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Cross-correlations of diffuse noise fields can be used to extract environmental information. The
influence of directional sources (usually ships) often results in a bias of the travel time estimates
obtained from the cross-correlations. Using an array of sensors, insights from random matrix theory
on the behavior of the eigenvalues of the sample covariance matrix (SCM) in an isotropic noise
field are used to isolate the diffuse noise component from the directional sources. A sequential
hypothesis testing of the eigenvalues of the SCM reveals eigenvalues dominated by loud sources that
are statistical outliers for the assumed diffuse noise model. Travel times obtained from cross-correlations
using only the diffuse noise component (i.e., by discarding or attenuating the outliers) converge to
the predicted travel times based on the known array sensor spacing and measured sound speed
at the site and are stable temporally (i.e., unbiased estimates). Data from the Shallow Water
2006 experiment demonstrates the effectiveness of this approach and that the signal-to-noise ratio
builds up as the square root of time, as predicted by theory. VC 2012 Acoustical Society of America.
[http://dx.doi.org/10.1121/1.4754558]
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I. INTRODUCTION

Over the past decade, there has been significant interest
in retrieving information from diffuse, multiply scattered,
and refracted waves in an environment. It was demonstrated,
both theoretically and experimentally,1–5 that temporal
cross-correlations of a diffuse noise field recorded on a pair
of receivers yielded the Green’s function between those two
points. It also is possible to image remote areas of the
ocean6–10 and the interior of the earth11–13 using diffuse
noise fields, as opposed to using controlled active sources
which are both expensive and limited in resolution.

The ocean noise field has two primary components—a
rich and varied background diffuse noise field due to wind,
breaking waves, biological activities, distant shipping, and a
highly directional (and often stronger) noise field due to ships
and other similar anthropogenic activities in the vicinity of the
observing sensors. Depending on whether one wishes to moni-
tor the changes in the environment, or the movement of the
sources, the two components of the noise field can either be
beneficial or a deterrent. A challenge in using ocean noise is
separating these two components reliably.

For an N element linear hydrophone array, the sample
covariance matrix (SCM) is formed in the frequency domain
from M snapshot vectors (i.e., the Fourier coefficients of the
data observation vector at a frequency f), xmðf Þ;m
¼ 1;…;M as

R̂ðf Þ ¼ 1

M

XM

m¼1

xmðf ÞxH
mðf Þ; (1)

and its eigendecomposition gives the eigenvalues k̂1ðf Þ
$ % % % $ k̂Nðf Þ and eigenvectors v̂1ðf Þ;…; v̂Nðf Þ. The time
domain cross-correlation of the data from the ith and jth
hydrophones across the entire bandwidth is obtained as

ĈijðtÞ ¼ F&1½R̂ijðf Þ(; (2)

where t denotes the correlation time, and F&1 denotes an
inverse Fourier transform (henceforth, the dependence on f
is dropped unless necessary).

When the noise field is diffuse, the cross-correlation can
be used as a proxy for the Green’s function of the environ-
ment (which is unknown) shaped by the spectrum of the
noise field. Hence, the location of the peak of the cross-
correlation gives the travel time which typically corresponds
to the direct path propagation between the hydrophones.

It was shown experimentally6 that in order to obtain sta-
ble travel times for a ship dominated noise field, the cross-
correlations must be averaged over ship tracks which pass
through the end-fire region of a pair of hydrophones. Per-
forming the cross-correlations over much shorter time peri-
ods introduces biased travel times because the directional
nature of the noise field results in travel times that generally
are less than that for the direct path between the hydro-
phones.14,15 This results in requiring long observation times
to obtain stable estimates of the travel times.

In this article, the focus is on obtaining stable cross-
correlations from an array of sensors without interference
from loud sources, by effectively discarding or attenuating
the contributions from the directional noise field (Sec. IV).
This is achieved by drawing on insights from random matrix
theory (RMT) on the behavior of the eigenvalues (Sec. II)
of the SCM, which then is used in a statistical hypothesis
testing framework (Sec. III).
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RMT, which has its roots in nuclear physics,16 is a
mathematical tool that allows one to study the eigenvalue
densities of random matrices in the asymptotic limit as the
matrix size increases. It has diverse applications in a wide
variety of fields such as statistics,17,18 signal processing,19–25

ocean acoustics,23,26–29 information theory and wireless
communications,30,31 elastodynamics,32 wave propagation,
and scattering in random media.33–35

Recently, the asymptotic eigenvalue densities of the SCM
for a three-dimensional (3D) isotropic noise field were derived
using RMT.23 Here, we assume the diffuse background noise
field in an ocean environment to be isotropic and use these
results to distinguish the eigenvalues due to loud, directional
sources (e.g., nearby ships) in the data from those of the back-
ground noise using hypothesis testing. Prior related works
include model order estimation for signals in white noise
using RMT combined with an information theoretic crite-
rion21 and eigenvalue based sequential hypothesis testing in
white and colored noise.17,22 The contribution of this article is
in adapting the sequential testing to diffuse ocean noise fields,
especially when the SCM inherently is rank deficient (see
Sec. II B), and its application in noise processing.

