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A generalized likelihood ratio test is developed for testing acoustic environmental models with an
application to parameter inversion using an acoustic propagation code. The signal-to-noise ratio in
acoustic measurements proves to limit the details on geoacoustic environments that can be
determined by matched field processing methods. A hypothesis test serves in Monte Carlo
simulations as a tool to determine minimal signal levels for the bottom parameter inversion. The
term ‘‘hierarchy of models’’ is used for denoting a sequence of models in which each particular
model contains all previous ones. For determining the model order and its parameters, a combined
parameter estimation and multiple sequential test is proposed. Given the observed data, how many
parameters should be included in the model? The last question is important for the order selection
in hierarchies of models with an increasing number of parameters. Multiple sequential hypotheses
testing provides a procedure to determine the model order in a statistically justified way. Monte
Carlo simulations show the behavior of the test for selecting a model order as a function of the
signal-to-noise~SNR! ratio. The test is applied to broadband data measured using a vertical array
near the island of Elba in the Mediterranean Sea and compared with Akaike’s Information Criterion.
© 1999 Acoustical Society of America.@S0001-4966~99!03502-X#
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INTRODUCTION

Previous literature on geoacoustic inversion focused
marily on the parameter estimation problem.1–4 The struc-
ture of the acoustic propagation model~i.e., its parametriza-
tion! was assumed to be knowna priori. Which parameters
are relevant and should be included into the model asun-
knownsis usually decided on intuitive physical grounds
independently of the observed experimental data. Howe
both background noise and fluctuations in the quantities
verely limit the observable detailsof an acoustic environ-
ment.

Various approaches to structural model identification
available in the signal processing literature.5–7 Ljung7 gives a
good discussion of the subject. Most problems considere
far assume that the true model structure~although unknown
in detail! is embedded in a hierarchy. This hierarchy is co
structed from model structures of increasing complex
Good examples of such model structures are the fam
autoregressive moving average~ARMA ! models.

There seems no general optimum way tobuild such a
hierarchy for geoacoustic environmental models, since

a!Present address: Siemens AG, A-1101 Vienna, Austria. Electronic m
christoph.mecklenbraeuker@siemens.at

b!Electronic mail: gerstoft@mpl.ucsd.edu
c!Electronic mail:$boehme,pjc%@sth.ruhr-uni-bochum.de
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acoustic parameters~e.g., sound speed and attenuation p
files! do not have a naturalorder: Obviously, there is no
specific first, second, third,..., parameter. As a conseque
building such a hierarchy is subjective and the acoustic
stays responsible for the design according to specific ne
However, indications of the ‘‘relative importance’’ of indi
vidual parameters can be numerically obtained.

In this paper we deal with statistical hypothesis tests
acoustic environments based on observed data and a re
on a vertical array of sensors. It is an extension of the w
in Refs. 8 and 9. The replica is generated using environm
tal model parameters~sound speed profile, attenuations, a
densities! and an acoustic propagation model. The array o
put is modeled as a superposition of a stationary noise
cess and the signal of interest. Both the parame
estimation10 and testing are performed by analysis of data
the frequency domain using a finite Fourier transform.

The purpose of this hypothesis testing is to verify es
mated parameters of environmental models that were
tained previously by the inversion of observed data.11 The
inversion was based on data from a calibrated vertical a
and carried out using information at multiple frequenc
from a single broadband source. A range-dependent a
batic normal mode code12 was used as the forward mode
The global optimization was implemented by a direct
Monte Carlo search based on genetic algorithms~GA! and

il:
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the Bartlett objective function.10 The inversion included the
estimation of all important forward model parameters, wh
can be divided into geometric, geoacoustic, and oc
sound-speed variables. From analyzing thea posteriori pa-
rameter distributions of the GA, it is known that not all p
rameters can be equally well estimated.10

In order not to bias the test, a different dataset is used
testing and estimation, but the datasets are based on the
acquisition. The Fourier-transformed data is split in two su
sets for estimation and testing in a comb-like fashion. In t
way, the whole frequency range is available to both stage
processing—adjacent frequency bins are merely spaced
ther apart.

Global search necessitates a huge number of forw
solutions to be computed, vastly limiting the number of fr
quencies used in the estimation procedure. The test
verify an obtained model against a set of alternatives by
corporating data from more frequencies than were use
estimate the associated environmental parameters. A s
alternative environmental models is readily available fro
the inversion itself and given by the final populations of t
GA.

The definition of objective functions for environment
parameter estimation, and the choice of test statistics in
pothesis testing using multifrequency data is still und
discussion.13,14Exploiting the asymptotic Gaussianity of da
in the frequency domain allows defining approximate like
hood functions, which can be maximized for the parame
estimation, and can be used for hypothesis tests base
likelihood ratios.13,14 The proposed likelihood ratio tes
~LRT! is based on multifrequency data and exploits
asymptotic Gaussianity of short-time Fourier-transform
measurement data.

