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Abstract Several recent studies have used the coherence of seismic noise between stations to retrieve
the phase slowness and attenuation. However, there is considerable debate on the feasibility of
attenuation retrieval, its interpretation, and its dependence on the noise directionality and has been the
subject of several analytical and numerical studies. In this article, we perform a detailed analysis of the
various factors that play a role in the estimation of spatial coherence and attenuation from seismic arrays
using data from the Southern California Seismic Network. For instance, certain common preprocessing
steps such as averaging neighboring frequencies to improve the estimate are sufficient to introduce
attenuation-like effects. The presence of first-mode surface Rayleigh wave and P waves in addition to the
fundamental mode in Southern California (at frequencies 0.05–0.2 Hz) suggests that the underlying spatial
coherence is better modeled as a linear combination of the above wave types. Although this describes the
observed coherence better than a simple zeroth-order Bessel function, the resulting phase cancelations
due to the multiple seismic waves can be misconstrued as attenuation if not taken into consideration.
Using simulations, we show that due to the slowness inhomogeneity, azimuthally averaging the coherence
is not equivalent to homogenizing the medium and instead introduces apparent attenuation in the
coherence due to interference. Trying to fit an exponential decay model to this apparent attenuation results
in an attenuation coefficient which is similar to previously published results.

1. Introduction

In recent years, there has been widespread interest in using background seismic noise to study and mon-
itor the properties of the Earth at different scales (for a recent review, see Wapenaar et al. [2010a, 2010b]
and Snieder and Larose [2013]). Much of this progress has been possible due to a key observation that the
cross correlation of diffuse waves yielded, in expectation, the Green’s function of the medium [Lobkis and
Weaver, 2001; Weaver and Lobkis, 2001] and the availability of continuous seismic records going back sev-
eral decades. Although the underlying theoretical assumptions are seldom satisfied in seismic applications,
using noise has been widely successful in robustly retrieving travel times for tomography [Shapiro et al.,
2005; Sabra et al., 2005; Gerstoft et al., 2006a; Yao et al., 2006; Lin et al., 2008; Ekström et al., 2009] and under-
standing its dependency on noise directionality [Tsai, 2009; Yao and Van Der Hilst, 2009; Harmon et al., 2010],
studying surface wave anisotropy [Fry et al., 2010; Gallego et al., 2011; Riahi and Saenger, 2014] among
several others.

There has been significant attention on extracting medium attenuation from surface waves due to seismic
noise [Prieto et al., 2009; Weaver, 2011; Lin et al., 2012; Zhang and Yang, 2013], as this has direct implica-
tions in propagation modeling and earthquake ground motion predictions [Roux et al., 2005a; Prieto and
Beroza, 2008; Denolle et al., 2013, 2014]. The spatial coherence of noise has been used to estimate the atten-
uation coefficient by modeling the attenuation as an exponential decay of the coherence with distance
[Matzel, 2008; Prieto et al., 2009; Weemstra et al., 2013] and maps of attenuation across the western United
States inferred using this approach have been published [Lawrence and Prieto, 2011]. Several analytical and
numerical studies [Cupillard and Capdeville, 2010; Tsai, 2011; Weaver, 2011; Nakahara, 2012; Walker, 2012;
Walker and Buckingham, 2012; Liu and Ben-Zion, 2013] indicate that the recovery of the attenuation depends
strongly on the directionality of noise sources and that the exponential decay model is valid only under
restricted assumptions. However, Lawrence et al. [2013] numerically evaluate the spatial coherence under
different noise directionalities and distributions and showed that the estimated attenuation supports the
exponential decay model. The debate over the interpretation of amplitude (and the feasibility of extracting
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reliable estimates) is a reflection of the inherent challenges in estimating attenuation such as the noise
directionality, slowness inhomogeneity, site amplification factors, and focusing and defocusing effects, all of
which influence the amplitude.

Averaging, which is ubiquitous in ambient noise processing, often is used to obtain reliable estimates
[Bensen et al., 2007] or to bring the distribution of noise sources closer to isotropic [Asten, 2006; Prieto et
al., 2009] or to homogenize the medium properties. Depending on the quantity being averaged and the
assumptions made about the environment (which might not hold true in data), this could result in biased
or altogether incorrect results. For example, the Southern California region is modeled as a laterally homo-
geneous dispersive medium, but in reality it has regions with sharp slowness contrasts, such as the Los
Angeles and Ventura basins, and averaging certain quantities in such a scenario could be a source of mis-
match between the model and estimates from data [Weaver, 2011]. In this article we investigate the role
played by factors such as the processing, array geometry and the inhomogeneity of the environment on the
spatial coherence and discuss whether attenuation can be retrieved reliably from the coherence using the
approach put forth in Prieto et al. [2009]. These factors typically are ignored in analytical and numerical work
to aid tractability but indeed play a significant role when working with actual seismic data.

We show that performing certain common preprocessing steps, such as averaging neighboring frequen-
cies (section 3.4), is sufficient to introduce attenuation-like effects in the coherence. In addition, since the
ambient noise field typically is composed of higher-mode Rayleigh waves and P waves (section 5), the actual
form of the estimated coherence is markedly different from idealized theoretical models (section 6), and the
differences between the two also could be interpreted as attenuation. Finally, in section 8, we discuss the
attenuation-like effects arising from using the coherence-based processing in an inhomogeneous medium.