The isotropic noise model is primarily chosen because
the known analytical results23 can be readily related to fea-
tures observed in data (see Sec. IV). In practice, any reasona-
ble physical noise model can be used (see Sec. V for a brief
discussion) and the advantage of using simple analytical
noise models is that one can process the data without having
to know anything about the environment (e.g., water depth,
seafloor characteristics, etc.).

A. Notations and definitions

(1) The term eigenvalue density (probability density of the
eigenvalues) is often used, and is defined for any N)N
Hermitian matrix A with eigenvalues fa1;…; aNg as

pAðxÞ ¼
1

N

XN

n¼1

dðx& anÞ ¼
d

dx
PAðxÞ; (3)

where PA(x) is the empirical cumulative distribution
(ECD) of the eigenvalues, defined as

PAðxÞ ¼
#fan * xg

N
; (4)

and # denotes the cardinality of the set.
(2) As N !1, the ECD of the eigenvalues, PAðxÞ con-

verges almost surely to a well-defined distribution P(x)36

and the corresponding density function, p(x) is referred
to as the asymptotic eigenvalue density.

(3) The dimensions of any covariance matrix (CM) A,
unless made explicit, are taken to be N ) N: A1 denotes
limN!1AN . Similarly, any SCM Â, unless otherwise
stated, is taken to be such that M Â +WðA;MÞ, i.e.,
M Â is complex Wishart distributed with M degrees of
freedom and true CM A. Â1 denotes limN;M!1ÂN , with
N=M ¼ !.

(4) The term loud source is used generically to mean discrete
sources or interferers in the environment, which in general

are louder than the diffuse background noise field and
possibly could bias the cross-correlations because of their
spatial compactness (also see Sec. III A 1).

II. BACKGROUND

A. Statistical model for the SCM

The mth snapshot vector, xm, is modeled as

xm ¼ sm þ nm; (5)

where sm + CN ð0; SÞ is a circular complex normal distrib-
uted directional noise vector from loud sources in the envi-
ronment with a CM S and nm + CN ð0;RÞ is a Gaussian
diffuse noise vector with a CM R. From the independence of
sm and nm; the true CM of xm is then

R ¼ Sþ R; (6)

and the SCM in Eq. (1) is complex Wishart distributed with
M degrees of freedom and true CM R, i.e., MR̂ +WðR;MÞ.

For the purposes of this paper, to model the effect of a
few loud sources, we assume that the rank of S, say K, is
small compared to the rank of R, i.e.,

K ¼ rankðSÞ - rankðRÞ; (7)

and that the K non-zero eigenvalues of S are all larger than
the eigenvalues of R and manifest in the K largest eigenval-
ues of the SCM. Note that the effect of a source will be
spread across multiple eigenvalues and eigenvectors if the
source is moving and the observation time is not short
enough to consider it to be stationary37 or if multiple sources
are present and their replica vectors are not orthogonal.38

Hence, a direct correspondence between a particular eigen-
value and a particular loud source might not be possible.

The objective is to separate the components of the SCM
R̂ based on its eigenvalues and eigenvectors as

R̂ ¼
XK

k¼1

k̂kv̂kv̂H
k þ

XN

k¼Kþ1

k̂kv̂kv̂H
k ¼ R̂s þ R̂n; (8)

where R̂s is the directional noise component and R̂n is the
diffuse noise component. The eigenvalues of R̂s, namely,
k̂1;…; k̂K (and the eigenvectors), also contain a diffuse noise
component in addition to the directional noise component
and hence the separation of R̂ exactly into Ŝ and R̂ is not
possible.

In Sec. II B, we review the case when R ¼ Rn ¼ R, and
the true noise CM R is due to a spatially isotropic noise
field.

B. Relevant results for spatially isotropic noise fields

An isotropic noise field consists of random waves propa-
gating toward the array from all directions. The spatial co-
herence function of the noise recorded on two sensors in a
3D isotropic noise field is39,40

C ¼ sincð2bÞ; (9)
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where sincðxÞ ¼ sinðpxÞ=ðpxÞ and b is the ratio of the spac-
ing between the sensors to the wavelength under considera-
tion (b ¼ fd=c, where f is the frequency, d is the spacing
between the sensors, and c is the speed of wave propagation
in the medium). For a linear array of N equidistant sensors,
the elements of the CM of the noise field (normalized to unit
power on each sensor) are given by

Rij ¼ sincð2bji& jjÞ; (10)

which is a symmetric Toeplitz matrix. Thus, the spatial cor-
relations are only dependent on b (or equivalently, on f) and
the separation ji& jj.

1. Asymptotic eigenvalues of the isotropic noise CM

It has been shown that the eigenvalues of an infinite
dimensional Toeplitz matrix constructed from sequences in
‘1 (absolutely summable), with a Fourier series also in ‘1

(called Wiener class Toeplitz matrices) are related to the
said Fourier series.41 Although the sinc sequence is not abso-
lutely summable, the result still holds23 and the asymptotic
eigenvalues of R1 from Eq. (10) were derived for all b.

In Ref. 23 it is shown that there are at most two distinct
eigenvalues (with multiplicities) for all b, given by

K1 ¼
qþ 1

2b
and K2 ¼

q

2b
; (11)

with q 2 f0; 1;…g such that q < 2b * qþ 1, and the re-
spective multiplicity ratios are given by

n1 ¼ 2b& q and n2 ¼ qþ 1& 2b: (12)

A key result here is the fact that the CM is rank deficient for
b < 1=2, even when M > N because K2 ¼ 0. In other words,
the rank deficiency is not due to insufficient snapshots but
due to the nature of the noise field.