This test is related to a solution to the detection probl
in passive sonar, seismics, and radar applications usin
multiple sequentialF test that is based on a frequency
domain regression.15–17 The estimated signal-to-noise rat
~SNR! for the observed data in the frequency domain tu
out to be the basic quantity from which the LRT is co
structed. This is very appealing from a physical point
view. In this paper, we define the SNR in the frequen
domain via the quotient of eigenvalues of the spectral den
matrix ~SDM! of the sensor outputs. In Sec. II D we give
more detailed discussion of these quotients in signal spa

The LRT compares the geometric means over the
quency of the estimated noise spectral levels under the
pothesis and alternatives. In the case of only one sin
source, this is related to the sum of Bartlett powers in dB

Monte Carlo simulations are performed for a numeri
analysis of the proposed algorithm. The behavior of the co
bined inversion and hypotheses testing is computed over
SNR.

Finally, the test is applied to broadband data measu
using a vertical array near the island of Elba in the Medit
ranean Sea.11 It is assumed that optimum parameter es
mates for a given environmental model have already b
found by using a global optimization approach.10
1739 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
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I. PROPAGATION AND DATA MODEL

We consider a single wide-band source and the us
linear model in frequency domain for the output of an arr
of N sensors with spatially uncorrelated additive noise,

x~v!5d~v;m!s~v!1u~v!. ~1!

In this paper, vectors are denoted by lowercase boldfa
matrices in uppercase boldface, and* is the Hermitian trans-
pose operation. Letx be the Fourier transform of the outpu
of the vertical sensor array. Correspondingly the source
nal is denoted bys and the noise byu. The transfer function
d(v;m)PCN is calculated by theSNAP forward model code,
which calculates the Green’s functionG for the ocean acous
tic frequency–domain wave equation.12,18

The source/receivers geometry and geoacoustic envi
ment for the baseline model are shown in Fig. 1 for a ran
independent environment and in Fig. 2 for a range depend
environment. The source signals and the transfer function
d~v;m! are assumed to be deterministic. The additive no
in time domain is stochastic, stationary, and zero mean.

The datax~v! at the receiving array are asymptotical
complex normal distributed with meand(v;m)s(v) and co-
varianceCu(v)5n(v)I , wheren(v).0 denotes the powe
spectral density of the noise. The vector-valued trans
function d~v;m! depends nonlinearly on the environmen
parameters, which are summarized in a vectorm. In this
paper, the dimension ofm may vary with the structure of the
model. Thetrue modelcorresponding to the data is chara
terized by ther-dimensional parameter vectorm•.

We use the word ‘‘model’’ for the geoacoustic param
eters of an ocean acoustic wave guide with given struct
Let us denote the set of all models byM. The set of all
replica vectorsd~v;m! that can be calculated bySNAP for all
models is denoted byD. The models are indexed by th
parameter vectorm, which is an element of the associate
parameter setM,Rr . We assumem•PM. The mapping
between the parameter setM and the replicasD is termed a
model structure. In Sec. III the setsM andD will be given
a hierarchical buildup.

FIG. 1. Range-independent baseline model for acoustic propagation in
shallow ocean north of Elba island; see Ref. 19 for further details.
1739Mecklenbräuker et al.: Hypothesis testing
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II. LIKELIHOOD RATIO TEST

Considering the model~1! at a discrete set of frequen
ciesv j ( j 51,...,J), it can be shown that the log-likelihoo
function is given by

L~m!52
1

J (
j 51

J

log„12B~v j ;m!…, ~2a!

B~v;m!5
d* ~v;m!Ĉx~v!d~v;m!

ud~v;m!u2 tr Ĉx~v!
, ~2b!

whereĈx(v) denotes a nonparametric estimate of the sp
tral density matrix~SDM! of the data.20 We use the sample
mean

Ĉx~v!5
1

KL (
k50

K21

(
l 50

L21

xk,l~v!xk,l* ~v! ~3!

of KL Fourier-transformed data snapshotsxk,l(v). The ob-
served datax(t) in time domaint50,1,...,KT21 is divided
into K snapshots of durationT each. These are Fourier tran
formed usingL orthogonal windowsn t

( l ) depending on snap
shot durationT and selected analysis bandwidthW. Here, we
used discrete prolate spheroidal sequences as
tapers.21–23,14 The bandwidth of resolution 0,W, 1

2 is se-
lected such that~3! is nonsingular. The numberL of data
tapers in~3! is essentially equal to the time–bandwidth pro
uct: L5 b2WT-1c, where bxc is the largest integer smalle
than or equal tox. The Fourier-transformed snapshots a
calculated fork50,...,K21 andl 50,...,L21 by

xk,l~v!5 (
l 50

T21

n t
~ l !x~ t1kT!e2 j vt.

The maximum-likelihood~ML ! estimate for the paramete
vectorm of M is defined as

m̂5arg max
mPM

L~m!. ~4!

Note, that the log-likelihood function can be easily inte
preted as theaveraging of the Bartlett power over frequen
bins in dB. This approach of averaging in log units was e
pirically found to have optimal side lobe suppression.24

After estimates have been obtained in this way, the
sulting models can be validated using hypotheses tests.
start with an introductory example for which the likelihoo
ratio test is known to be optimal in Sec. II A. However, th
simple setting does not apply here. Proceeding to Sec.
we formulate the test problem that is appropriate for vali
tion. It turns out that a straightforward implementation of t
LRT is not feasible and a possible solution is presented
Sec. II C.

