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A generalized likelihood ratio test is developed for testing acoustic environmental models with an
application to parameter inversion using an acoustic propagation code. The signal-to-noise ratio in
acoustic measurements proves to limit the details on geoacoustic environments that can be
determined by matched field processing methods. A hypothesis test serves in Monte Carlo
simulations as a tool to determine minimal signal levels for the bottom parameter inversion. The
term “hierarchy of models” is used for denoting a sequence of models in which each particular
model contains all previous ones. For determining the model order and its parameters, a combined
parameter estimation and multiple sequential test is proposed. Given the observed data, how many
parameters should be included in the model? The last question is important for the order selection
in hierarchies of models with an increasing number of parameters. Multiple sequential hypotheses
testing provides a procedure to determine the model order in a statistically justified way. Monte
Carlo simulations show the behavior of the test for selecting a model order as a function of the
signal-to-noisg SNR) ratio. The test is applied to broadband data measured using a vertical array
near the island of Elba in the Mediterranean Sea and compared with Akaike’s Information Criterion.
© 1999 Acoustical Society of Amerid&0001-496809)03502-X

PACS numbers: 43.60.Pt, 43.30.P€B]

INTRODUCTION acoustic parameter®.g., sound speed and attenuation pro-
files) do not have a naturabrder. Obviously, there is no
Previous literature on geoacoustic inversion focused prispecific first, second, third,..., parameter. As a consequence,
marily on the parameter estimation problémi.The struc-  puilding such a hierarchy is subjective and the acoustician
ture of the acoustic propagation modeék., its parametriza-  stays responsible for the design according to specific needs.
tion) was assumed to be knovenpriori. Which parameters However, indications of the “relative importance” of indi-
are relevant and should be included into the modeums ;igual parameters can be numerically obtained.
knownsis usually decided on intuitive physical grounds— | this paper we deal with statistical hypothesis tests for
independently of the observed experimental data. Howevenqqystic environments based on observed data and a replica
both background noise and fluctuations in the quantities s&s, 5 vertical array of sensors. It is an extension of the work
verely limit the observable detail®f an acoustic environ- ;. Rafs 8 and 9. The replica is generated using environmen-

ment. tal model parametersound speed profile, attenuations, and

_Variogs appro aches to strl_Jctu_raI model _iden;ifigation are‘densitie$ and an acoustic propagation model. The array out-
ava|lab_le n the signal processing literatdiré Ljung gives a put is modeled as a superposition of a stationary noise pro-
good discussion of the subject. Most problems considered s

Cess and the signal of interest. Both the parameter
far assume that the trqe model struct(mﬁ.hoggh unknpwn estimatiort® and testing are performed by analysis of data in
in detai) is embedded in a hierarchy. This hierarchy is con- . . - .

: . -, the frequency domain using a finite Fourier transform.
structed from model structures of increasing complexity.

Good examples of such model structures are the familiaFn at;-c;]e S:jarr?woestgr:f;?IZnhvsgfoor:rr;eesrﬁaﬁefr:?(?e:z i(;];[e\r/izrssgi)-
autoregressive moving avera@®RMA) models. P

There seems no general optimum waybigld such a tained previously by the inversion of observed datdhe

hierarchy for geoacoustic environmental models, since thVersion was base‘?' on data f“?m a callbra.ted vertical array
and carried out using information at multiple frequencies

from a single broadband source. A range-dependent adia-
dPresent address: Siemens AG, A-1101 Vienna, Austria. Electronic ma”batic normal mode cod% was used as the forward model
christoph.mecklenbraeuker@siemens.at . . . ’
bElectronic mail: gerstoft@mpl.ucsd.edu The global optimization was |mplemented _by a directed
9Electronic mail:{boehme,pjp@sth.ruhr-uni-bochum.de Monte Carlo search based on genetic algoriti@#) and
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the Bartlett objective functioff The inversion included the 1510 1515 1520 1525 1530m/s

estimation of all important forward model parameters, which :

can be divided into geometric, geoacoustic, and ocean :ﬁ'lfz';i';;:i{ltwith
sound-speed variables. From analyzing ¢hposteriori pa- Water ¢ 127m i (sile)

rameter distributions of the GA, it is known that not all pa- R

rameters can be equally well estimatéd. o) _

In order not to bias the test, a different dataset is used for 3 (10 recever depth
testing and estimation, but the datasets are based on the sarr : 1520 s -
acquisition. The Fourier-transformed data is split in two sub- Sedime"'{ 25m 217153%;;"
sets for estimation and testing in a comb-like fashion. In this . e ems ;
way, the whole frequency range is available to both stages OfSub-bottom{ ‘;i:f: : QCBT}L
processing—adjacent frequency bins are merely spaced far- o

ther apart.

