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Asymptotic Eigenvalue Density of Noise
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Abstract—The asymptotic eigenvalues are derived for the true
noise covariance matrix (CM) and the noise sample covariance
matrix (SCM) for a line array with equidistant sensors in an
isotropic noise field. In this case, the CM in the frequency domain
is a symmetric Toeplitz sinc matrix which has at most two distinct
eigenvalues in the asymptotic limit of an infinite number of sen-
sors. Interestingly, for line arrays with interelement spacing less
than half a wavelength, the CM turns out to be rank deficient. The
asymptotic eigenvalue density of the SCM is derived using random
matrix theory (RMT) for all ratios of the interelement spacing to
the wavelength. When the CM has two distinct eigenvalues, the
eigenvalue density of the SCM separates into two distinct lobes
as the number of snapshots is increased. These lobes are centered
at the two distinct eigenvalues of the CM. The asymptotic results
agree well with analytic solutions and simulations for arrays with
a small number of sensors.

Index Terms—Eigenvalue density, isotropic noise, random ma-
trix theory, sample covariance matrix.

I. INTRODUCTION

O VER the past decade, it has been shown that cross-
correlations of a diffuse field between a pair of receivers

yields the Green’s function between them [1], [2]. Since
ambient noise is ubiquitous, the immense potential of this
technique to image remote areas of the ocean and the interior
of the earth using arrays of sensors and naturally occurring
noise has made it a rich area of current research in seismology
[3], [4] and ocean acoustics [5], [6], and structural engineering
[7] among others. The use of many receivers and the random
nature of the ambient noise field provides a good setting for
the application of random matrix theory (RMT) [8], [9]. Here,
we study the eigenvalues of noise covariance matrices from an
array of sensors.
In array processing problems, the noise field often is assumed

to be isotropic, i.e., it consists of random waves propagating to-
wards the array from all directions. The spatial coherence func-
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tion of the noise recorded on two sensors in a 3-D isotropic
noise field is [10]

(1)

where and is the ratio of the spacing
between the sensors to the wavelength under consideration
( , where is the frequency, is the spacing
between the sensors, and is the speed of wave propagation in
the medium). For a linear array of equidistant sensors, the
elements of the covariance matrix (CM) of the noise field
(normalized to unit power on each sensor) are given by

(2)

which is a symmetric Toeplitz matrix. Thus, the spatial
correlations are only dependent on and the separation .
With real noise data, the sample covariance matrix (SCM)

is estimated from i.i.d. observations of the array snapshot
vector (i.e., the Fourier coefficients of the observation vector at
a particular frequency) as

(3)

The eigenvalues of the SCM deviate from the true CM and the
density of these eigenvalues

(4)

where are the eigenvalues of , are typically studied using
random matrix theory (RMT), in the asymptotic limit as the
array dimension and the observation dimension both grow
large proportionately, i.e., , the ratio of the
number of array elements to the number of snapshots. RMT
also has applications in a wide variety of fields such as signal
detection [11], communication via antennas [12], information
theory and wireless networks [13], elastodynamics [14] and
wave propagation and scattering in random media [15]–[17].
Prior work involving RMT and eigenvalue densities relevant

to this article include [18], [19]. While [18] deals with
estimating the true eigenvalues of the CM from the observed
SCM for a few distinct sources, we focus on the asymptotic
eigenvalue density of the SCM for a noise only model (i.e.,
no sources). Knowledge of these densities could be used in
monitoring environments, i.e., a change in the density could
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be interpreted as a change in the environmental conditions.
The results also could be used in conjunction with [19] to
identify eigenvalues corresponding to strong interferers in the
environment (e.g., ships in ocean acoustics and earthquakes
in seismology). In Section III-B, it is shown that the SCM for
isotropic noise fields is rank deficient even when the number
of snapshots is more than the number of array elements (i.e.,

). This result is certainly important to consider in appli-
cations which require the inverse of the SCM, such as adaptive
beamforming.
The rest of the paper is organized as follows. A statistical

model for the SCM is chosen in Section I-A, followed by a recap
of known results for an uncorrelated noise SCM. Section I-C
discusses preliminary details that aid in the derivation of the
eigenvalues in Section II. In Section III, the asymptotic eigen-
value density of the SCM is derived using Stieltjes transforms
and studied in detail for all values of . The asymptotic results
are compared to analytical results for finite in Section IV and
using simulations for practical values of in Section V, fol-
lowed by conclusions in Section VI.