A. Simple hypothesis and alternative

We test which one of two modelsM05$m0%, M1

5$m1% has generated the measurement datax~v!. In this test
problem, the hypothesis and alternative are both of
simple type, i.e., they do not contain unknown paramete
The Neyman–Pearson Lemma applies, dictating that
most powerful test is based on the likelihood ratio.7 The
1740 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
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hypothesisH0 states ‘‘M0 is true’’ and the alternativeH1

reads ‘‘M1 is true.’’ The LRT of H0 againstH1 constructs
the test statisticT5L(m0)2L(m1) and compares its value
with a critical valueta , which depends on the chosen levela
of the test.

B. Validating a specified model against a set of
alternatives

A more interesting setting is to validate a particular s
lected model against a set of competing models with
same parametrization, deciding whetherm0PM05$m•% or
m0PM15M\M0 . The modelM0 should be compared
with all competing models inside the alternativeM1 , which
contains all models except form0 . The test uses the quantit
t(x)5L(m0)2maxm1PM1

L(m1). We are dealing with a
compositealternative, and, therefore, optimality of the LR
cannot be guaranteed. In terms of the Bartlett Power, the
statistic is written as

t~x!5 min
m1PM1

1

J (
j 51

J

log
12B~v j ;m1!

12B~v j ;m0!
. ~5!

The LRT now compares this quantity with a predetermin
threshold valueta that depends on the levela of the test and
the distribution of the test statistic~5!.

In general, there exists a setKa,M1 of parameter vec-
tors for whichH0 is rejected. Thisa-critical region can be
viewed as a confidence region form: parameter vectorsm
PKa cannot be rejected againstH0 . By samplingM1 and
repeating the test for each individualmPM1 , numerical
approximations toKa are obtained.

Unfortunately, this direct approach is not feasible, due
the incomplete knowledge about the distribution of the t
statistic. The fraction inside~5! is the ratio of two
x2-distributed random variables, but they are not indep
dent. This problem arises because we are testing a partic
m0PRr against all alternatives with the same parametri
tion: they are of the same orderr.

C. Sequential LRT using three steps

The difficulties described in the previous section disa
pear when we test asmaller against abigger model.7 They
are avoided by testing the models in a three step seq
tial procedure. We will use the following hypothesesHi

and alternativesAi ( i 51,2,3):
H1 : no signal in the data,A1 : d0PD0 or d1PD1

generated the data,
H2 : replica vectord0PD0 generated the data,
A2 : the data cannot be adequately modeled byd0 ,
H3 : replica vectord1PD1 generated the data,
A3 : the data cannot be adequately modeled byd1 .
We have omitted the dependency onv in notation for all

quantities,d05d(v;m0), andd15d(v;m1).
Some comment is necessary onA1 : physically, we

know that it is not possible for twodiffering geoacoustic
environments to be correct at the same time. So inA1 , the
logical ‘‘or’’ can be substituted by an ‘‘exclusive or’’ opera
1740Mecklenbräuker et al.: Hypothesis testing
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tion. For the algorithm, however, it is more suitable to imp
ment the ‘‘inclusive or’’ which is easier to formulate an
makes no logical difference in this case.

In mathematical terms, the aboveHi , Ai are formulated
as

H1: x5u,

A1 : x5~d0 d1!S s0

s1
D1u, with us0u21us1u2Þ0;

H2: x5d0s01u, with arbitrary s0Þ0

A2 : x5~d0 d1!S s0

s1
D1u, with s1Þ0 and s0Þ0;

H3: x5d1s11u, with arbitrary s1Þ0

A3 : x5~d0 d1!S s0

s1
D1u, with s0Þ0 and s1Þ0.

Step 1:First, we testH1 against the alternativeA1 , and
if the hypothesis is rejected, we conclude thatthe data con-
tain a signal, and at least one of the models will be corre;
we proceed with Step 2. If the hypothesis is accepted the
stops at this point. In this case, we have an identifiabi
problem due to lack of signal power.

Step 2:We test the hypothesisH2 with arbitrarys0Þ0
against the alternativeA2 . If the hypothesis is accepted, w
conclude thatH2 is true and the test stops here. If, on th
other hand,H2 is rejected, we go to Step 3.

Step 3:This is a cross-check: we test the hypothesisH3

with arbitrarys1Þ0 against the alternativeA3 .
In each step, the test statisticst1(x), t2(x), and t3(x)

can be put into the form

t i~x!52
1

J (
j 51

J

logS 11
n1

n2
Vi~v j ! D , ~6!

with

Vi~v!5
n2

n1

tr@~P3~v!2Pi 21~v!…Ĉx~v!#

tr@~ I2P3~v!!Ĉx~v!#
, ~7!

FIG. 2. Range-dependent geoacoustic baseline model with differing pro
ties at the source and receiver locations.
1741 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
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where the projection matricesPi 21(v) ( i 51,2,3) are asso-
ciated with the signal subspaces underHi in each step of the
test; see Sec. 1 of the Appendix.

P0~v!50,

P1~v!5d0d0* /ud0u2,
~8!