2. Asymptotic eigenvalue density of the isotropic
noise SCM

The isotropic noise SCM R̂ is modeled as

R̂ ¼ 1

M
RXXH; (13)

where X is an N)M random matrix whose entries are zero-
mean complex Gaussian random variables drawn from
CN ð0; 1Þ [Eq. (13) can be verified by taking an expectation].
The probability density of the eigenvalues of R̂1 were
derived23 using Stieltjes transforms36 for N=M ¼ ! * 1, i.e.,
the number of observations (snapshots) is larger than the
dimensions of R (number of hydrophones).

When the ratio of spacing to wavelength b < 1=2 or b is
a multiple of 1/2, i.e., b ¼ q=2, q 2N, the SCM eigenvalue
density is given by

pR̂1
ðkÞ ¼ n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ & kÞðk& k&Þ

p

2p!k
k& < k< kþ

n2dðkÞ otherwise;

8
<

: (14)

where k6 ¼ ð
ffiffiffiffi
K
p

16
ffiffiffiffi
!
p
Þ2 are the upper and lower limits of

the “spreading” of the eigenvalues of the SCM around the
true eigenvalue which is K1. The density when b is a multi-
ple of 1/2 is known as the Marčenko–Pastur density.42

Regardless of the value of !, R̂ is rank deficient for all
b < 1=2, as n2 6¼ 0.

The eigenvalue density of the SCM and the extent of
spreading of the eigenvalues for all other values of b can be
found in Ref. 23.

III. SEQUENTIAL HYPOTHESIS TESTING OF THE SCM
EIGENVALUES

Eigenvalue based sequential testing using RMT was
introduced in Ref. 17 for signals in white noise and extended
to colored noise in Ref. 22. If the noise only CM is known
exactly (or if a noise only SCM can be estimated) and if it
can be inverted, one could perform a “noise whitening”
transformation22 on the data to transform the underlying
noise CM to the identity matrix, following which the eigen-
values can be tested using known results from RMT. How-
ever, this is not possible here, as the isotropic noise CM and
SCM are inherently rank deficient for b < 1=2 and hence not
invertible. In this section, we outline an approach based on
Ref. 17 to distinguish those eigenvalues of the data SCM R̂
that are due to loud sources, from those due to diffuse noise.

Since the number of large eigenvalues K that are domi-
nated by loud sources is not known a priori, at each f (or
equivalently b), we test sequentially the eigenvalues of R̂,
fk̂1;…; k̂Ng at each step k (starting with k¼ 1) against the
following two hypotheses H0 (null) and H1 (alternate) at a
significance level a per test

H0 : The kth eigenvalue is due to diffuse noise
H1 : The kth eigenvalue is dominated by loud sources;

(15)

until H0 no longer can be rejected. The termination criterion
follows from the fact that the eigenvalues dominated by loud
sources are larger than the eigenvalues due to noise only (by
definition) and hence once H0 cannot be rejected for some k,
the subsequent N & k eigenvalues must also be due to diffuse
noise.

A. Behavior of the largest eigenvalue of the SCM

1. In a noise only scenario

If there were no loud sources (K¼ 0) in the environment
and the diffuse noise field is isotropic, the eigenvalues of R̂
¼ R̂ in the asymptotic limit are distributed as PR̂1ðkÞ. Since
no eigenvalues exist43 outside the support of the density
pR̂1
ðkÞ, the largest eigenvalue of R̂N , k̂1, converges almost

surely to the upper bound of the density,22 kþ as N !1.
Typically, the distribution of the largest eigenvalue of

complex Wishart matrices is described using the Tracy–
Widom (TW) distribution.44 For the case when R¼ I, the
identity matrix, it was shown that the statistic17,45

M2=3 k̂1 & mTW

sTW
+ TW; (16)
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for some scaling constant sTW and centering constant mTW,
both dependent on N and M. While these constants can be
computed explicitly in this case, it is not straightforward for
arbitrary SCMs.46

When R̂ ¼ R̂ (diffuse noise only), the equivalent of Eq.
(16) can be written as

k̂1 + P1jR̂ ; (17)

where P1jR̂ðkÞ is the ECD of the largest eigenvalue of R̂.
P1jR̂ðkÞ can be computed in a straightforward fashion from
Monte Carlo simulations, as is done in Sec. III B 2.

2. In the presence of loud sources

The presence of loud sources in the environment which
are captured in the K> 0 large eigenvalues of S [Sec. II A,
under Eq. (6)] manifests in the K largest eigenvalues of the
SCM R̂ that are now larger than what they would have been
had there been no sources. The eigenvalues of R̂ that are
dominated by loud sources are distinguishable from the
eigenvalues due to noise when they cross a certain thresh-
old22,47 (which depends on the separation between the eigen-
values of S and R, their distributions, and !). The exact
value of the threshold is not relevant to this discussion and
here we assume that all the K - rankðRÞ largest eigenvalues
are distinguishable (although this is not always the case—
see the last paragraph of Sec. IV D 1).