2. Background
2.1. Spatial Coherence Functions
The spatial coherence function (SCF) of a noise field describes the correlations between the response at
two stations in the frequency domain (the SCF is also known as the spatial autocorrelation function or
SPAC, following Aki [1957]). Consider seismic surface waves at a frequency f , with a normalized azimuthal
weight function W(!), incident on two stations A and B positioned r apart with an interstation azimuth of "
in a homogeneous medium. From the complex valued signals #A(f ) and #B(f ) recorded, the cross-spectral
density (CSD) is given by

PAB(f ) = $−1⟨#A(f )#
∗

B (f )⟩, (1)

where $ denotes the observation time, ∗ the complex conjugate, and ⟨⋅⟩ the ensemble average. The SCF
between these two sensors is defined as the normalized cross-spectral density,

Γ(r, " ) =
PAB(f )√

PAA(f )PBB(f )
, (2)

where PAA(f ) = $−1⟨#A(f )#
∗
A(f )⟩ and PBB(f ) = $−1⟨#B(f )#

∗
B (f )⟩ are the respective power spectral densities.

Following Cox [1973, equation (19)], the SCF for a given noise distribution W(!) is obtained by integrating
over all azimuths, as follows:

Γ2-D(r, " ) =
1

2π ∫
2π

0
W(!) exp (%2πfr cos(! − " )s)d!

=
∞∑
&=0

%&'&J&(2πfrs)[a& cos(&" ) + b& sin(&" )] (3)

where s is the frequency-dependent slowness of the medium, the Neumann factor '& is 1 for & = 0 and 2
otherwise, and a& , b& are the Fourier coefficients of W(!). Thus, for arbitrary noise fields, the SCF depends
on the interstation azimuth " . When the noise field is isotropic, then W(!) = 1 and only the & = 0 term is
nonzero, and the SCF is [Aki, 1957]

Γ2-D(r) = J0(2πfrs); (4)
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i.e., it is independent of the interstation azimuth " and is simply a function of the frequency f and the
separation distance r.

For body waves, which propagate three dimensionally, the SCF for a noise distribution W(!,() is given by
Cox [1973, equation (43)],

Γ3-D(r, " , )) =
1

4π ∫
2π

0 ∫
π

0
W(!,() sin(!) exp [%2πfrs

× (sin(!) sin()) cos((−" )+cos(!) cos()))]d! d(

=
∞∑

n=0

∞∑
m=0

%nPm
n (cos()))jn(2πfrs)

[
am

n cos(m))+bm
n sin(m))

]
(5)

where ) is the interstation angle from the z axis, Pm
n is the associated Legendre function of the first kind,

order m and degree n, am
n and bm

n are the coefficients in the spherical harmonic expansion of W(!,(), and jn

is the spherical Bessel function of order n. When the noise field is isotropic, then W(!,() = 1, and only the
n = 0 term remains, and the SCF is Γ3-D = j0(2πfrs) [Eckart, 1953] (or sinc).

Attenuation in the coherence often is modeled as a multiplicative term, g(*, r) where * is the attenuation
coefficient. The form of g(*, r) must be known in order to interpret it [Tsai, 2011]. Much of the theoretical
work has focused on the analytical form of g(*, r) [Tsai, 2011; Nakahara, 2012; Walker, 2012] which needs to
be known before interpreting * in terms of the surface wave quality factor Q. A common choice is to assume
g(*, r) = e−*r [Prieto et al., 2009], which is approximately valid for small attenuation [Nakahara, 2012].

2.2. Estimating the SCF From Seismic Arrays
In general, the seismic ambient noise field is not isotropic, and the observed coherence between station
pairs depends on the distribution of noise sources [Cox, 1973; Tsai, 2011]. High-density seismic networks
such as the Southern California Seismic Network (SCSN) have several station pairs of varying interstation
azimuths and distances (over 10,000 pairs for SCSN). It then is possible to leverage the multitude of pairs
available at a certain distance of separation to mitigate the effect of the directionality of the noise field, at
the cost of assuming uniform medium properties for the entire study region.

Prieto et al. [2009] suggested averaging the observed coherence for multiple station pairs at a fixed separa-
tion distance, to approximate an isotropic noise distribution. Mathematically, this can be seen by integrating
(3) over all station pair azimuths (" from 0 to 2π). Regardless of the noise distribution W(!), only the & = 0
term remains.

From the observed interstation coherencies Γ̂(rij, "ij), the “average spatial coherence” (ASC) for the array is
obtained by binning the observations into Δd wide bins and averaging them [Prieto et al., 2009]. The average
coherence Γ̃n for the nth distance bin dn is obtained as

Γ̃n = ℜ
⟨
Γ̂(rij, "ij)

⟩
∀(i, j) ∈ n (6)

where n = {(i, j) | dn ≤ rij < dn+1} is the set of station pairs in the nth distance bin and ℜ denotes the
real component. The imaginary part of the ASC is zero for a symmetric W(!), and the averaging reduces the
imaginary part [Asten, 2006; Prieto et al., 2009], thus justifying the use of only the real part.