P2~v!5d1d1* /ud1u2,

P3~v!5QQ* , where Q5orth~d0 ,d1!.

The integersn1 , n2PN are explained in Sec. II E. The pro
jection matrixP3 is associated with the alternatives: it h
rank two. The signal space under the alternatives is span
by bothd0 andd1 . If the geoacoustic model is identifiable
then it is asserted that the vectorsd0 and d1 are linearly
independent. MatrixQ contains two columns being a unitar
basis of the two-dimensional space spanned byd0 andd1 .

This test strategy ensures that the difference of the p
jection matrices in the denominator of~6! is a projection
operator that is orthogonal toI2P3 . This makesVi(v) an
Fn1 ,n2

-distributed random variable.

D. Interpretation in signal space

The test statistics can be easily interpreted in the sig
noise space analogy. The following discussion is forStep 2
of the test, but the reasoning for the third step is complet
equivalent. Figure 3 describes graphically what eigenval
of the spectral densityCx are grouped together in the nom
nator and denominator of theF variable~7! if the hypothesis
H2 is true. In this discussion, we replaceĈx(v j ) in ~6! by its
expectationCx(v j ) to make the analogy more clear. Th
frequency dependence of the quantities will be suppresse
notation for convenience.

In the equation described in Fig. 3,U denotes the unitary
eigenvector matrix ofCx . The dominant eigenvalue~EV!
corresponding to the signal eigenvectord0 is denoted byl1 .
The noise EVs are given byl2 ,...,lN . The projection ma-
trix P3 projects onto a two-dimensional subspace ofCN. The
dominant eigenvector ofCx and one of the noise eigenvec
tors are a basis of this subspace. By resorting the eigen
tors in U, we can always achieve thatP3 is associated with
the first two eigenvectors—and thus withl1 ,l2 in the fol-
lowing sense:

tr@P3Cx#5l11l25ud0u2usu212n.

r-

FIG. 3. An interpretation of the test statistic and spectral density ma
eigenvalues.
1741Mecklenbräuker et al.: Hypothesis testing
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On the other hand,P1 is associated with the dominant sign
EV l1 alone,

tr@P1Cx#5l15ud0u2usu21n.

And the projection matrix of the difference projectorP3

2P1 is associated with the single noise EVl2 only. The
nominator in~6! is associated with all the other noise EVs

tr@~ I2P3!Cx#5l31¯1lN5~N22!n.

Thus, we see that the signal power is canceled out of thF
variable~7! if the hypothesisH1 is true:

n1

n2
V2'

tr@~P32P1!Cx#

tr@~ I2P3!Cx#
5

1

N22
.

In this way, the test statistic becomes a pivot, i.e., indep
dent of the unknown parameters.25 Somewhat loosely stated
the test statistic compares one selected noise EV to the a
metic mean of all the other noise EV. If this ratio excee
some predetermined threshold, we conclude that the sele
replica vectord0 is not the only dominant eigenvector ofCx ,
and the hypothesisH2 is rejected. If the alternativeA2 is
true,V2 depends onusu2/n.

In the nonasymptotic case,Vi in ~7! can be interpreted a
the increase of the signal-to-noise ratio, if the model is
larged by the alternativeAi .

E. Degrees of freedom

The degrees of freedom~DOF! n1 ,n2 of the
Fn1 ,n2

-distributed random variable are given by13

in Step 1: n154KL, n25KL~2N24!,

in Steps 2 and 3: n152KL, n25KL~2N24!,

if m1 is not estimated from the same data where the t
statistic is based upon. The factorKL stems from Eq.~3!.
This was ensured by using a different and larger set of
quency binsv j for the test than for the inversion.

The ration1 /n251/(N22) is equal to the ratio of the
signal- and noise-subspace dimensions. Asymptotically,
for a large observation time,Vi(v j ) andVi(vk) are indepen-
dent if v jÞvk .

We must be more careful in the case whenm1 is itself
dependent on the data. This is the case ifm1 is estimated
from the measurement data. In this case, the DOF are g
by the more complicated formulas:

in Step 1, n15KL~r 11r 214!,

n25KL~2N2„r 11r 214!…;

in Steps 2 and 3, n15KL~r 11r 212!,

n25KL„2N2~r 11r 214!…,

wherer 1 ,r 2 denote the number of environmental paramet
~i.e., the dimension ofm1 ,m2!.13 This can be circumvented
easily by splitting the data into two disjoint sets for the pu
pose of estimation and test. We can either straightforwa
split in the time domain or exploit asymptotic independen
in the frequency domain for adjacent frequency bins. In
first case, weak effects of nonstationarity in the backgrou
1742 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
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noise could lead to trouble. In the latter case, we recomm
an interleaved scheme: a comb-like separation of estim
and test frequencies. If such an approach is feasible then
DOF do not depend onr 1 or r 2 .