The distribution of the K largest eigenvalues in this case
is Gaussian46,47 (i.e., different from the noise only case) and
they can be identified in a statistical hypothesis test [Eq.
(15)]. For example, when K ¼ 1, the null hypothesis that k̂1

belongs to P1jR̂ [Eq. (15) with k¼ 1] will be rejected with a
high probability, indicating that k̂1 is an eigenvalue domi-
nated by loud sources.

B. Inferring the noise eigenvalues

More generally, at step k in the hypothesis test (see Sec.
III B 2 for further details), k̂k (which can be considered to be
the largest eigenvalue of an N & k þ 1 dimensional SCM) is
checked to see if it belongs to P1jR̂N&kþ1

, i.e., the ECD of the
largest eigenvalue for an N & k þ 1 dimensional noise SCM.

The choice of P1jR̂N&kþ1
to test k̂k instead of the more in-

tuitive PkjR̂ , i.e., the ECD of the kth eigenvalue of R, can be
understood from the interlacing properties of eigenvalues
(see the Appendix). As a result of Eq. (A1), with r ¼ k & 1,
i ¼ 1, A ¼ R̂, and A0 ¼ R̂N&kþ1, the corresponding ECD
PkjR̂ is stochastically smaller than P1jR̂N&kþ1

. Hence, testing k̂k

using P1jR̂N&kþ1
provides a conservative p-value for H0 (i.e.,

the actual probability of observing an outlier when H0 has
not been rejected, is smaller).17

1. Test statistic

To test k̂k, the test statistic

sðkÞ ¼ k̂k

r̂2
k

; (18)

is used, following Ref. 17, with

r̂2
k ¼

!K
N0 & k þ 1

XN0

i¼k

k̂i: (19)

Here N0 is the number of eigenvalues that are theoretically
non-zero and !K is the theoretical mean of the N0 eigenvalues
[see Eq. (20)]. Hence, r̂2ðkÞ is merely a normalization factor
such that the eigenvalues from data can be tested using dis-
tributions obtained from simulations.

When b < 1=2, the noise SCM R̂ is rank deficient
because n2 > 0 and the corresponding eigenvalues asymp-
totically are zero (Sec. II B 2). However, in practice they are
not exactly zero, likely due to sensor noise (self-noise due to
system electronics that is independent from element to ele-
ment). It was observed empirically that including these
eigenvalues in the sequential testing often resulted in H0

being rejected with a greater likelihood, i.e., eigenvalues that
were due to the diffuse noise field were identified incorrectly
as being dominated by loud sources (also see Sec. IV B 1).

To avoid this problem, an ad hoc correction is made by
considering only the largest N0 ¼ bn1Nc eigenvalues (i.e.,
only those eigenvalues that theoretically are non-zero) for
the sequential testing and accordingly, !K ¼ K1. For all other
values of b, !K ¼ 1 and N0 ¼ N. In short

!K;N0 ¼ K1; bn1Nc b < 1=2
1; N otherwise:

"
(20)

2. Hypothesis testing

Starting with k ¼ 1, the null hypothesis H0 in Eq. (15)
is tested at a significance level a and is rejected if

sðkÞ > P&1
1jR̂N&kþ1

ð1& aÞ: (21)

The test in Eq. (21) is repeated, incrementing k each time,
until H0 cannot be rejected. From the resulting value of k,
the number of eigenvalues K0 that effectively are identified as
the outliers that are dominated by loud sources, is given by
K0 ¼ k & 1 (see Fig. 1). The remaining N & K0 eigenvalues
then are considered to be due to diffuse noise. Note that the
a here is per test, and not the overall a for the procedure,
which is expected to be higher (this typically is controlled
using methods such as the Bonferroni correction).

A pre-computed lookup table is generated for
P&1

1jR̂N&kþ1
ð1& aÞ from 1000 Monte Carlo trials for the given

array configuration, for all k and b, assuming a sound speed
of c¼ 1500 m/s. One could also perform a simple binary test
using the asymptotic upper bounds for the eigenvalue den-
sity and get equally good results.26

IV. EXPERIMENTAL RESULTS

A. Data processing

Ocean acoustic data from a bottom mounted horizontal
line array (Shark array deployed by the Woods Hole Ocean-
ographic Institution), at a water depth of 79 m with an
inter-element spacing of d¼ 15 m are used here. The data
were recorded from 13:00:00 to 15:14:24 UTC on

3216 J. Acoust. Soc. Am., Vol. 132, No. 5, November 2012 Menon et al.: Cross-correlations of diffuse noise



September 1, 2006 (one day before tropical storm Ernesto)
as part of the Office of Naval Research sponsored Shallow
Water 2006 experiment conducted off the coast of New Jer-
sey.48 Only the data from the first N¼ 30 hydrophones of
the 32 element array are used because the 31st hydrophone
had inconsistencies in the data.9 This dataset was chosen
specifically from a time interval where several ships were
present in the environment in order to highlight the advant-
age of this approach where conventional methods do not
yield good results.

The data from each hydrophone were bandpass filtered
to 20 to 100 Hz and downsampled to a sampling frequency
of fs¼ 244.1406 Hz (500 000 samples every 2048 s). The fil-
tered data were stored in blocks of 128 s each. Each block
was further divided into M¼ 125 segments of 1.024 s each
and Fourier transformed with a 512 point fast Fourier trans-
form. At each frequency f, the transformed data are written
as a column vector x ¼ ½x1;…; xN (T and the SCM for the
block, R̂ is formed as in Eq. (1), with N¼ 30 and M¼ 125.