A. Statistical Model for the SCM

The noise snapshot vector is modeled as a stationary, zero-
mean, complex Gaussian stochastic process with covariance ,
i.e., . Realizations of the noise SCM then can
be generated from the true CM as [18]

(5)

where is an randommatrix belonging to the Gaussian
unitary ensemble (GUE)1 whose entries are zero-mean complex
Gaussian random variables drawn from , and is a
nonnegative definite square root of the true CM, .
Here we restrict our focus to , i.e., there are at least as

many snapshots as the number of array elements, because the
stationarity of the environment over reasonable intervals allows
for sufficient averaging (i.e., snapshot starved scenarios are not
considered).

B. Uncorrelated Noise at

At (half-wavelength spacing) the off-diagonal terms
in (2) are zero and . In other words, the noise is spatially
uncorrelated from sensor to sensor.
The eigenvalue density of the SCM in this case, in the limit

and , is given by the Marþenko—Pastur
(MP) density [20]

otherwise
(6)

where and are the upper and
lower limits of the “spreading” of the eigenvalues of the SCM
around the true eigenvalue which is 1.
1The distribution of the elements in a GUE random matrix is invariant to

transformations by a unitary matrix.

This holds true for multiples of the half wavelength spacing
i.e., and for all other values of , the noise is
correlated and the densities of the SCM will deviate from the
simple MP density.

C. Preliminaries

Symmetric sinc Toeplitz matrices (henceforth referred to as
sinc matrices) also arise in solutions to certain differential [21],
covariance matrix tapering [22], [23], etc. In general, the eigen-
values of an infinite dimensional Toeplitz matrix constructed
from absolutely summable sequences with an absolutely sum-
mable Fourier series (called Wiener class Toeplitz matrices) are
related to the Fourier series of the sequence [24], [25]. Although
the underlying sinc sequence in is not absolutely summable,
this result still holds, as shown in Section II.
The relation between the Fourier transform of the sinc func-

tion and the eigenvalues of the sinc matrix has been shown pre-
viously [26], [27]. The eigenvalues of the finite dimensional
sinc matrix also were studied in detail in the context of dis-
crete prolate spheroidal wave functions [21], [27] for and
for block Toeplitz sinc matrices in the context of asynchronous
CDMA systems [28]. In Section II, we consider the asymptotic
eigenvalues of the true CM for all , as the array
dimension .
A key to understanding the asymptotic behavior of the

eigenvalues is the behavior of the Fourier transform of the
sampled sinc function when it is oversampled or undersampled
(see Fig. 1). Consider the infinite sequence where

, i.e., a sampling interval of corresponding to the
interelement spacing of the line array. The Fourier transform
of the continuous sinc function is a rectangular function of
bandwidth (highest frequency ). In order to avoid aliasing
in the Fourier transform of the sampled sinc, we need ,
or . At the Nyquist sampling (and at multiples
of 1/2), the sinc is sampled at only its peak and zeros, and
corresponds to a unit sample. As a result, the Fourier transform
is 1 [see Fig. 1(c), (d)]. When , it is oversampled and
the Fourier transform is zero outside the bandwidth of the
sinc [see Fig. 1(a), (b)]. When , the sinc function is
undersampled and this introduces aliasing in the Fourier space
[see Fig. 1(e), (f)]. These behaviors of the Fourier transform
are reflected in the eigenvalues of the CM.

D. Notations

Throughout this paper, matrices are represented by bold, up-
percase symbols and vectors by bold, lowercase symbols. With
the exception of , quantities pertaining to the SCM are denoted
with a carat In order to compare infinite dimensional matrices,
a normalized rank is defined as

(7)

For convenience, is implicitly assumed even in
Section II-A, although the same can be done for odd
(asymptotic result remains unchanged).
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Fig. 1. Schematic showing the sinc function and its Fourier transform when
is (a, b) less than the Nyquist frequency (c, d) at the Nyquist frequency, i.e.,

and (e, f) greater than the Nyquist frequency.