Alternatively, the DOF might be obtained from the Fi
cher Information Matrix of the unknown parametersm. The
‘‘nonlinear DOF’’ r p are strongly related to the numeric
rank of the Fischer Information Matrix.26

F. Calculation of thresholds

The test statistics from~6! are easily interpreted as th
arithmetic mean of a sample of independent identically d
tributed random variables Tj5 log„11(n1 /n2)Vi(v j )…
whose probability density and cumulants can be evaluate
closed form~see Sec. 2 of the Appendix!, e.g., for mean and
variance, we obtain

mT5CS n11n2

2 D2CS n2

2 D' logS 11
n1

n2
D ,

~9!

sT
25C8S n2

2 D2C8S n11n2

2 D'
2n1

n2~n11n2!
.

Here, C(x)5d logG(x)/dx and C8(x)5dC(x)/dx are
polygamma functions.27 The a-critical value ta can be de-
rived from a normal approximation for the distributionFT(t)
of ~6! for a large number of frequenciesJ using the inverse
error function27

ta5mT1
sT&

AJ
erf21~2a21!. ~10!

A more accurate value forta can be obtained via the
Cornish–Fisher expansion of the inverse cumulative dis
bution function of the test statistic28 or bootstrapping.25 Ex-
perimentally, it was shown that the performance of the t
does not improve using these more elaborate approxi
tions.

III. MODEL STRUCTURE IDENTIFICATION

The replica-vector setD is now given an additional hi-
erarchical buildup. We define an increasing seque
D1 ,D2 ,..., of subsets, such that

FIG. 4. The box-like structure for geoacoustic modelsM1 ,...,M6 used for
the inversion of real data. The meaning of the parameter name abbrevia
is given in Table I.
1742Mecklenbräuker et al.: Hypothesis testing
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D1,D2,¯,Dp,¯,D,CN.

The model subsetsDp are associated with parameter se
Mp because each replica vectord(•;mp)PDp is indexed by
a parameter vectormpPMp,Rr p. The dimensionr pPN of
the parameter setMp increases monotonically withp.

For two arbitrary models, we say ‘‘model structureMp

is included inMq’’ iff Dp,Dq . We writeMpaMq . We
can think of thesmallermodel structureMp being generated
fromMq by freezingsome elements ofm2 to constant nomi-
nal values of abaseline model.

As a specific example, consider Fig. 4. The ‘‘Russia
doll’’-like figure gives an intuitive visualization of the prob
lem. The meaning of the parameter name abbreviation
given in Table I. ModelM1 only includes the two source
coordinates~sr,sd! as unknown parameters; all other physic
quantities are given from the reference model, Fig. 1. T
next model additionally includes the tilt of the receivin
~nominally vertical! array ~tilt is defined as horizontal dis
placement between the bottom and top hydrophone in
array!. ModelM3 is enlarged to include two parameters f
bathymetry: the ocean depth at the source and receiver l
tion.

The order of the parametersmp5(m1 ,...,mp)PMp in
thepth model structureMp seems to be completely arbitrar
at first. However, the acoustician has an intuitive idea ab

TABLE I. The models used for the inversion~Ref. 9! of real data. BP is
Bartlett power in dB from~13!; the maximum is zero.r is the number of
parameters over which optimization was performed. The notation~2! de-
notes that a value of this parameter was estimated for both the source
receiver range. Inversion parameters: source range, source depth, ba
etry, array tilt, velocity profile, receiver depth of deepest hydrophone
array, bulk velocity in sediment, sediment attenuation.

Model r BP Inversion parametersm

M1 2 20.41 sr, sd
M2 4 20.28 sr, sd, bathy.~2!
M3 5 20.25 sr, sd, bathy.~2!, tilt
M4 9 20.23 sr, sd, bathy.~2!, tilt, c0,5,20,50

M5 12 20.23 sr, sd, bathy.~2!, tilt, c0,5,20,50, rd, cb , sed. att.
M6 18 20.22 sr, sd, bathy.~2!, tilt, rd, c0,5,20,50~2!,

sed. att.~2!, cb ~2!
1743 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
-

is

l
e

e

a-

ut

the ‘‘relative importance’’ of the individual parameters. I
this way, the question arises as to how to design the hie
chy.

The rigorous approach consists in fixing one parame
of the highest-order modelMP to the nominal value of the
baseline model. After this has been done for all parameter
turn, the very set ofP21 parameters is selected, which giv
the least degradation of the maximum-likelihood value. This
procedure is repeated forMP21 ,MP22 ,..., and so on.This
approach is computationally prohibitive for a practical nu
bers of inversion parameters.

The experienced acoustician can get help from t
sources: first, he can calculate the Fischer information ma
for the parameters at theirnominal values: this gives an in-
dication of variances in the single parameter estimates
their mutual correlations. This could be called thelocal ap-
proach and should be repeated for several model vec
Finally, the a posteriori distributions of Genetic
Algorithms10,14 also indicate spreading of the estimates: t
is a practicalglobal approach for hierarchy construction.

FIG. 5. The standardized test statistict2,m for each stage in the mode
hierarchy as applied to the real data. The horizontal indexm denotes the test
of hypothesisH2,m5Mp21 against the alternativeA2,m5Mp21 orMp . For
details see Table I. The dashed horizontal line shows the threshold valuta

for a false-alarm rate ofa55%.

nd
ym-
n

as
given in
TABLE II. Models used for simulation~Ref. 28!. r is the number of parameters over which optimization w
performed. Parameters: source range, source depth, bathymetry, array tilt. Unspecified parameters are
Fig. 1. ModelM generated the simulated datasets.