B. Eigen-structure of the ocean noise field

1. Eigenvalues of the SCM R̂

The sequential hypothesis testing algorithm (Table I)
with a significance level a¼ 0.05 is used to separate R̂ into
R̂s and R̂n for each data block at each frequency bin. Visual-
izing the eigenvalues at a single time slice (128 s from
14:31:44) reveals a rich variation across the frequency [Fig.
2(a)] and the algorithm picks out the outlier eigenvalues
quite well at all frequencies (solid line).

The dark triangle to the lower right is the region with
zero eigenvalues (theoretically) and corresponds to invisible
space.49 This is also observed in Fig. 2(b) where the eigen-
values drop past the 16th eigenvalue, which closely corre-
sponds to bn1Nc as predicted by theory.12

If the correction in Eq. (20) were not applied, it was
observed in nearly all the cases that for b < 1=2H0 was
rejected up until about the ðbn1Ncþ 1Þth eigenvalue. In other
words, only those eigenvalues that theoretically are zero [) in
Fig. 3(b)] were being retained, which was incorrect. Hence,
not considering these small eigenvalues results in a better sepa-
ration of the loud source dominated eigenvalues from the dif-
fuse noise eigenvalues, as can be verified visually in Fig. 3.

TABLE I. Sequential hypothesis testing algorithm.

Input

1. Frequency f, significance level a, eigenvalues of R̂ðf Þ,fk̂1ðf Þ; …; k̂Nðf Þg

2. Pre-computed lookup table of P&1
1jR̂N&kþ1

ð1& aÞ for K ¼ f1;…;Ng at f

Testing

1. Assume sound speed, c¼ 1500 m/s

2. b d/c where d is inter-element spacing

3. Define sðkÞ, r̂2
k , and N0 as per Eqs. (18)–(20).

4. k 1

5. While sðkÞ > P&1
1jR̂N&kþ1

ð1& aÞ
RejectH0 [see Eq. (15)]

If k 6¼ N0

k k þ 1

Else Break

6. Return K0  k & 1

FIG. 1. (Color online) Schematic illustrating the
hypothesis test to identify eigenvalues dominated
by loud sources. (a) In the presence of K loud sour-
ces, the test statistic sðkÞ ðk ¼ f1;…;Kg does not
belong to the P1jR̂N&k

distribution when tested at sig-
nificance a and H0 is rejected. (b) The largest
eigenvalue from diffuse noise falls inside P1jR̂N&Kþ1

and henceH0 cannot be rejected.
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2. Empirical eigenvalue density

The histogram of the non-zero eigenvalues of R̂n from
each 128 s realization for the entire 136.5 min duration
(normalized to unit mean at each time slice) is shown in

Figs. 3(a)–3(c) for f¼ 25, 50, and 75 Hz, respectively. Note
that since the ensemble of eigenvalues forming the histo-
gram was obtained by discarding a different number of loud
source dominated eigenvalues at each realization [on aver-
age, 3 to 6 eigenvalues are identified as loud source related
for the frequencies shown here; see Fig. 2(a)], the densities
shown are not the true densities and Fig. 3 should only be
interpreted qualitatively.

Nevertheless, the eigenvalue densities from the data
resemble the asymptotic densities (thick solid line) in Sec.
II B remarkably well. The histograms of the directional
source eigenvalues (from R̂s with the same normalization as
for R̂n) are displayed to the right of the corresponding noise
eigenvalue densities.

C. Beamformer output

Conventional beamforming with Hamming spatial shad-
ing was performed for each block for R̂s and R̂n at 25 and
50 Hz as

Bð%ÞðhÞ ¼ wHðhÞ R̂ð%Þ wðhÞ; (22)

where w(h) is the shaded steering vector, with the phase of
the nth element given by wnðhÞ ¼ exp½i2pfnd=c sinðhÞ(,
n ¼ f0; 1; …;N & 1g.

The dataset shows the presence of a few loud sources in
the environment, with two prominent ones being an almost
stationary source at about &6. and a source moving from
&30. to &80. over the entire duration [“A” and “B,” respec-
tively, in Figs. 4(b) and 4(e)]. The biasing effect of these
loud sources in the medium is demonstrated in Sec. IV D 1.

Beamforming on the diffuse noise component demon-
strates the isotropic nature of the noise field with nulls only
at directions corresponding to the large eigenvalues that
were removed [Figs. 4(c) and 4(f)]. The nature of the noise
field when the large eigenvalues are re-weighted instead of
being removed is discussed in Sec. IV E.

D. Cross-correlations of diffuse noise

1. Convergence of the cross-correlations

The SCM from each subsequent data block is added to
the previous, and the resulting averaged cross-correlation is
obtained using Eq. (2) as hĈ1jðtÞiT ¼ F&1½hR̂1jðf ÞiT (, where
T denotes the total averaging time. The array configuration
(number of hydrophones N and inter-element spacing d),
bandwidth, and the choice of observation time M influence
the duration of a single block (here 128 s).