Global search necessitates a huge number of forwar
solutions to be computed, vastly limiting the number of fre-
guencies used in the estimation procedure. The test can
verify an obtained model against a set of alternatives by in{. PROPAGATION AND DATA MODEL
corporating data from more frequencies than were used to
estimate the associated environmental parameters. A set of We consider a single wide-band source and the usual
alternative environmental models is readily available fromlinear model in frequency domain for the output of an array
the inversion itself and given by the final populations of theof N sensors with spatially uncorrelated additive noise,

GA.

The definition of objective functions for environmental
parameter estimation, and the choice of test statistics in hy-
pothesis testing using multifrequency data is still under
discussiort®**Exploiting the asymptotic Gaussianity of data |y this paper, vectors are denoted by lowercase boldface,
in the frequency domain allows defining approximate likeli- matrices in uppercase boldface, dnis the Hermitian trans-
hood functions, which can be maximized for the parametepose operation. Let be the Fourier transform of the output
estimation, and can be used for hypothesis tests based @ the vertical sensor array. Correspondingly the source sig-
likelihood ratios™** The proposed likelihood ratio test nal is denoted by and the noise by. The transfer function
(LRT) is based on multifrequency data and exploits thed(w;m) e CN is calculated by theNApP forward model code,
asymptotic Gaussianity of short-time Fourier-transformedwhich calculates the Green'’s functi@for the ocean acous-
measurement data. tic frequency—domain wave equatit®

This test is related to a solution to the detection problem  The source/receivers geometry and geoacoustic environ-
in passive sonar, seismics, and radar applications using rment for the baseline model are shown in Fig. 1 for a range
multiple sequentialF test that is based on a frequency— independent environment and in Fig. 2 for a range dependent
domain regressiott "1’ The estimated signal-to-noise ratio €nvironment. The source signaland the transfer function
(SNR) for the observed data in the frequency domain turngl(w;m) are assumed to be deterministic. The additive noise
out to be the basic quantity from which the LRT is con- In time domain is stochastic,.syationary, and zero mean.
structed. This is very appealing from a physical point of ~ 1he datax(w) at the receiving array are asymptotically

view. In this paper, we define the SNR in the frequencyc®mPlex normal distributed with meat{w;m)s(w) and co-

domain via the quotient of eigenvalues of the spectral density@lanCceCu(w) =r(w)!, wherey(w)>0 denotes the power

matrix (SDM) of the sensor outputs. In Sec. IID we give o Spectral density of the noise. The vector-valued transfer

more detailed discussion of these quotients in signal spacef.unCtIon d(wm) erends nonllngarly on the enwronmgntal
parameters, which are summarized in a veatorin this

The LRT compares the geometric means over the fre: . . .
uency of the estimated noise spectral levels under the h aper, the dimension ah may vary with the structure of the
q Y P odel. Thetrue modelcorresponding to the data is charac-

pothesis and alternatives. In the case of only one Singl?erized by ther-dimensional parameter vector’
source, this is related to the sum of Bartlett powers in dB. We use the word “model” for the geoacéustic param-

Monte Carlo simulations are performed for & numericalgters of an ocean acoustic wave guide with given structure.
analysis of the proposed algorithm. The behavior of the com ot s denote the set of all models byt. The set of all
bined inversion and hypotheses testing is computed over ﬂ\%plica vectorsl(w;m) that can be calculated tsnAP for all
SNR. models is denoted byp. The models are indexed by the

Finally, the test is applied to broadband data measure@arameter vectom, which is an element of the associated
using a vertical array near the island of Elba in the Mediterparameter setMCR'. We assumen’ e M. The mapping
ranean Se& It is assumed that optimum parameter esti-between the parameter sét and the replica® is termed a
mates for a given environmental model have already beemodel structureln Sec. Il the sets\f andD will be given
found by using a global optimization approath. a hierarchical buildup.

FIG. 1. Range-independent baseline model for acoustic propagation in the
allow ocean north of Elba island; see Ref. 19 for further details.

X(w)=d(w;m)s(w)+u(w). (D]
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Il. LIKELIHOOD RATIO TEST hypothesisH,, states “M, is true” and the alternatived,
reads “M, is true.” The LRT of Hy againstH, constructs
the test statistid = £(my) — £(m,;) and compares its value
with a critical valuet,,, which depends on the chosen leuel

Considering the modgll) at a discrete set of frequen-
ciesw; (j=1,...J), it can be shown that the log-likelihood
function is given by

of the test.
L(m)=-3 E log(1—B(w;;m)), (2a)
N B. Validating a specified model against a set of
N alternatives
d* (w;m) Cy(w)d(w;m)
B(w;m)= " : (2b) A more interesting setting is to validate a particular se-
|d(w;m)|*tr Cy(w) lected model against a set of competing models with the

where€ () denotes a nonparametric estimate of the specS@Me Parametrization, deciding whethege Mo={m’} or
tral density matrix(SDM) of the dat&® We use the sample Mo€M1=M\Mo. The modelM, should be compared
mean with all competing models inside the alternatike,, which
contains all models except fon,. The test uses the quantity
t(x) = L(mMg) —maX,. c ;. L(My). We are dealing with a
Cylw)= z E X (@)X (@) ©) Compositealternativé, aéd, therefore, optimality of the LRT
cannot be guaranteed. In terms of the Bartlett Power, the test
statistic is written as