II. ASYMPTOTIC EIGENVALUES OF THE NOISE CM

A. Derivation of the Eigenvalues

Let be an even sequence that is
absolutely square summable, with a Fourier transform

(8)

where is the spatial frequency.
Proposition 1 (Asymptotic Eigenvalues of the Sinc Matrix ):

Defining and as

(9)

and

(10)

where is the equivalent of a discrete
Fourier transform spatial frequency bin, then as
and are the eigenvalues and eigenvectors of .

Proof: If and are the eigenvalues and eigenvectors
of , then

(11)

must hold as . Writing as

...
...

. . .
...

(12)

the th element of the vector is

(13)

where is introduced as a shorthand
notation. Similarly, the th element of the vector is

(14)

Subtracting (13) from (14)

(15)

Using the triangle inequality and reverting to the original nota-
tion, (15) results in

(16)

Taking the norm of the entire vector, and combining the terms
in the first and last components, the terms in the second and
penultimate components and so forth, we get

(17)
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Since the functions (and ) are strictly convex on (0, ),
the RHS of (17) can be simplified as

(18)

From (17) and (18), independent of , such that
goes to zero independent of as . Hence

(19)

or and are the eigenvalues and eigenvectors of ,
respectively.
When , from (9) and (8), i.e., sam-

pled uniformly at points in . As illustrated in Fig. 1,
only takes on one or two distinct values. Thus, the eigen-

value density of can be written succinctly as

(20)

where are the two distinct eigenvalues and are their
multiplicity ratios defined as follows:
1) For (oversampling)

(21)

where and 0 elsewhere. Hence, the
two distinct values of are

(22)

and the multiplicity ratios are related to the bandwidth as

(23)

In this case, is rank deficient due to the zero eigenvalues.
2) For (Nyquist sampling) and multiples thereof,

and .
3) For (undersampling) and not a multiple of 1/2,
aliasing is introduced due to the folding of the eigenvalue
spectrum onto itself [see Fig. 2(b)]. As a result, both
and are nonzero when and ,
resulting in being full rank. then can be written as

(24)

with such that . The term accounts
for the folding of the spectrum. Similarly, the multiplicity
ratios are given by

(25)

Fig. 2. (a) Distinct eigenvalues (solid) and (dashed) of versus ,
the ratio of spacing to wavelength. The dotted line marks the half-
wavelength spacing. (b) Change in eigenvalues versus spatial frequency and .
The invisible space and aliased regions also are marked.

B. Physical Interpretation and Effects of Finite Arrays

For , the eigenvectors (10) of the nonzero eigenvalues
correspond to waves from specific angles impinging on the
array

(26)

Thus corresponds to a wave impinging at broadside
and corresponds to the array end-fire direction (see
Fig. 2). The zero eigenvalues for correspond to the
invisible space [29, Section 3.3.2], as it does not correspond to
any propagating wave [see Fig. 2(b)].
For finite the transition between and becomes more

gradual due to truncation effects similar to the effect observed
for finite Fourier transforms and this is discussed in Section V.
Approximations for the eigenvalues in the transition region for
finite are described in [21], scaled down by a factor of .

III. ASYMPTOTIC EIGENVALUE DENSITY OF THE NOISE SCM
USING RANDOM MATRIX THEORY

For the statistical assumptions made in (5), the eigenvalue
density of converges to a probability density function
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that is related to the true eigenvalue spectral density of
[30].
The behavior of the eigenvalues of the SCM in the asymptotic

limit, is characterized by the Stieltjes transform of its distribu-
tion [31]. In this section, we present the relevant results from
RMT in Section III-A, followed by the derivation for the densi-
ties for all in Sections III-B–III-D.