Figure 5(d) shows the noise cross-correlations obtained
by averaging 64 consecutive instances of R̂ (128 s each) or a
total of 136.5 min [evolution of the cross-correlation with suc-
cessive quadrupling of averaging time in Figs. 5(a)–5(d)]. The
dashed lines indicate the predicted travel times for the direct
and surface reflected paths, predicted assuming a straight line
propagation path, using sound speed measurements in the vi-
cinity of the site (CTD Knorr185-36). The travel times
observed can be linked to the location of the directional sour-
ces in Figs. 4(b) and 4(e). As the direction of the moving

FIG. 2. (Color online) (a) Eigenvalues of the data SCM R̂ (dB) for 20 to
100 Hz at a single time slice. The solid line shows the threshold separating
the directional noise (to the left) from the diffuse noise. (b) and (c) Individ-
ual eigenvalues at 25 and 50 Hz due to loud sources ð/Þ, diffuse noise ð•Þ,
and eigenvalues not considered [), only in (b)]. In each panel, the eigenval-
ues are normalized by the maximum in that panel.

FIG. 3. (Color online) Empirical eigenvalue density (histogram) of the
eigenvalues of R̂n (under the solid lines) and R̂s (to the right) obtained from
ocean acoustic data for f¼ (a) 25, (b) 50, and (c) 75 Hz. The solid lines cor-
respond to the asymptotic eigenvalue density. In (a), only the contribution
from the largest bn1Nc eigenvalues are shown. The dotted line(s) show the
location(s) of the non-zero eigenvalue(s) of the isotropic noise CM. The
densities for the eigenvalues of R̂s extend beyond the extent of the panels
and is truncated for clarity.
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source changes from &30. at the start to &80. at the end of
the data window [B in Figs. 4(b) and 4(e)], the corresponding
travel time also changes accordingly [B in Fig. 5(c)]. Slowly
moving sources build up correlation peaks steadily and domi-
nate the observed travel times [A in Fig. 5(d)]. These figures
illustrate the effect of directional noise sources in the medium,
which results in several spurious arrivals that are visible at
correlation times less than the predicted times and reduce the
reliability of the travel time estimates.

In contrast, the noise cross-correlations obtained using
R̂n instead of R̂ (as before, averages of 64 consecutive
instances) in Eq. (2) have a two-sided (symmetric) structure
(Fig. 6). A two-sided cross-correlation is typical for a diffuse
noise field, and the negative time delays correspond to a
propagation direction opposite that of the positive time
delays. The observed travel times also correspond well to the
predicted travel times (see Fig. 7). A faster arrival with a
symmetric component is observed [C in Fig. 6(d)], which
could possibly correspond to a propagation path through the
sediment layer.

One also sees a weak arrival close to zero lag [A in Fig.
6(d)], which is due to residual components from the loud
source at &6. [A in Figs. 4(b) and 4(e)] that the eigenvalue
processing failed to remove. A likely reason is that this
source was not loud enough to be detected by the algorithm
(see discussion in Sec. III A 2). Yet, it built up a correlation
peak because it was moving slowly.

FIG. 4. (Color online) Conventional beamformer output (dB) at 25 and
50 Hz using (a) and (d) R̂, (b) and (e) R̂s, and (c) and (f) R̂n. The beam-
former output in each panel is normalized by the maximum in that figure. A
and B mark the tracks from loud sources.

FIG. 5. (Color online) Noise cross-correlations (dB) using R̂. The dashed
lines indicate the predicted travel times for the direct (inner) and the surface
reflected (outer) paths. Panels (a)–(d) show the evolution of the cross-
correlation function with successive quadrupling of averaging time, starting
with 2 min in (a). Travel times marked A in (d) and B in (c) correspond to
the respective loud sources indicated in Figs. 4(b) and 4(e).

FIG. 6. (Color online) Noise cross-correlations (dB) using R̂n. Dashed lines
indicate the predicted travel times for the direct (inner) and the surface
reflected (outer) paths. Panels (a)–(d) show the evolution of the cross-
correlation function with successive quadrupling of averaging time starting
with 2 min in (a). Travel time marked A in (d) and B in (c) correspond to the
respective loud sources indicated in Figs. 4(b) and 4(e). C marks an arrival
(which has a symmetric component) that could possibly correspond to a
propagation path through the bottom layer.
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2. SNR

The signal-to-noise ratio (SNR) of the cross-correlation
buildup is also studied as a function of averaging time for
the data considered here. Here, SNR is defined as the ratio of
the maximum of the cross-correlation in a 0.025 s window
around the predicted travel time to the standard deviation of
the fluctuations at large correlation times [see trace at 240 m
in Figs. 8(a) and 8(b), same trace also shown on top of
Fig. 7].7 This definition helps track the buildup of the SNR
at the predicted time, and avoids skewing of the result due to
the peak in the data being shifted due to directional sources.

When there are loud sources in the environment that are
in motion, the location of the correlation peaks vary with the
direction of the source and hence the SNR does not build up
steadily and fluctuates with time [see Fig. 8(c)]. On the other
hand, when the loud sources are removed, the peaks build up
along the travel times corresponding to propagation along
the end-fire direction and the SNR shows a steady increase,
proceeding as the square-root of averaging time T as pre-
dicted by theory (dashed line).7

E. Cross-correlations from re-weighted eigenvalues

Although the cross-correlations obtained using R̂n pro-
vide reliable results (Sec. IV D), it does not utilize the entire
diffuse noise field because the separated diffuse noise com-
ponent has spatial voids in directions corresponding to the
large eigenvalues that were removed [Figs. 4(c) and 4(f)].
This is because the eigenvalues and eigenvectors of R̂s also
include contributions from the diffuse noise field (Sec. II A)
which cannot be separated. Since the biasing effect in cross-
correlations is caused by the non-zero eigenvalues of R̂s, it
is also possible to mitigate their effect by re-weighting the
large eigenvalues instead of removing them entirely.