Model r Inversion parametersm Search ranges Fixed values

M1 2 sr, sd 5500 m,sr,5700 m tilt50 m
75 m,sd,85 m bathy5127 m

M2 3 sr, sd, tilt 5500 m,sr,5700 m bathy5127 m
75 m,sd,85 m
23 m,tilt,3 m

M3 4 sr, sd, tilt, bathy 5500 m,sr,5700 m ¯

23 m,tilt,3 m
125 m,bathy,133 m

M ¯ ¯ ¯ sr55600 m, sd580 m
tilt50.3 m, bathy5130.5 m
1743Mecklenbräuker et al.: Hypothesis testing
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A. Identification algorithm using LRT

We can now formulate Algorithm 1 for the structu
identification problem. It returns the estimated model ordep̂
and the corresponding parameterm̂p . We need hypothese
and alternatives analogous to Sec. II B for each model o
m: they are denoted byHi ,m , Ai ,m , respectively. In particu-
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lar, d0←d(•;m̂p) andd1←d(•;m̂p11) are substituted in Eq
~8!. The algorithm starts with Step 1 forM1 : this decides
whether there is a significant input signal. This step is o
needed once, whereas Steps 2 and 3 are repeated fo
model orders.

Algorithm 1: model identification using a LRT.
m̂1ªarg max
m1PM1

L(m1)

if H1,1 cannot be rejected againstA1,1 then
stop ‘‘ identifiability problem: we don’t know what p is’’

main loop:
for pª1,2,...,do

m̂p11ªarg max
mp11PMp11

L(mp11)

if H2,p cannot be rejected againstA2,p then
p̂ªp, stop ‘‘ this is a conservative selection’’
else

if H3,p cannot be rejected againstA3,p then
p̂ªp11, stop

else

p̂>p11, continue with the loop over p
end of for loop
output p̂,m̂p
The
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B. Akaike’s information criterion

Alternatively, we can adopt Akaike’s Information Crite
rion ~AIC! approach to the order selection problem f
acoustic models; cf. Ref. 7. In the present application,
AIC selects the model orderm̂PN, which minimizes the
criterion:

AIC@m#52L~m̂p!1
r p

N
. ~11!

From this simple form of AIC@m#, we can directly calculate
the required increase in likelihood to equalize the cost
additional parameters. The AIC prefersMp11 overMp iff

L~m̂p11!2L~m̂p!.
1

N
~r p112r p!. ~12!

IV. EXAMPLES

The examples are all based on the environment from
North Elba sea trial;19 see Figs. 1 and 2. In Sec. IV A th
examples are based on synthetic data and in Secs. IV B
IV C on real data.

The experimental data were collected near the Island
Elba in the Mediterranean Sea during a sea trial in Octo
1993.11,4 A vertical array ofN548 sensors approximatel
spanning the whole water column of 128-m ocean depth
used. The signal source was located at a range of 5600 m
at depth 80 m below the surface. The transmitted signal
centered at 170 Hz and modulated with a pseudorand
noise sequence giving a total bandwidth of approximately
Hz. A record of one minute (63104 samples at a samplin
frequency of 1 kHz! of time samples was used. The SD
Ĉx(v) was estimated fromK515 nonoverlapping windowed
e

f

e

nd

of
er

s
nd

as
m
0

Fourier-transformed snapshots of 4-s duration each.
4000 samples per snapshot were zero padded to enab
FFT of length 212. L54 data windows with bandwidth pa
rameterW56.2531024 were used in~3!, makingKL560.
Adjacent frequency bins are separated byD f
5 125

512 Hz'0.244 Hz.

A. Simulation of sequential test

First the algorithm is used to determine the corre
model order as a function of the SNR. Simulated datasets
generated as follows: TheSNAP code calculates the replic
vector for the range-independent environmentM given in
Table II. Uncorrelated Gaussian noise is added to the rep
for obtaining a desired SNR. For each SNR, we conduct
independent random experiments: each experiment is ca
out with a new choice of signal and corrupted by noise tha
independent of the other realizations. The data were ge
ated by a selected model in the largest model structure c
sidered and corrupted by additive noise at a prescribed S
In each experiment, we calculated the ML estimates and
plied the proposed algorithm for the first model structures
global optimization of~2a! using a genetic algorithm, analo
gous to Ref. 10. For each SNR, this is repeated 50 time
order to make a statistical interpretation of the result. F
each model order and SNR, 22 500 forward models w
calculated during optimization.

The nonoptimized parameters in each modelMp are
given fixed values from the baseline model, Fig. 1. The ba
line model is different from thetrue model, although its pa-
rameters are close guesses to the true values based on
logical archives. If the fixed parameters weretrue it is clear
that we would always favor a low-order model.