A. Background

For the density , its Stieltjes transform
is a complex valued function defined as

(27)

Equation (27) can be inverted explicitly to retrieve the density
as [13]

(28)

Since for all , is bounded in spectral norm and
the observations follow Gaussian statistics in (5), the Stieltjes
transform of the asymptotic eigenvalue density is a so-
lution to [30]

(29)

As , which is the Stieltjes transform of , the
eigenvalue density of in (20), and is given by

(30)

Considering (29) for and simplifying,
then is the root of a polynomial with real coefficients (whose
degree is 2 or 3, depending on the number of distinct nonzero
eigenvalues of ). Since the array element spacing, frequency of
interest and the ratio of number of array elements to the number
of snapshots are known, (29) can be solved in terms of (or
equivalently, and ) and .
Since has not been defined at , we define it as

follows, using the fact that the area under the density is 1:

(31)

Noting that covariance matrices are nonnegative definite (i.e.,
eigenvalues are nonnegative) and that the normalized ranks

and are equal in the asymptotic limit, it follows
that:

otherwise.
(32)

B. Density for Spatially Oversampled Case

In this section, the eigenvalue density is first derived from
the MP density using linear algebra and then again using
Stieltjes transforms in order to illustrate concepts essential in
Section III-D.
Using the eigendecomposition in (5) gives

(33)

where is also an random matrix with elements
(since is GUE). From (22), the eigenvalues of

and are withmultiplicity ratio and zero withmultiplicity
ratio . Due to the zero eigenvalue, only the upper portion
of contributes to the matrix multiplication in the asymptotic
limit or equivalently, the array elements to snapshot ratio de-
creases to . Hence the distribution of the nonzero eigen-
value of also follows the MP density in (6), albeit with in-
stead of .
So, the eigenvalue density of can be written as

otherwise.
(34)

Here, are modified forms of in (6), to account for and
the scaling by , given by

(35)

The first term in (34) accounts for the density due to the
spreading of the nonzero eigenvalue [see Fig. 3(a)] and the
second term in (34) is the density due to the zero eigenvalue.
The density at remains unchanged from that of the true
CM as in (32). Note that although the first term is similar in
form to the M-P density in (6), the spreading is different
and is given by (39).
Equation (34) also can be arrived at using the Stieltjes trans-

form in Section III-A. Using and from (22) and (23), (29)
simplifies to

(36)
To obtain the density from (28), (36) is solved for , keeping
only the solution where since , resulting in

(37)

where the discriminant is factored as

(38)

with

(39)
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Fig. 3. (a) Asymptotic eigenvalue density for and (dashed,
) and (solid, M-P density, ). Only the contribution from

the nonzero eigenvalue is shown for . The extent of spreading is marked
by symbols and the nonzero eigenvalue in each case is marked by an arrow.
(b) Change in the spreading of the densities in (a) for different .

which is identical to (35). Hence, the real roots of the discrim-
inant provide the bounds for the density. can then be
written as

otherwise
(40)

and from (28) and (32), (34) can be obtained.
Typically, in array processing applications, zero eigenvalues

are encountered only when the SCM is snapshot starved
. However, from (34), the SCM always will be degenerate for

.

C. Density for Spatially Nyquist Sampled Case
The density in this case and for all is given

by the M-P density as discussed in Section I-B. Equation (34)
is a generalized form of M-P and indeed (6) follows from (34)
for and . From Fig. 3(b), it is clear that the
spreading of the eigenvalues is wider in the oversampled case
(dashed) than the Nyquist sampled case (solid), even though the
noise power on each sensor is the same.

D. Density for Spatially Undersampled Case
Eigenvalue densities for SCMs, where the true CM has two

nonzero eigenvalues (with multiplicities), have been studied in
the context of detecting signals in uncorrelated noise [32]. Pro-
ceeding as in the previous section, (29) simplifies to

(41)

Fig. 4. Asymptotic eigenvalue density of the SCM for and
(dot-dashed), (dashed) and the value of where the two
regions combine (dotted). Each of these densities have finite intervals, marked
by symbols. The eigenvalues and of the true CM are shown by the
arrows.

The above cubic has one real root and the other two roots, if
complex, exist as conjugate pairs. Normalizing (41) to the form

, the desired solution for is given
by

Ț Ț
(42)

where and , with the discrim-
inant and . Finally, to
obtain the density from (28), is replaced with to in-
clude the positive contribution from the conjugate solution (see
Fig. 4).
As in the previous section the real roots of the discriminant
(considering it as a polynomial in ) give the bounds where