3. Data and Signal Processing
3.1. Preprocessing
Data recorded on broadband seismic stations in Southern California (Figure 1) were collected for the entire
year of 2007 at a sampling rate of 1 Hz. We use only the vertical component data in the 0.05–0.2 Hz fre-
quency range. After removing instrument glitches in the raw data, the data were divided into segments of
1800 s each (30 min), windowed with a Blackman-Harris window, and Fourier transformed with a 2048 point
fast Fourier transform. The resulting vector of Fourier coefficients (for all stations) at each frequency and
segment m is referred to as a “snapshot” !m = [xm1, · · · , xmN]T , where N is the number of stations.

Earthquakes and other teleseismic events tend to skew the results in noise processing due to their dispro-
portionate power compared to the background noise field. We remove outliers in the data by computing
the median of the snapshot power across a 24 h sliding window for each frequency and discarding snap-
shots that have powers that are more than 1.5 median absolute deviations away from the median [Huber,
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Figure 1. Stations in the Southern California Seismic Network and key azimuths (dashed) from the center of the array.

1981]. This approach has similarities to time domain techniques that use the ratio of the peak amplitude to
the root mean square amplitude as a rejection criterion [Bensen et al., 2007]. We do not perform any addi-
tional temporal or frequency domain truncations or normalizations such as 1 bit processing [Larose et al.,
2004] or spectral whitening.

3.2. Normalized Cross-Spectral Density Matrix
The spatial covariance matrix or the cross-spectral density matrix from M observations of the N dimensional
snapshot vector !m is defined as

Σ̂ = 1
M

M∑
m=1

!m!H
m. (7)

where H denotes Hermitian transpose. In general, due to site amplification factors or differences in sen-
sor characteristics, the powers at different sensors are not identical. The normalized cross-spectral density
matrix (CSDM) is

Σ̂′ = ! Σ̂!T , (8)

where ! = diag

([
1√
Σ̂11

, · · · , 1√
Σ̂NN

])
, is a diagonal matrix. This normalization reduces the influence of

site amplification factors.

We compute the CSDM for each month, using the snapshots that satisfy the criteria in section 3.1. With the
normalization in (8), the ijth element of the CSDM gives an M sample estimate of the coherence between
the ith and jth station pair as in (2).

3.3. Capon Beamforming
For a given frequency f , azimuth !, and slowness s, the array manifold vector "(!, s) is given by

"(!, s) = 1√
N

e%2πf#!s (9)

where #! = [$1 ⋅ %! ,… , $N ⋅ %!]T is the projection vector, $i is the position vector of the ith station (with the
origin at the mean latitude and longitude), and %! is the unit vector along !.

The weight vector &(!, s) for the Capon beamformer [Capon, 1969] (or the minimum variance distortion-
less response beamformer) is constrained to have unit gain in the look direction, while at the same time
minimizing the output power, thus leading to the optimal weights

&mvdr(!, s) = Σ̂′−1"(!, s)
"H(!, s)Σ̂′−1"(!, s)

(10)
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Figure 2. Spatial coherence at 0.14 Hz with and without
frequency averaging.

If Σ̂′−1 is not invertible (for noise process-
ing, M > N, and Σ̂′ often is invertible
due to uncorrelated noise), then the
matrix can be made full rank by load-
ing the diagonal to constrain the white
noise gain [van Trees, 2002]. In compar-
ison, the weights for the conventional
beamformer are given by &conv(!, s) =
"(!, s). The beamformer outputs then are
given by

B(⋅) = &H
(⋅)Σ̂

′&(⋅) (11)

3.4. Interference Due to
Frequency Averaging
It is not uncommon in signal process-
ing to average Σ̂′ (or the coherences)
across neighboring frequency bins to
get a robust estimate. Although this
is desirable in certain applications,
here such an averaging will introduce
attenuation-like effects in the coherence
due to interference from different wave
numbers (k = 2πfs) associated with each
frequency bin.

For example, consider isotropic surface noise with a uniform power spectrum in a lossless laterally homoge-
neous medium. Using a sampling frequency of 1 Hz and an FFT length of 2048 points, the bin width is Δf ≈
0.49 mHz. Averaging 10 bins centered at fc ≈ 0.14 Hz (effective bandwidth of ≈ 4.9 mHz) using the slowness
dispersion in section 5.1 results in an SCF

Γf avg = 1
10

fc+4Δf∑
f=fc−5Δf

J0 (2πfs(f )r) (12)

that has an apparent attenuation (Figure 2). Due to the dependence of the wave number on frequency, this
effect will always be present, even in a nondispersive medium.

The actual effects of such an averaging in data also will depend on the noise power spectrum and the
weighting used, and it is preferable to minimize frequency averaging. If performed, the apparent attenua-
tion should be considered when interpreting the results.

4. Influence of the Array Geometry

Factors independent of the noise field or the environment such as limitations imposed by the array geome-
try and artifacts from data processing can affect the estimate of the coherence. Understanding these issues
is beneficial in the interpretation of the coherence estimates in section 6.

4.1. Diminishing Number of Station Pairs With Distance
Figure 3a shows a smoothed 2-D histogram of the station pairs density along distance and azimuth for the
entire SCSN. The predominantly SE-NW orientation of the interstation azimuths (arising due to the layout of
the stations along the Bight) is evident from the higher density of station pairs between 80 and 140◦. The
distribution is symmetric, so only 0–180◦ is shown. The distribution becomes thin beyond about 400 km,
occupying progressively fewer azimuths.

