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Effect of Medium Attenuation on the Asymptotic
Eigenvalues of Noise Covariance Matrices
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Abstract—Covariancematrices of noisemodels are used in signal
and array processing to study the effect of various noise fields and
array configurations on signals and their detectability. Here, the
asymptotic eigenvalues of noise covariance matrices in 2-D and
3-D attenuatingmedia are derived. The asymptotic eigenvalues are
given by a continuous function, which is the Fourier transform
of the infinite sequence formed by sampling the spatial coherence
function. The presence of attenuation decreases the value of the
large eigenvalues and raises the value of the smaller eigenvalues
(compared to the attenuation free case). The eigenvalue density
of the sample covariance matrix also shows variation in shape de-
pending on the attenuation, which potentially could be used to re-
trieve medium attenuation properties from observations of noise.

Index Terms—Attenuating media, covariance matrix, eigen-
values, spatial coherence function.

I. INTRODUCTION

C OVARIANCE matrices (CMs) play a central role in sev-
eral applications such as direction of arrival estimation

[1], [2], signal detection from limited data [3]–[5], channel es-
timation in wireless communications [6], [7] and ambient noise
processing [8]–[10]. Estimating the CM or its eigenvalues from
finite observations [11], [12] also plays an important role in
these applications. The presence of structure in the CM (e.g.,
a Hermitian Toeplitz matrix [13]) makes it possible to gain ana-
lytical insights into the asymptotic behavior of the eigenvalues
(dx.doi.org/10.1109/MSP. 2012.2207490).
Here, we are concerned with the spatial CMs from measure-

ments of noise on a uniform line array (ULA). We derive the
asymptotic eigenvalues for CMs in 2-D and 3-D media with at-
tenuation, and demonstrate that the attenuation has a significant
effect on the eigenvalues of the CM. We futher demonstrate
using a random matrix theory based approximation [14], that
the eigenvalue density of the sample covariance matrix (SCM)
is also affected by the attenuation, which is of interest in the de-
velopment of signal processing algorithms based on the physics
of propagation in a given medium.
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II. BACKGROUND

A. The Spatial Coherence Function

Consider two sensors apart, and the signals recorded on
them, and at frequency . The respective power
spectral densities are and

where denotes the complex conjugate and
the ensemble average. The spatial coherence function (SCF) be-
tween these two sensors is defined as the normalized cross-spec-
tral density (henceforth, the dependence on is dropped),

(1)

The functional forms of are well known for uncorrelated
and uniformly distributed sources in the medium. In 2-D and
3-D media without attenuation, the respective SCFs are [15]

(2)
(3)

where , is the spacing
to wavelength ratio, is the phase speed and the subscript 0 indi-
cates no attenuation. The SCFs in (2) and (3) are not dependent
on the individual sensor locations, but only on their separation
distance.
The effect of medium attenuation (assumed homogeneous)

is introduced using a term that exponentially decays with the
distance of separation between the sensors (which manifests in
) [16]–[19] and the SCF is

(4)

where is the loss tangent.

B. The Spatial Covariance Matrix

For a ULA of sensors with a uniform spacing , the
SCF of the noise field between the th and the th sensors is

where now is redefined as the spacing to wave-
length ratio for adjacent sensors. The normalized CM (or the
normalized cross-spectral density matrix) of the frequency do-
main observations at frequency is then related to as

(5)

, with constant can be considered to be sampled
from the continuous function at integer values of .

is used in Section III to derive the asymptotic eigen-
values of .
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The spatial CM is an important quantity in analyzing noise
data, as the time domain cross-correlation between any two pairs
of sensors can be obtained simply by taking the inverse Fourier
transform of the corresponding element (as a function of fre-
quency). The framework also allows one to use eigenanalysis
techniques such as principal components analysis and RMT.
The CM in (5) is a Hermitian Toeplitz matrix with real and

non-negative eigenvalues. The asymptotic eigenvalues of
as are related to the Fourier transform of the under-
lying infinite sequence in the Toeplitz ma-
trix (sampled from with a sampling interval of 1), if
the sequence is absolutely summable [13]. The property of ab-
solute summability of guarantees the existence of its
Fourier transform and the absolute convergence of the
error between the samples of and the eigenvalues of
as .

