknown number of reflec-
tors. It is expected that sedimentary reflector tracking will facilitate geoacoustic inver-
sion. Note that amplitudes of the reflections are also estimated by the MMPF, as men-
tioned in Sec. 2. These amplitudes are tightly linked to geoacoustic properties of the
sediment layers and can provide a wealth of information, supplementing the sediment
tracking by “localizing” reflections.
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