It is useful to have a simple rule of thumb for selecting the range in which the ASC is well estimated. This
can be derived intuitively for random regional arrays such as the SCSN. Assuming the stations are nor-
mally distributed in range in all directions around the mean latitude and longitude (around 34◦N, 117◦W
for the SCSN), then the number of station pairs with distance is Rayleigh distributed. The raypath distribu-
tion for the SCSN (solid) is shown in Figure 3b, and it resembles a Rayleigh distribution with its mode at
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Figure 3. (a) Smoothed 2-D histogram of the interstation distances and azimuths. (b) Raypath histogram with distance (solid) approximated by a Rayleigh distri-
bution (dashed). (c–f ) Interstation azimuthal distribution (sector chart) at certain distance bins. The station pairs that are present in each bin are shown by the
connected station pairs.

about 160 km (the deviation is explained by the higher station density in the Los Angeles basin thus having
shorter paths).

From the histograms in Figures 3a and 3b, it is likely that the ASC is better estimated between about 20 and
400 km (over 10 station pairs in each bin) and bins outside this range generally provide noisy estimates.
Hence, we only use the ASC within this range in section 6.

4.2. Uneven Azimuthal Distribution of Station Pairs
Figures 3c–3f show the distribution of the interstation azimuths (every 15◦) at different distance bins (sector
plots) and the station pairs that belong to each bin. While in principle (6) amounts to an azimuthal average
across all station pairs in that bin, this average is weighted more along NW-SE for the SCSN because of the
layout of the array (this will vary depending on the array). The potential bias arising from overweighting
along certain azimuths due to the increased number of station pairs (see the increased density of stations
between 90 and 135◦ azimuth in Figure 3a and also excess paths along 250◦ in Figures 3c and 3e and along
280–315◦ in 3d) can be reduced by implementing an azimuthal binning.

We bin the station pairs in n into Δ! wide azimuth bins, compute the mean in each range bin, and then
azimuthally average the means, in order to ensure a more equal weighting from all azimuths. The ASC then
is given by

Γ̃′
n = ℜ

⟨∑
l

1
#ln

Γ̂(rij, "ij), (i, j)
⟩

∀ ∈ ln (13)

where ln = {(i, j) | !l ≤ "ij < !l+1, (i, j) ∈ n} is the set of station pairs that are in the nth distance bin
and lth azimuth bin !l , and # denotes cardinality of the set (empty sets are not considered). The ASC Γ̃′ is
estimated by substituting Γ̂(rij, "ij) = Σ̂′

ij in (13).

Equations (6) and (13) are identical when each azimuth has the same number of interstation pairs. However,
a drawback of (13) is that it ignores the variances at different azimuths (as does (6)), since the noise distribu-
tion and the inhomogeneity in the region are unknown. In other words, it weighs azimuth bins with just a
single path (poorly estimated) the same as bins with a large number of station pairs (well estimate) (e.g., see
azimuthal distribution of station pairs for 300–301 km in Figure 3e).
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Figure 4. (a–d) Capon beamformer outputs for different months and frequencies normalized by the maximum in each panel. The first mode of the sur-
face Rayleigh wave, 1, is seen between 0.12 and 0.2 Hz in Figure 4b. (e–h) Conventional beamformer outputs for the same month and frequencies as in
Figures 4a–4d.

5. Composition of the Ambient Seismic Noise Field

Excitation of Rayleigh waves in a laterally homogeneous medium (variations only in depth) generates higher
modes in addition to the fundamental, with the frequency-phase speed relationship given by the dispersion
equation. Barring a few exceptions [Haubrich and McCamy, 1969; Harmon et al., 2007; Nishida et al., 2008;
Brooks et al., 2009], most studies using seismic noise only retrieve the dominant fundamental mode Rayleigh
wave. P waves have also been observed in the microseism frequency band and originate from deep water
storms [Haubrich and McCamy, 1969; Gerstoft et al., 2006b, 2008; Zhang et al., 2010; Gualtieri et al., 2014]
(slowness below 0.1 s/km) and local meteorological forcing [Roux et al., 2005b] (slowness around 0.19 s/km).

Capon and conventional beamformer outputs are shown at different frequencies and months in Figure 4
(the beamforming is performed by discretizing the !-s space every 1◦ from 0 to 360◦ in the azimuth and
every 0.0025 s/km from 0 to 0.4 s/km slowness). The frequencies and months were chosen to highlight
different aspects of the seismic noise field, namely,

1. Microseismic noise that propagates as fundamental mode Rayleigh wave (0) and appear predominantly
from the west (Figures 4a–4c, between 0.3 and 0.33 s/km slowness) [Gerstoft and Tanimoto, 2007].

2. First-mode Rayleigh wave (1), usually seen between 0.12 and 0.2 Hz (Figure 4b at about 0.23 s/km
slowness). Due to the lower resolution of the conventional beamformer, the higher mode is not
easily observable.