Consider a re-synthesized SCM ~R obtained as

~R ¼
XK0

k¼1

~kkv̂kv̂H
k þ R̂n; (23)

where ~kk are the re-weighted eigenvalues (~k ¼ 0 in Sec.
IV D). There are several ways in which the weights can be
assigned, and two straightforward weightings are considered
here.

1. ~ki ¼Mean of the noise eigenvalues, i.e.,

~ki ¼
1

N0 & K0

XN0

k¼K0þ1

k̂k; i ¼ 1;…;K0: (24)

2. ~ki ¼ Largest noise eigenvalue, i.e.,

~ki ¼ k̂K0þ1; i ¼ 1; …; K0: (25)

In both cases, the resulting noise field [Figs. 9(a) and 9(b)]
does not exhibit the spatial voids observed when using only
R̂n [Figs. 4(c) and 4(f)]. The 136.5 min averaged cross-
correlations using R̂ with the weights in Eq. (24) [Fig. 9(c)],
are very similar to that obtained using R̂n [Fig. 6(d)]. How-
ever, using the weights in Eq. (25) gives a cross-correlation
structure that has both the arrivals at the predicted travel
times and a spurious arrival [A in Fig. 9(d)] corresponding to
the slowly moving source at &6. [A in Figs. 4(b) and 4(e)].
This spurious arrival can easily be discarded by time-gating.
The surface-reflected arrival is also visible from 150 m in
range onwards [D in Fig. 9(d)], whereas it is only visible

FIG. 7. (Color online) Averaged cross-correlations between sensors 1 and
16 (spaced 240 m apart) obtained using (a) R̂ and (b) R̂n with increasing
averaging time. The maximum in each trace has been normalized to 1 for
plotting purposes in order to highlight the peaks. The result after averaging
or 136.5 min (solid line) is shown above the respective plots. Dashed lines
indicate the predicted travel times for the direct (inner) and the surface
reflected (outer) paths.

FIG. 8. (Color online) (a) and (b) Noise cross correlations using the data
SCM R̂ and the diffuse noise SCM R̂n, respectively, after 136.5 min of aver-
aging. (c) and (d) SNR for the positive (solid line) and negative (dotted-
dashed line) time delay of the noise cross-correlation function between sen-
sors 1 and 16 [highlighted in (a) and (b)] with increasing averaging time
using R̂ and R̂n, respectively. The dashed line shows the square root of the
time curve, which is the SNR build up predicted by theory.
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from 300 m onwards in Figs. 6(d) and Fig. 9(c). As seen
from the two examples, changing the weights can lead to dif-
ferent results and each approach can be advantageous in dif-
ferent scenarios.

V. IMPACT OF ALTERNATIVE OCEAN DIFFUSE NOISE
MODELS

Here we compare qualitatively the impact of using
three alternative ocean noise models for the hypothesis test-
ing in addition to the 3D isotropic model (ISO) already con-
sidered in this article—surface noise in a fluid half-space
(Cron–Sherman model50 with omnidirectional sources

(CS0) and cosine directional sources (CS1), and surface
noise in a waveguide with a sediment layer (Kuperman–
Ingenito model,51 KI). KI is a more complicated noise
model that incorporates waveguide physics and is represen-
tative of ocean noise in shallow water environments. It is
used here primarily to show the similarities between the
simpler models (which do not require any knowledge of the
environment) and a model based on the local environment.

FIG. 9. (Color online) Beamformer outputs (dB) at 25 Hz (a) and (b) and
cross-correlations (dB) from 136.5 min of averaging (c) and (d) obtained by
re-weighting the large eigenvalues using Eq. (24) in (a) and (c) and Eq. (25)
in (b) and (d).

FIG. 10. (Color online) Eigenvalues of the CM for the 3D isotropic noise
model (ISO, solid line), the Cron–Sherman model for surface noise in a fluid
half-space with omnidirectional sources (CS0, dashed line), and sources
with cosine directionality (CS1, dotted line), and the KI model for surface
noise in a waveguide with a sediment layer (KI using measured environment
parameters, dotted-dashed line) with N ¼ 30 hydrophones and b ¼ 0:25 (a)
and b ¼ 0:5 (b). (c) and (d) Empirical eigenvalue density of the SCMs
(!¼ 30/125) corresponding to the CMs in (a) and (b) obtained from 1000
Monte Carlo trials.