. The spreading of the eigenvalue density [Fig. 5(a)]
can be understood from a physical viewpoint as follows.
When the SCM is formed from a relatively smaller number

of snapshots, i.e., or , there is a larger uncer-
tainty as to what the true eigenvalues are (small sample size).
This results in the eigenvalues of the SCM spreading across the
two true eigenvalues and resulting in a single spread out region
[dashed line in Fig. 4 and Fig. 5(a)].
When the number of snapshots is much larger than the

number of array elements i.e., , the uncertainty in
the sample eigenvalues reduces and there are two intervals
where , localized around each of the true eigenvalues
[dot-dashed line in Fig. 4 and Fig. 5(a)]. Having two distinct
intervals is equivalent to the discriminant having four real roots.
The presence of two lobes in the eigenvalue density of the

SCM has implications in signal detection. For example, if one
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Fig. 5. (a) Spreading of the asymptotic eigenvalue density for , showing
the intervals of supports for (dashed, circles), (dot-dashed,
diamonds) and (horizontal solid line, squares) where the
density splits into two intervals. (b) Change in with for and
the solid square marks corresponding to in (b).

were unaware of this phenomenon, one might conclude erro-
neously that the lobe associated with the larger eigenvalue is
due to a signal, when in reality, it is only noise. Therefore, it is
of interest to determine at what value of the density splits in
two so as to take into account when processing data.
In Fig. 5(a), the curve splits into two distinct lobes at
. The where this occurs, is a double root and can be

obtained by setting the discriminant of the discriminant of the
cubic to zero (see Appendix), and is found as

(43)

The resulting curve for for is shown in Fig. 5(b).
At all values of below this curve, the density will have two
lobes.

IV. EIGENVALUE DENSITY OF THE SCM FOR FINITE

Matrices of the type , where is a GUE random ma-
trix, are known as Wishart matrices [33] and the joint proba-
bility densities of their eigenvalues have been known for a while
[34]–[37]. These densities are generally expressed as hyperge-
ometric functions of the matrices themselves and are compli-
cated and difficult to work with for both numerical and analyt-
ical analysis [37]. In recent work, the form of these expressions
were simplified by rederiving in terms of the product of two de-
terminants [38], [39].
The results from [39] are applied to the isotropic noise SCM

and the corresponding densities for different are given in (44)
and (45) in Appendix B. In Fig. 6 the analytical densities for

(solid line) and the asymptotic density (dashed line) are
shown for different values of . The simpler asymptotic solution

Fig. 6. Asymptotic eigenvalue density (dashed line) and the analytical density
for finite , with array elements, and (a–c) spacing to wavelength
ratios , 1/2, and 3/4, respectively, for (ratio of number of sensors to
number of snapshots) i.e. and (d) for , i.e., .

holds well for modest values of , although it does not capture
the effect of the transition eigenvalues [Fig. 6 in panel (a) around
0.5 and panel (d) around 0.8]. The number of local peaks in the
solid line is the same as the number of distinct eigenvalues of
the finite SCM, and correspond to the expectation of the means
of the individual eigenvalues.
Evaluation of (44) and (45) are computationally intensive

even for modest . The computational complexity increases
drastically with [roughly ], and the large exponents
of both large and small numbers in the expressions make it un-
suitable for numerical work without significant effort due to the
limitations of floating point arithmetic. This is not immediately
apparent from [39], as only the case is considered there.
In comparison, the asymptotic result captures most of the fea-
tures of the eigenvalue density, and can be easily calculated from
(34) or (42).

V. SIMULATIONS
A Monte Carlo simulation is performed to compare the the-

oretical asymptotic results with the empirical eigenvalue den-
sity obtained for a finite . In Fig. 7 and Fig. 8, realizations of
the SCM are obtained as in (5) and the empirical densities of
the eigenvalues are averaged over 1000 realizations in order to
obtain statistically stable distributions. The asymptotic solution
(solid lines) are obtained from (34) for , (6) for
and (28) with (42) for .
Fig. 7 shows the resulting empirical densities when

and different for [Fig. 7(a)–(c)] and
[Fig. 7(d)–(f)], respectively. In Fig. 7(a), nearly half the area is
due to the peak at [exactly half in the asymptotic limit, as

from (32)]. The asymptotic solutions describe
the empirical densities quite well, except for tails at large as
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Fig. 7. Asymptotic eigenvalue density (solid line) and the empirical eigenvalue
density (gray), with array elements, (ratio of number of
sensors to number of snapshots) and spacing to wavelength ratios of (a) 1/4.
(b) 1/2. (c) 3/4. (d), (e), (f) Same as in (a, b, c) except with . The dotted
lines show the locations of the distinct nonzero true eigenvalues. In (a) and (d),
the axis is only shown between 0–0.5 so as to display the density due to the
nonzero eigenvalue prominently.