3. Body waves from distant storms [Zhang et al., 2010] and 0 (and often 1)
(Figure 4c at < 0.1 s/km slowness).

4. Dominant body waves from storms at the higher end of the microseism band (Figure 4h).

These waves are present at predictable times and frequencies, showing that the seismic noise field is com-
posed of much more than just 0. Although some of the results in this section are available in existing
literature, we analyze and discuss them in detail for this specific data set, which forms the basis for the
discussion in section 6.
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Figure 5. Capon beamformer outputs at 0.15 Hz between 0.15 and 0.4 s/km slowness for all months in 2007 (each subplot is normalized by its maximum). The
color scale is the same as in Figure 4.

5.1. Fundamental and Higher-Mode Rayleigh Waves
Figure 5 shows the Capon beamformer output for all months in 2007 between 0.15 and 0.4 s/km slowness.
The 1 wave is observed consistently at 0.24 s/km slowness, alongside the 0 at 0.32 s/km. The generating
regions of 1 are confined to a smaller azimuthal region to the west of the array than 0. They are observed
at other azimuths when accompanied by powerful storms such as those in the Labrador Sea and North

Figure 6. (a) Density and (b) compressional and shear velocity profiles
for Southern California obtained by averaging the respective quantities
at all station locations. (c) Average slowness estimates for 0 (circles),1 (squares), and the dispersion curves computed using the model
in Figure 6b.

Atlantic Ocean in the winter months
(see 30–60◦ in Figures 5a and 5b),
or hurricanes in the Gulf of Mexico
and the Atlantic Ocean (see 60–120◦

in Figure 5h). 1 especially is illu-
minated strongly at certain specific
azimuths (see azimuths 270◦ and
315◦ in Figures 5a–5f and 250◦ in
Figures 5c, 5d, 5f, and 5k). However,
note that the array is more coherent
in the sedimentary basins due to the
high density of stations, and it is quite
likely that this mode is supported only
in these regions, although the origins
of the mode are beyond the scope of
this paper.

The phase slownesses of the two
modes are estimated and compared
against the simulated dispersion curves
in Figure 6. For the simulation, veloc-
ity and density profiles are obtained
at each of the station locations [Kohler
et al., 2003] (sampled every 1 km in
depth through 60 km) and averaged
to obtain a “mean velocity model” for
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Figure 7. Mean ocean wave height for August 2007 and (b and c) body wave backprojections for the P, PP, and PKPbc
phases at 0.13 Hz. (d–f ) same as in Figures 7a–7c, at 0.2 Hz in February.

Southern California (see Figures 6a and 6b for the resulting model). The resulting slowness dispersion curves
[Hermann, 2010] for the first two modes are shown by the lines in Figure 6c.

The observed phase slownesses (averaged over the region of study) are obtained from the beamformer
output by averaging across all azimuths and searching for the maximum in a restricted slowness space (here
0.27–0.4 s/km for the dominant mode 0) as [Harmon et al., 2008]

ŝ0
= argmax

s
⟨B(!, s)⟩! , 0.27 ≤ s ≤ 0.4, f ∈ [0.05, 0.2] (14)

The 0 phase slownesses (medians shown by circles in Figure 6c) are very consistent across
different months.

Since 1 is present only in the 0.12–0.2 Hz band, its slowness can be estimated as in (14) but by further
restricting the search space to exclude the fundamental mode:

ŝ1
= argmax

s
⟨B(!, s)⟩! , 0.2 ≤ s ≤ smax, f ∈ [0.12, 0.2] (15)

where smax is either a sufficiently large value (here 0.27 s/km) or a frequency-dependent value such as
smax = f∕3+3∕14 (based on the simulated dispersion curve). Both approaches give identical results (squares
in Figure 6).

The estimated slownesses for both modes agree very well with the simulated dispersion curves. The disper-
sion of the fundamental and higher modes can be used to estimate the shear wave velocity with depth for
the region.
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Figure 8. Observed ASC (circles, thin gray lines) for different months and frequencies and the best fit SCF (solid, blue)
obtained from (17). The fit was computed only between 20 and 400 km (rectangle) due to insufficient station pairs at
shorter and longer distances (see section 4.1). The contribution of the P waves to the SCF is shown by dashed lines.

5.2. Body Waves From Distant Storms
The body wave arrivals seen in Figures 4c and 4d are backprojected assuming a grid of sources and
traveltime tables [Kennett et al., 1995] corresponding to an assumed propagation path (P, PP, etc.)
[Gerstoft et al., 2008]. The high-energy regions in the backprojected maps in Figure 7 (P, PP, and PKPbc)

Figure 9. Contribution of 0, 1, and body waves to the SCF, aver-
aged over the Northern Hemisphere winter (December–February)
and summer (June–August) months.

correspond well with the respective hind-
casts. Specifically, note the absence of
strong P waves from an 8.0 Mw earthquake
in Peru (15 August 2007) in Figures 7b
and 7c which was removed in the outlier
rejection (section 3.1), indicating that the
energy observed is mostly from storms in
the Southern Ocean.

The body wave energy is strongest
above 0.16 Hz [Zhang et al., 2010],
but it is seen throughout the
0.12–0.2 Hz band. In February, the body
waves in the 0.17–0.2 Hz band primarily are
from storms in the NW Pacific (Figures 7d–7f
show the hindcast and backprojections
at 0.2 Hz) whereas body waves from the
Atlantic storms are observed at lower fre-
quencies (0.16–0.18 Hz), not shown here.
In comparison, the storms from the South-
ern Ocean are observed throughout the
frequency band of interest.