III. ASYMPTOTIC EIGENVALUES OF THE CM

For a general CM with a corresponding , which may not
be absolutely summable, the matrix based approach in [8] may
be used to show a weaker convergence of the error term. The
Fourier transform of is

(6)

where is the normalized spatial frequency
(cycles/sample). is a continuous function describing the
asymptotic eigenvalues of . Using the continuous Fourier
transform (CFT) of the SCF,

(7)

where is the ordinary spatial frequency, (6) is written as

(8)

Since is real and even, and are also real and even. For
the attenuation free case, and are bandlimited func-
tions, hence only the term contributes in (8) for
(i.e., no spatial aliasing).
In the following section, we obtain the asymptotic eigen-

values of the CM in attenuating media for the 2-D and 3-D
noise fields i.e., when the SCF is given by (4) and also estab-
lish the convergence of empirical results for 2-D media without
attenuation.

A. 2-D Medium With Attenuation

The infinite sequence from (4), is absolutely sum-
mable because of the presence of an attenuation term. Noting
that , we have :

The CFT of the SCF is evaluated by using the integral rep-
resentation of the Bessel function:

(9)

(the second step follows from the fact that the imaginary part
of the integrand is odd, and the last step is obtained using the
substitution ). is then obtained using (8)
and (9).
When (i.e., no attenuation), in (9) reduces to the

CFT of in (2) and for [only the
term contributes in (8)] is [10]

(10)

where and 0 otherwise. The conver-
gence of is shown in the appendix.

B. 3-D Medium With Attenuation
Just as in Section III-A, from (4) can also be

shown to be absolutely summable. Its CFT is evaluated by
convolving the Fourier transforms of each of the terms in the
expression as:

F F

where F denotes the CFT. Then, it follows that

(11)

Finally, is obtained using (8) and (11).
When (i.e., no attenuation), in (11) reduces to the

CFT of in (3) and for [only the
term contributes in (8)] is [8]

(12)

IV. DISCUSSION

A. Effect of Attenuation on the Bandwidth and the Eigenvalues
The presence of attenuation ( ) makes the SCF an infinite

bandwidth function (bandwidth here refers to the support in the
Fourier domain). Hence in general, simplified expressions for

cannot be obtained as a function of , and must be com-
puted using the sum (8). The effect of the attenuation term on
the SCF is shown in Fig. 1(a) for for (no attenuation),
0.1, and 1 [Fig. 1(d) for ]. The corresponding eigenvalues
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Fig. 1. (a) SCF for (solid), 0.1 (dashed) and 1 (dot-dashed). (b) Approximate eigenvalues from sampling the Fourier transform of the
SCF at equispaced samples in for and (c) numerical eigenvalues of the spatial CM for sensors for the same values of
and . (d)–(f) Same as in (a)–(c) for 3-D media.

of for sensors, with [Fig. 1(c), (f)] are ap-
proximated well by equispaced samples [Fig. 1(b), (e)] from

.
The broadening of the support (or bandwidth) due to an in-

crease in attenuation visibly lowers the larger eigenvalues of the
CM and raises the smaller eigenvalues [for example, in Fig. 1(c),

for (no attenuation) and for ].
In addition, the transition region (near index 15) between the
large eigenvalues and the small eigenvalues, which is sharp for
no attenuation ( ), spreads out as increases. The broad-
ening of the transition region is more apparent in the 3-D case
[Fig. 1(e), (f)]. As a result, the smaller eigenvalues which were
zero in the attenuation free case [8], [10], no longer are, and this
increases the rank of the CM. For , i.e., high attenuation,
the eigenvalues are all close to 1 and become exactly 1 when

.