opposed to a sharp edge in the asymptotic case, which become
more prominent as decreases [e.g., Fig. 7(b) vs Fig. 7(e)].
Another clear consequence of finite , is the contribu-

tion from transition eigenvalues, seen between 0.1–0.8 in
Fig. 7(a), (d) for . While their effect is not seen in
Fig. 7(c), (f) at for , it becomes apparent when
the number of snapshots is increased to in Fig. 8(c), (f).
Here, the densities localize around the two asymptotic eigen-
values ( and ) and the contributions from
the transition eigenvalues [centered around
in Fig. 8(a), (d), where is from (25)] fill up the region in
between them. Even at , when the density
splits in the asymptotic case, the empirical density does not
split entirely because of the transition eigenvalues, resulting in
a nonzero contribution in Fig. 8(b), (e).
Both of the above effects (tails and contributions from tran-

sition eigenvalues) are due to the finite dimension of the SCM
and hence, they are not present in the asymptotic result. These
effects become more pronounced as decreases, because the
transition eigenvalues form a larger percentage of the total
number of eigenvalues [6/20 in Fig. 8(d) vs. 6/100 in Fig. 8(a)].
The difference between the largest eigenvalue of the CM in

Fig. 8. Effect of transition eigenvalues on the empirical eigenvalue density
(gray) for and (a)–(c) and (d)–(f) . (a) and (d) Eigen-
values of the CM. The axis is a normalized index where .
Only eigenvalues deviating from either or by 0.1% are marked. (b) and
(e) Empirical density of the SCM when the density splits.
(c) and (f) Same as (b) and (e) for . The asymptotic density is shown by
the solid line.

Fig. 8(a), (d) and the corresponding asymptotic value in (24)
is on the order of for and for ,
indicating that the analytic solution is quite accurate.

VI. CONCLUSION
In this paper, the asymptotic eigenvalue densities have been

derived for noise covariance matrices (CM) for line arrays with
uniformly spaced elements in an isotropic noise field. The CM
has at most two distinct eigenvalues for all values of , the ratio
of interelement spacing to wavelength. From independent ob-
servations of the noise field, a sample noise covariance matrix
(SCM) is formed using more snapshots than the number of array
elements and its eigenvalues are analyzed using random matrix
theory (RMT).
When the sensors are spaced less than half a wavelength

apart, the SCM is always singular, no matter how many snap-
shots are used. For spacings of more than half a wavelength
apart, the SCM is full rank if sufficient snapshots are used, but
the eigenvalue density can split into two distinct densities.
Analytical results for finite Wishart matrices and simulations

with finite SCMs confirm the asymptotic results derived using
RMT. The results hold well even for arrays with as low as 20
sensors.
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APPENDIX A
OUTLINE OF APPROACH TO SOLVE FOR

The derivation of (43) is tedious and the intermediate equa-
tions are lengthy and hence, omitted. An outline of the approach
is provided here with hints.
1) Starting with (41), calculate the discriminant of the poly-
nomial in . The result is a polynomial of degree 8 in that
can be factored into a product of and a quartic in .

2) Noting that , only the quartic needs to be consid-
ered. Calculating the discriminant of the quartic results in
a polynomial of degree 23 in , which can be factored into
a product of and a polynomial of degree 9 in .

3) Again, discarding the term, the remaining degree 9
polynomial can be simplified into a cube of a cubic in .
Finally, is the real root of

which upon simplifying, gives (43).

APPENDIX B
EIGENVALUE DENSITY OF THE SCM FOR FINITE

Let and denote the isotropic noise CM and SCM
when is finite and be the eigenvalues of . The
following expressions are adapted from [39], using the notation
followed in this text where necessary.

A. Density When

Using (38) in [39], the density for finite when
(i.e., is the identity matrix) is

(44)

where

B. Density for all Other

Using (41) in [39], the density for all other for finite is

(45)

where
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