Monte Carlo estimates for the probabilities of the te
1744Mecklenbräuker et al.: Hypothesis testing
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decisions as a function of the SNR are given in Figs. 6 an
Typical threshold effects can be clearly observed in the
ures: at a characteristic SNR value, the test decides with
probability in favor of the correct model order. In specifi
intervals of SNR,downgradedmodels are preferred to a fu
model containing all parameters. Each downgraded low
order model has its own range in the SNR in which it
dominant, indicating identification problems for higher-ord
models at the corresponding SNR levels. Thus, in Fig. 6
a SNR lower than 6 dB, there is not enough signal in the d
to determine even theM1 model, and above 10 dB there
enough information to determine at least theM2 model.
Around 8 dB, the model structureM1 is best. In Fig. 7 we
also include the modelM3 . It is seen that above 10-dB
modelM3 is favored, andM2 is only favored in a narrow
region around 9 dB.

The corresponding results for the AIC criterion~12! are
shown in Fig. 8. If the improvement in the maximum like
hood betweenMp and Mp11 exceeds 1/N5 1

48'2.083
31022 per additional parameter,Mp11 is preferred. It is
seen that this approach is not as conservative as the LRT
AIC does not guarantee a false-alarm ratea. We accept
modelM3 down to a level of 6 dB and for a low SNR w
accept modelM2 .

FIG. 6. The simulation of LRTM1 againstM2 for various SNR levels.

FIG. 7. The simulation of multiple sequential LRT for the first three mode
1745 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
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B. Application to North Elba data

For a set of six range-dependent ocean acou
models,11 the environmental parameters were estimated b
globally convergent stochastic algorithm using a frequenc
domain measurement data at three distinct frequen
~167.72, 169.19, and 172.61 Hz!. The search range used fo
each parameter is indicated in Table III. This rather sl
broadband approach was selected for computational reas
due to the large number of forward models that had to
calculated during the optimization: 20 000 forward mod
are calculated for each model order. In a second step,
obtained results were validated by the LRT using measu
ment data at the much broader frequency range 159.
179.93 Hz, incorporating the measurement at 4223539 dis-
tinct frequency bins. From the selected frequenciesv j /2p
5D f (2 j 1653), for j 51,...,42, we discarded the three fr
quency bins mentioned before that were used for param
inversion. The SNR in the data varies between about 33
at the center frequency and 22 dB at the ends of the rang
which is quite high.

The models build a hierarchy of increasing complex
and modelMp containsMp21 as a special case; see Table

.

FIG. 8. The AIC simulation result based on 100 Monte Carlo runs.

TABLE III. GA inversion model with parameter search bounds. Each
rameter was discretized into 128 values.

Model parameter Lower bound Upper bound

Geometric
Source range~m! 5300 5900
Source depth~m! 72 82
Array tilt ~m! 23 3
Receiver depth~m! 110 115
Bathymetry-src~m! 127 134
Bathymetry-rcv~m! 127 134

Sediment
Sound speed,c0 ~m/s! 1510 1560
Sound speed,d1 ~m/s! 0 100
Sound speed,d2 ~m/s! 0 100
Sound speed,d3 ~m/s! 0 100
Attenuation~dB/l! 0 0.4

Bottom
Sound speed,d4 ~m/s! 0 200
1745Mecklenbräuker et al.: Hypothesis testing
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FIG. 9. Thea posteriori distribution for the most im-
portant parameters for modelM6 using the combined
band. 1 and 2 refers to the source and receiver envir
ments, respectively.
W

c

he

of
-
s-
g
g

tio
th
o

.

ha
e

ve
Th
th

e

nd
rce
the

ver

us-

rs
is

just
the

el
on
rna-
ise
of

istic
NR

re-
ven
the
dis-

est-
de-
or a
T
i.e.,

n. It

This

en
NR,
where also the Bartlett Power~in dB! for the best estimated
models are shown;

BPp510 log10(
j

@12B~v j ;m̂p!#,

with j P$687,693,707%. ~13!

Using Eq. ~6! with H2,m as a hypothesis andA2,m as an
alternative, the test statistics in Fig. 5 are computed.
cannot adopt both model structuresMp andMp11 at the
same time,if they differ in their parameters. This is what the
test decides. If the test statistict2(x) is smaller than the
a-critical value~shown as a solid horizontal line!, thenMp

is rejected. Thea-critical value for the test was found from
the normal approximation given by Eq.~10!. Figure 5 shows
the result of a sequential test for identifying the corre
model structure. The calculated LRT test statisticst2,m for
the model hierarchyM1a¯aM6 are shown together with
the threshold~dashed horizontal line! for a55%.

C. Confidence regions and posteriori distributions

During the GA optimization, all obtained samples of t
search space are stored and used to producea posteriori
probability distributions for the parameters. For a systemr
parameters, the result is anr-dimensional space. This is dif
ficult to display and therefore only marginal probability di
tributions are shown. The samples are ordered accordin
their energy, and the probability distribution is scaled usin
Boltzmann distribution.10 The a posteriori distributions are
useful for evaluating the convergence of the inverse solu
and uniqueness of the solution. While it does not give
model order it clearly indicates which parameters are imp
tant for the inversion; see also the comments in Sec. III.