6. Observed Spatial Coherence

Following the analysis in section 5, it is
clear that the ambient seismic noise field
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in Southern California contains (in the microseism band) 0 and 1 Rayleigh waves, and body waves from
distant storms. It stands to reason that the estimated ASC will be influenced by these waves, possibly in
undesirable ways, and thus must be taken into consideration.

The ASC Γ̃ is obtained as in (13) with Δd = 1 km and Δ! = 15◦ (Figure 8). To avoid insufficient averaging in
each bin, we compute the ASC only for those distance bins that have at least 10 station pairs (i.e., #n ≥ 10).
For the entire SCSN this covers the distance bins between approximately 20 and 400 km (section 4.1).

6.1. Multipath Effects on the ASC
The presence of multiple-propagation paths at each frequency (even without considering the effects of
scattering) suggests that the underlying SCF might be better modeled as a superposition of 2-D surface
(including higher modes) and 3-D body waves of different slownesses, rather than only the fundamental
mode Rayleigh wave. The noise distribution for body waves will not be isotropic even after azimuthal aver-
aging (because all the noise is from below the array and includes waves reflecting from interfaces). For the
purposes of this discussion, we only use the first term (5) corresponding to n = m = 0 and estimate the
weight or the coefficient a0

0 numerically. Thus, the model SCF Γmodel(r) is

Γmodel(r) =
∑

m∈
qmJ0(2πfsmr) +

∑
p∈

qpj0(2πfspr) (16)

where qm and qp indicate the relative contribution of the component to the SCF,  denotes the different
Rayleigh wave modes (here 0 and 1), and  denotes the different body wave phases. Note that qm and
qp values only indicate the contributions as observed by the SCSN array for noise in the Southern California
region and will be different for a different array and region.

Using the estimates ŝ0
in (14) and ŝ1

in (15), we estimate qm, qp, and s(p) in (16) from the ASC by the
following minimization using an exhaustive search:

argmin
q0

,q1
q1

,q2
s1

,s2

∑
n

||||Γ̃
′
n −

∑
m=0 ,1

qm J0

(
2πf ŝmdn

)
−

∑
p=1 ,2

qpj0
(

2πfspdn

)||||||
(17)

where s1
and s2

are constrained to be between 0 and 0.1 s/km and the #1 norm is used to reduce the
impact of outliers in the data (the summation is over all the distance bins). We only search for at most two
body wave phases (any of P, PP, or PKP) since there are usually around zero to two distinct regions in the
backprojection. The number of  components can be increased appropriately based on the number of
peaks below 0.1 s/km in the corresponding beamformer output but is not done here.

The best fit SCF Γ̂(model) then is obtained by substituting the estimated quantities in (16) and is shown in
Figure 8 for the same frequencies and months considered in Figure 4. The multicomponent SCF model in
(16) captures closely the weak “beating” effects in the ASC (clearly seen in Figure 8c) arising due to the inter-
ference between the different wave numbers corresponding to different propagation paths (0 and 1

have the same raypath but propagate at different wave speeds.). While for most purposes a simple 0 only
model might suffice, the results here show that contributions from additional wave numbers can cause
phase cancelation effects which could influence the estimation of the attenuation.

The contribution from the body waves is shown by the dashed lines which captures the long-wavelength
fluctuations of the ASC (Figure 8c). The impact of P wave microseisms is more pronounced on the ASC at
higher frequencies, especially in the winter months (December–February), when the body waves primarily
originate from large storms in the West Pacific and North Atlantic. The resulting ASC (Figure 8d) resem-
bles a sinc more than a Bessel function (from the estimated relative contributions, 67% of the SCF is due to
body waves).

6.2. Composition of the SCF
The composition of the multicomponent SCF as observed by the SCSN array using (17) also varies with
season and frequency. From the estimated q̂ values, we compute the percentages of 1,2, and  (com-
bined) and the relationship between them for the summer (June–August) and winter (December–February)
months as shown in Figure 9.

At the lower end of the microseism band (primary microseisms), 1 is not observed and the SCF is domi-
nated by 0 in both seasons. Modest contributions from body waves are occasionally observed (such as the
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Figure 10. (a) Simulated Rayleigh wave phase slowness at 0.07 Hz for the Southern California region obtained from a dispersion analysis using a 3-D velocity
model. The purple (solid) paths indicate the station pairs in the 100–101 km distance bin (100 in (6)) and the red (dashed) paths for the 300–301 km bin. (b) The
smoothed distribution shows the variation in effective slownesses measured by the different station pairs at a given distance, and their mean is the dashed curve.
The purple and red markers highlight the slownesses corresponding to the respective paths in Figure 10a. (c) The ASC (solid) estimated as in (13) and the best fit
zeroth-order Bessel model (dashed). (d–f ) Same as in Figures 10a–10c but at 0.13 Hz.
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signals under 0.1 s/km slowness in Figure 4b), and these are likely due to P waves generated when distant
storms make landfall. In comparison, the contributions are more spread out at the higher frequencies. At the
lower end of the band, the SCF still is predominantly due to Rayleigh waves, but the contribution from 1

and body waves increases with frequency.