B. Eigenvalue Density of the Sample Covariance Matrix
In practice, the CM is often unknown and one uses the SCM

estimated from observations of the data. The SCM is
modeled as

(13)

where is an random matrix whose entries are drawn
from , and is a non-negative definite square root
of the true CM, .
Obtaining the SCM eigenvalue density from by naïvely

using Stieltjes transforms is non-trivial due to the eigenvalue
structure in . Using a computationally efficient approach
[14] using the polynomial method [20], it is possible to approx-
imate the eigenvalue density of the SCM in the attenuated case
(if some of the eigenvalues are zero, only the non-zero eigen-
values used and scaled appropriately).
The equispaced samples from for ,

(sorted largest first) are divided into three sets:

(14)

where . denotes the set of large eigenvalues that
are “well separated” from the rest and each have a distinct con-
tribution to the density. Sets and denote eigenvalues
with similar spreading behavior and can each be replaced by

Fig. 2. Approximate eigenvalue density of the SCM for the 2-D attenuated
case when the number of sensors , observations , spacing/
wavelength and attenuation . The
markers indicate the representative eigenvalues and their weights used in the
Stieltjes transform for the different groups in (14).

a single representative eigenvalue weighted appropriately [21].
Accordingly, the Stieltjes transform of the SCM eigenvalue den-
sity can then be written as

where and
. Thus, all the eigenvalues in and are replaced

by and respectively.
Forming the polynomial in and solving for its roots (solved

numerically, as the degree of the polynomial is almost always
greater than 4), the SCM density can be obtained as

(15)

where is the appropriate root of the polynomial that has a
non-negative imaginary component (since the density is always
non-negative).
Fig. 2 shows the approximate eigenvalue density for the SCM

when and (i.e., ) for different and
the representative eigenvalues used in the Stieltjes transforms.
The distributions are varied in their shapes, depending on the at-
tenuation and approaches the Marþenko-Pastur density for large
attenuation ( ). This variation in shape is less pronounced
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when the number of observations decreases (i.e., for the
scenario) because the spreading of the eigenvalues is

much higher, reducing the clustering phenomenon.

V. CONCLUSIONS

The asymptotic eigenvalues of noise covariance matrices in
diffuse noise fields with attenuation were derived for 2-D and
3-D media. The presence of attenuation decreases the value of
the large eigenvalues when compared to the attenuation free
case, and also raises the smaller eigenvalues due to the broad-
ening of the bandwidth of the spatial coherence function. The
shape of the eigenvalue density of the finite SCM varies with at-
tenuation and this potentially could be used to retrieve medium
attenuation properties.

APPENDIX

The Bessel sequence, is not absolutely
summable and hence the convergence of the error term is not
absolute, as in Sections III-A and III-B. Convergence can be
demonstrated by computing the error vector , where
and are the th eigenvalue and eigenvector, as in [8, Sec-

tion II.A]. Following the derivation until [8, Eq. (15)] and taking
the -norm instead of the -norm, we get

(16)

can be shown to have a finite -norm for
using the Hausdorff-Young inequality [22]:

Theorem A.1 (Hausdorff–Young Inequality): If is a func-
tion defined on a locally compact Abelian group with mea-
sure , andF its Fourier transform defined on the Pontryagin
dual group with measure , then for ,

F (17)

such that , where denotes the norm on
the Lebesgue space .
Here, the function is defined on the unit circle ( ,

mapped one-to-one to ) with the Lebesgue
measure ( ), F is the sequence (the Fourier coef-
ficients) defined on the set of integers ( ) with a counting mea-
sure ( ). Applying Theorem A.1 and using (8) for
gives:

(18)

where is the Beta function (using the substitution
). The RHS of (18) is bounded for but not for

, since as ). Hence, due to Parseval’s
theorem, cannot exist in (i.e., it is not absolutely
square summable) and has a finite -norm only if (using

).
Thus, the error term in (16) is less than for

and approaches 0 independent of . This argument is valid for
all values of (accounting for spatial aliasing).
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