An example of this is shown for the North Elba case11

For theM6 model thea posterioridistributions for the more
important parameters are illustrated in Fig. 9. It is seen t
except for the receiver depth, the geometric parameters w
well determined. That is, all distributions were compact o
the search interval and had well-defined single peaks.
modelM3 contains all geometric parameters, except for
1746 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
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receiver depth. By interpretation of thea posterioridistribu-
tions fromM6 , we obtain an indication on the order of th
parameters that should be incorporated intoMp for p.3.

In general, it would be expected that the source a
receiver depths are about equally important. The sou
depth is much more important here because it is placed in
thermocline. Further, the search interval for the recei
depth is half of the search interval for the source depth.

V. CONCLUSIONS

Hypothesis testing is a powerful tool as part of an aco
tic inversion procedure. For a given model structure~set of
parameters to estimate!, the estimated values of paramete
found by the optimization can be statistically justified. Th
is in clear contrast to the usual procedure, where we
arbitrarily select a set of parameters and then optimize
parameter values.

A multiple sequential LRT was applied to the mod
identification problem and shown suitable for the validati
of estimated parameters. Auxiliary hypotheses and alte
tives were needed to circumvent problems due to otherw
incomplete knowledge of the test statistics. In each step
the proposed sequential test, the computed LRT test stat
can be interpreted in terms of the estimated incremental S
if the corresponding hypothesis is true. In the single f
quency case, all cumulants of the test statistics are gi
analytically. In the broadband case, the distribution of
test statistics can be closely approximated by a Gaussian
tribution.

The examples illustrate several uses of hypothesis t
ing. Before the test, an inversion algorithm should have
termined the parameter estimates. This is usually done f
set of different model structures. A multiple sequential LR
can then be used to estimate the correct model structure,
how many free parameters should be used in an inversio
is illustrated that thea posterioridistributions obtained from
the inversion can be used to order the set of parameters.
helps in designing the structure hierarchy.

How many parameters can be estimated for a giv
model structure depends on the SNR. The higher the S
1746Mecklenbräuker et al.: Hypothesis testing
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the more parameters we can afford to fit. Conversely,
poor SNR, it is best to focus on just the most importa
parameters. Otherwise, the higher-order parameters are
fitted to the noise~thus increasing the variance of the es
mate!.

By varying the SNR in Monte Carlo simulations, we ca
determine a minimum required SNR at the receiver ar
during a sea trial that will be needed to invert a given se
geoacoustic parameters. This was implemented using
hypothesis testing and Akaike’s Information Criterion~AIC!.
From the simulations, it is observed that the LRT at a fal
alarm rate of 5% gives similar results to the AIC, but
slightly more conservative.

Finally, we conclude with some remarks concerning
practical case where the signal space is not strictly rank o
We must distinguish two possible causes for signals w
rank higher than one: First, the source might vibrate w
higher degrees of freedom, e.g., multipole radiation.29 A log-
likelihood function can be formulated for this case als
Thus, this does not, in principle, present a problem to
LRT. Although the details of the presented algorithm w
change. Second, the signal might decorrelate due to ran
environmental effects, losing coherence between the so
and receivers. This case is more difficult. A log-likelihoo
function is not known to the authors in this case and, con
quently, no LRT can be formulated.
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APPENDIX

1. Derivation of the likelihood ratios, Eq. „6…

The log likelihoods for the hypothesesH1 , H2 , H3

and the alternatives are given by

Li52
1

J (
j 51

J

log tr@„I2Pi 21~v j !…Ĉx~v j !#.

The hypotheses are formulated byi 51,2,3 and the alterna
tives by i 54. For the casesi 52,3, this reduces to~2a! up to
an irrelevant additive constant; cf. Ref. 13. The LRT calc
lates differences of these log-likelihood functions. To
more specific: to testHi againstAi , we need to construct

t i~x!ª

Def

L42Li

5
1

J (
j 51

J

log
tr@„I2Pi 21~v j !…Ĉx~v j !#

tr@„I2P3~v j !…Ĉx~v j !#
~ i 51,2,3!.

InsertingP3(v j )2P3(v j ) into the denominator yields~6!.
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2. Proof of Eq. „9…

Let T5 log„11(n1 /n2)F… be a random variable, wher
F is Fn1 ,n2

distributed. Observe that the related random va
ableZ51/@11(n1 /n2)F# is beta distributed with parameter
p5n2/2 and q5n1/2; cf. Ref. 30. Knowing this, we can
express the moment-generating function

MT~s!ª
Def

E@eTs#5E@e2~ log Z!s#5E@Z2s#5
B~p2s,q!

B~p,q!
,

by means of the beta function. Using the identityB(x,y)
5G(x)G(y)/G(x1y), the cumulants ofT can be expressed
by polygamma functions,

k rª

Def dr

dsr logMT~s!U
s50

5~21!r@C~r 21!~p!2C~r 21!~p1q!#.

They are defined as derivatives of the log-gamma functi

C (r )(x)ª
Def

(dr /dxr)logG(x); see Refs. 25 and 24 for furthe
details and approximations. The mean and variancemT ,sT

2

in ~9! are given byk1 ,k2 , respectively. If both DOFn1 ,n2

areeven, this reduces to the finite sum

k r5 (
k50

n1/221
1

~k1n2/2!r .
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