During the Northern Hemisphere winter (December–February), contribution from body waves is higher in
the upper end of the microseism band compared to the summer months (June–August). In contrast, con-
tribution from body waves is higher at lower frequencies during the summer, likely due to the storms in the
Southern Ocean which make landfall.

7. Effect of 3-D Slowness Inhomogeneities

In the previous sections, we analyzed some of the factors affecting the coherence in a laterally homoge-
neous medium. Here we study the effect of slowness inhomogeneities in the medium on the coherence
using simulations. Specifically, we shall see that the “forced homogenization” from azimuthal averaging of
station pairs at each distance distorts the coherence.

Figure 10a shows the simulated Rayleigh wave phase slowness map at 0.07 Hz for Southern California (and
for 0.13 Hz in Figure 10d), obtained from a dispersion analysis [Hermann, 2010] using a 3-D model [Kohler et
al., 2003] for the density and compressional and shear velocities. From the overlaid station pairs at different
distance bins (100–101 km in blue and 300–301 km in red), we see that they map out different regions at dif-
ferent bins. For instance, most station pairs that are 100–101 km apart fall primarily in the slower Los Angeles
and Ventura sedimentary basins, whereas the pairs that are 300–301 km apart pass primarily through the
faster regions. Due to the layout of the SCSN array, waves traveling between station pairs at larger distances
of separation travel predominantly through high-velocity regions, spending only a small fraction of their
path through the slower basin.

To understand the diversity in the slownesses sampled by different station pairs, we compute the effective
phase slowness for each station pair (average slowness along a straight line propagation path) using the
slowness map in Figures 10a and 10d. From the distribution of effective slownesses in Figures 10b and 10e,
the spread in effective slownesses tends to decrease with increasing distance, which is consistent with the
earlier observation that the layout of the SCSN preferentially samples the Los Angeles basin at lower sepa-
ration distances. The spread also increases with frequency, and at a given distance bin, the relative standard
deviation of the effective slownesses for each station pair is about 2% in Figure 10b and varies between
about 10% at 20 km and about 2% at 500 km in Figure 10e.

Although this analysis sheds light on the variations in slownesses sampled by the array, the actual measured
quantity is the corresponding spatial coherence which is oscillatory in nature. Due to interference from
different wave numbers corresponding to the above slownesses, the ASC formed by averaging the coher-
ences at each distance bin as in (6) or (13) will be distorted. This is evident in Figure 10f, where the ASC Γ̃(sim)

obtained from the simulated coherences using (13) shows an apparent attenuation that is not present in the
theoretical best fit SCF Γ2-D(2πf s̄d), where s̄ is obtained as

s̄ = argmin
s

∑
n

|||Γ̃
(sim)
n − Γ2-D(2πfsdn)

||| (18)

where the summation is over all the distance bins. The simulated ASC is also noisy, similar to that in the ASC
from data (Figure 8).

It is important to note that these artifacts arise merely due to the inhomogeneity of the medium, even with-
out considering other factors such as intrinsic attenuation, scattering, and noise field directionality. While
the observations and results here are specific to Southern California and the SCSN array, the conclusions
derived should be applicable to other regions with 3-D inhomogeneity at the scales being studied.

8. The Curse of Apparent Attenuation in an Inhomogeneous Medium

Although the actual expression for the apparent attenuation is likely to be complicated and intractable,
we approximate it with g(*, r) = e−*r so that comparisons can be made between estimates of attenua-
tion in other works and the apparent attenuation observed here. At each frequency, * is obtained from the
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Figure 11. Log of the envelope of the ASC (solid) at 0.07 Hz and 0.13 Hz from (a and b) SCSN data, (c and d) simulations
in section 7, and (e and f) analytical approximations in (21). The value of /s∕s̄ is assumed to decrease linearly from 2%
at 20 km to 1% at 400 km. The best fit SCF (only 0) is also shown in each case with (dashed) and without attenuation
(dash dotted), following Prieto et al. [2009].

following minimization:

argmin
*,q

∑
n

|||Γ̃
(⋅)
n − qe−*dnΓ2-D(2πf s̄dn)

||| (19)

where q is a scale factor that serves primarily to provide an additional degree of freedom so that the fit
captures the decay and is not overly influenced by fluctuations at small separations. Figures 11a and 11b
show the log of the envelope of the ASC and the best fit coherence with and without attenuation for two
frequencies. These are similar to Prieto et al. [2009, Figure 6]. The envelopes of the ASC in Figures 11c and
11d from the simulation in section 7 bear qualitative resemblances to those from the SCSN in Figures
11a and 11b. Notably in Figures 11b and 11d, the ASC decays initially but seemingly reverses trend after
about 300 km [see also Prieto et al., 2009, Figure 6d]. Although this was previously interpreted as not
being significant (i.e., it is just random noise), this effect is directly related to the diversity of slownesses
seen in Figures 10b and 10e. In general, due to decreasing spread in the effective slowness (section 7),
the coherence at greater distances has lesser attenuation due to interference but is also noisier due to
decreasing number of station pairs in each bin (section 4.1). Nevertheless, the similarity of the ASCs and
the respective fits in data and simulation raises the question as to whether the estimates of the attenuation
coefficient obtained from data are in fact measuring the apparent attenuation due to inhomogeneities in
the Earth.