FIG. 11. (Color online) Threshold
separating the directional noise (to
the left) from the diffuse noise is
shown at a single time slice for the
3D isotropic noise model (ISO, solid
line), the Cron–Sherman model
for surface noise in a fluid half-
space due to omnidirectional sources
(CS0, dashed line) and cosine direc-
tional sources (CS1, dotted line),
and the KI model for surface noise
in a waveguide with a sediment
layer (KI, dotted–dashed line).
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The CMs for the noise models using the array configura-
tion in Sec. IV A and a medium sound speed of 1500 m/s are
obtained using Eq. (10) for RISO and

RCS0
ij ¼ J0ð2pbji& jjÞ; (26)

RCS1
ij ¼ 2J1ð2pbji& jjÞ

2pbji& jj
; (27)

where J0 and J1 are the Bessel functions of the first kind
and zeroth and first orders, respectively. The KI model,
RKI, is generated by a wavenumber integration approach
using OASES52 assuming a 79 m deep stratified waveguide
(using a sound speed profile from CTD measurements at
the site) and a seabed with sound speed9 1650 m/s and den-
sity 1.69 g/cm3.

Figure 10 shows the eigenvalues of the CM for the dif-
ferent noise models for b¼ 0.25 (a) and b¼ 0.5 (b). The
eigenvalues of RISO are very close to that of RKI (assumed to
be true), and those of RCS1, while similar in general structure
to KI, show more deviation. The CS0 model least resembles
KI and shows a large deviation. The small differences
between the eigen-structure of RKI and those of RISO and
RCSI are further reduced in their respective SCMs as
observed by the similarity in the eigenvalue density
(obtained from 1000 Monte Carlo trials) of R̂

KI
to that of

R̂
ISO

[Figs. 10(c) and 10(d)]. This is related to the general
spreading of eigenvalues observed in SCMs. The similarity
in the density holds when the observations M + N and
decrease as M!1. In contrast, the eigenvalue density of
R̂

CSO
remains different from the rest in shape and the upper

edge of the density.
Intuitively, one would expect a density with a larger

value of P&1

1jR̂ð%ÞN&kþ1

ð1& aÞ such as that for R̂
CSO

to reject H0

less often, i.e., rejecting it only in cases where the loud
source eigenvalue is very large (compared to the other mod-
els). This is indeed the case, as seen from Fig. 11, where the
thresholds separating the loud source subspace and the dif-
fuse noise subspace are shown for the different models. As
expected from the similarities in the density, the thresholds
obtained using ISO (solid line) are nearly identical to that
from KI (dotted-dashed line), differing by at most one or
two. CS1 (dotted line) also follows the general pattern for
the KI and 3D thresholds. CS0 (dashed line), which showed
the most deviation, identifies only the very largest of the
loud source eigenvalues.

The effect of a shifted threshold arising from a poorly
chosen model is seen clearly in the beamformer output in Fig.
12 using the CS0 model (results for KI and CS1 are very simi-
lar to those of ISO shown earlier in Sec. IV and hence are not
shown here). Several ship tracks are identifiable in the “diffuse
noise” subspace that is obtained using the CS0 model [A and
B in Figs. 12(b) and 12(d); compare with Figs. 4(c) and 4(f)]
and the resulting noise cross-correlations are still contami-
nated by spurious arrivals from loud sources [Fig. 13(a)].

In summary, simple analytical noise models which do
not require any additional knowledge of the environment can
be used as a reasonable approximation to more sophisticated
models that incorporate waveguide physics and environmen-
tal information for the purposes of eigenvalue based statisti-
cal inference.

VI. CONCLUSIONS

In this paper, we have demonstrated an eigenvalue
based approach to separate ocean noise into directional and
diffuse components. By approximating the diffuse noise
recorded on a hydrophone array to be isotropic in nature, the
eigenvalues of the data sample covariance (SCM) are ana-
lyzed. Insights from RMT are then used to explain the nature
of the noise eigenvalues and a sequential hypothesis testing
is performed to identify, and isolate or attenuate the loud,
directional sources.

FIG. 12. (Color online) Conventional beamformer output (dB) at 25 and
50 Hz using (a) and (c) R̂s and (b) and (d) R̂n obtained by using the Cron–
Sherman model for surface noise in a fluid half-space due to omnidirectional
sources (CS0) for the hypothesis testing. The beamformer output in each
panel is normalized by the maximum in that panel.

FIG. 13. (Color online) Averaged cross-correlations between sensors 1 and
16 (spaced 240 m apart) obtained using (a) R̂ [same as Fig. 7(a)] and (b) R̂n

with the hypothesis test performed using the Cron–Sherman model for sur-
face noise in a fluid half-space due to omnidirectional sources (CS0).
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The resulting cross-correlations were shown to converge
quickly and remain stable with increasing averaging time.
The structure of the resulting cross-correlations are two-
sided (positive and negative time delays), which reduces the
ambiguity in the estimates of the travel time. The SNR of
the cross-correlations was also shown to increase as the
square root of time, which is consistent with theoretical
predictions.

Finally, the impact of the chosen noise model on the
identification of loud sources and cross-correlations were an-
alyzed and it was shown that simple analytical noise models
provide similar results as more sophisticated noise models
that mimic the environment.
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APPENDIX: INTERLACING OF EIGENVALUES

Let A be any N ) N Hermitian matrix, with eigenvalues
a1 $ a2 $ % % % $ aN and A0 be the N & r ) N & r Hermitian
matrix obtained by removing r rows and the corresponding r
columns, with eigenvalues a01 $ a02 $ % % % $ a0N&r. Then,
the eigenvalues of A and A0 interlace as

ai $ a0i $ aiþr; (A1)

for i 2 f1;…;N & rg. Proof of Eq. (A1) can be found in
Ref. 53 (Theorem 4.3.15).
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