While the availability of detailed 3-D velocity models for Southern California made the analysis in this
section and the preceding one possible, it might not be feasible to do so for other regions where such mod-
els are not readily available. However, the insights obtained from the analysis are applicable for any suitably
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Figure 12. Comparison of apparent attenuation measured from coherence using SCSN data (solid, median), simula-
tions with slowness inhomogeneity (dashed, section 7), and approximate analytical expressions (dash dotted, equation
(21)). The lines are cubic spline fits to the points. The gray boxes are the interquartile ranges for the estimates of the
attenuation coefficient from SCSN data.

inhomogeneous medium, and we demonstrate this with a simplified analytical model for an ASC resulting
from an average of individual coherencies (with different slownesses). Consider an arbitrary inhomogeneous
medium and array configuration such that the distribution of pairwise slownesses as in Figures 10b and 10e
is uniformly distributed between s± = s̄±

√
3/s at all frequencies, where s̄ is the frequency-dependent mean

slowness and /s is the standard deviation. Then using the asymptotic expansion of the zeroth-order Bessel,
the expected value of the ASC at a given distance bin is

E[Γ̃n] = ∫
∞

−∞
J0(2πfdns)0(s)ds

≈ 1

2π
√

3/s
∫

s+

s−

√
1

fdns
cos

(
2πfdns − π∕4

)
ds (20)

where 0(s) is the probability density of s. Equation (20) can be solved in terms of the Fresnel integrals(z) = ∫ z
0 cos(πt2∕2)dt and (z) = ∫ z

0 sin(πt2∕2)dt [Abramowitz and Stegun, 1972, §7.3], giving

E[Γ̃n] ≈ −
[(2√dnfs) + (2√dnfs)

√
6πdnf/s

]s=s+

s=s−

(21)

Equation (21) allows us to also vary the spread in slownesses with distance as in Figures 10b and 10e using
a range-dependent /s. Although a uniform slowness distribution was chosen for simplicity, it is sufficient to
obtain useful analytical insights on the influence of slowness inhomogeneity, and the conclusions remain
the same even if a more representative distribution were used.

The apparent attenuation between (21) and (4) is a complicated relationship given by the ratio of the two
expressions at a given f , dn, and s̄ and varies with both distance and frequency. Taking s̄ from (18) and
varying /s∕s̄ linearly from 0.02 at 20 km to 0.01 at 400 km, we repeat the minimization in (19) and the corre-
sponding curves shown in Figures 11e and 11f. The decreasing spread in slownesses introduces an increase
in the coherence (negative attenuation) after 300 km in Figures 11f, similar to Figures 11d and 11b, thus
supporting the proposition that the increase seen is indeed significant and not random.

Figure 12 shows the resulting values of the attenuation coefficient obtained from the minimization in (19),
for the SCSN data, simulation in section 7, and the analytical approximation in (21). All three cases result
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in values of * that are physically sensible, yet in two of the cases, no intrinsic attenuation was assumed. In
addition, the values are similar to each other and are of the same order of magnitude as compiled results
[Mitchell, 1995].

It is unclear if the intrinsic medium attenuation can be untangled from these apparent attenuations. In data,
additional effects such as scattering, focusing, and defocusing also will likely play a role in distorting the
coherence. Given that such behavior generally is unavoidable in an unknown 3-D inhomogeneous medium,
it is quite likely that the attenuation coefficients previously estimated from data are, in fact, measuring this
apparent attenuation and not the intrinsic attenuation of the medium. However, as the discussion here
has shown, it is useful to thoroughly analyze the interplay between the processing technique chosen, the
array used, and the environment of study so that apparent attenuation effects can be identified and taken
into consideration.

9. Conclusions

In this article we have performed a detailed analysis of the various factors that play a role in the estima-
tion of spatial coherence and attenuation from seismic arrays. Primarily, we show that employing averaging
at different steps in the processing is not always beneficial. For example, frequency averaging can intro-
duce attenuation-like effects and that the effectiveness of azimuthal averaging depends on the geometry of
the array.

Assuming a laterally homogeneous medium with variations only in depth, we also analyzed in detail the
nature of the seismic noise observed in Southern California using the Southern California Seismic Network
(SCSN). The ambient noise field shows a clear and persistent presence of fundamental and first-mode sur-
face Rayleigh waves and body waves in the microseism band (0.05–0.2 Hz) and the resulting dispersion
curves agree well with simulations. This suggests that the underlying SCF might be better modeled as a lin-
ear combination of the above wave types (with the ratios estimated from data), and we show that it indeed
describes the observed coherence better than a simple zeroth-order Bessel function model which corre-
sponds only to the fundamental mode. The interactions between the wave types in the SCF leads to beating
and phase cancelation effects which could be interpreted as being due to attenuation.

Using a 3-D velocity model for Southern California, we studied the effect of slowness inhomogeneity on
the estimation of spatial coherence. Due to inhomogeneity, there is diversity in the slownesses sampled by
different station pairs and as a result, taking the average of the individual coherences introduces apparent
attenuation (again, from interference).
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