K-1L-1

of KL Fourier-transformed data snapshais(w). The ob-
served datx(t) in time domaint=0,1,...KT—1 is divided
into K snapshots of duratioh each. These are Fourier trans- ] 1-B(wj;m,)
formed using. orthogonal windows; Q) depending on snap- t(x)= m'; Z log 1 B(w;;mp) "
shot duratioril and selected analy3|s bandwidth Here, we Mt :
used discrete prolate spheroidal sequences as dalde€ LRT now compares this quantity with a predetermined
tapers?l =231 The bandwidth of resolution @W<1 is se-  threshold valug,, that depends on the levelof the test and
lected such that3) is nonsingular. The numbdr of data  the distribution of the test statist(&).
tapers in(3) is essentially equal to the time—bandwidth prod- ~ In general, there exists a s€t,C M, of parameter vec-
uct: L=|2WT-1], where|x] is the largest integer smaller tors for whichHy is rejected. Thisz-critical region can be
than or equal tax. The Fourier-transformed snapshots areviewed as a confidence region for: parameter vectorm
calculated fork=0,...K—1 and| =0,..L.—1 by e K, cannot be rejected agairly. By samplingM; and

o1 repeating the test for each individuaede M;, numerical

_ | et approximations tdC,, are obtained.

Xl (@)= 20 VE x(t+kTe e Unfortunately, this direct approach is not feasible, due to
the incomplete knowledge about the distribution of the test
statistic. The fraction inside(5) is the ratio of two
x>-distributed random variables, but they are not indepen-
m=arg max£(m). (4)  dent. This problem arises because we are testing a particular

meM mpe R" against all alternatives with the same parametriza-
tion: they are of the same order

®

The maximume-likelihood(ML) estimate for the parameter
vectorm of M is defined as

Note, that the log-likelihood function can be easily inter-
preted as thaveraging of the Bartlett power over frequency
bins in dB This approach of averaging in log units was em-
pirically found to have optimal side lobe suppressibn.

After estimates have been obtained in this way, the re-  The difficulties described in the previous section disap-
sulting models can be validated using hypotheses tests. Weear when we test amaller against abigger model” They
start with an introductory example for which the likelihood are avoided by testing the models in a three step sequen-
ratio test is known to be optimal in Sec. Il A. However, this tial procedure. We will use the following hypotheskls
simple setting does not apply here. Proceeding to Sec. Il Band alternative#\; (i=1,2,3):
we formulate the test problem that is appropriate for valida- Hi: no signal in the dataA,: dyeD, or d;eD;
tion. It turns out that a straightforward implementation of thegenerated the data,

LRT is not feasible and a possible solution is presented in  H,: replica vectordy e Dy generated the data,
Sec. IIC. A,: the data cannot be adequately modeledipy
H5: replica vectord, e D; generated the data,
A;: the data cannot be adequately modelediby

We test which one of two modeldfy,={mg}, M, We have omitted the dependency @in notation for all
={m;} has generated the measurement aé&ig. In this test quantities,dy=d(w;mg), andd;=d(w;m;).
problem, the hypothesis and alternative are both of the Some comment is necessary d@n: physically, we
simple typei.e., they do not contain unknown parameters.know that it is not possible for twdaliffering geoacoustic
The Neyman—Pearson Lemma applies, dictating that thenvironments to be correct at the same time. Sén the
most powerful test is based on the likelihood rdtihe logical “or” can be substituted by an “exclusive or” opera-

C. Sequential LRT using three steps

A. Simple hypothesis and alternative
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Source Receiver N

Signal Eigenvalue

Water

130m 128 m C=U . .U

Denominator

h 4 h 4 Nominator
1520 m/s
Sediment } p=1.5¢g/cm? 52
edi 53'“ v 0.=0.13 dB/A im FIG. 3. An interpretation of the test statistic and spectral density matrix
1750 m/s eigenvalues.
1650 m/s p=1.89/cm3
Sub-bottom a=0.1dB/A

where the projection matricd® _;(w) (i=1,2,3) are asso-
ciated with the signal subspaces undgrin each step of the
test; see Sec. 1 of the Appendix.

Po(w)=0,
P1(w)=dodg/|do|?,

FIG. 2. Range-dependent geoacoustic baseline model with differing prope
ties at the source and receiver locations.

tion. For the algorithm, however, it is more suitable to imple-
ment the “inclusive or” which is easier to formulate and
makes no logical difference in this case.

In mathematical terms, the abotk, A; are formulated

as P3(w)=QQ*,

The integersy, n,e N are explained in Sec. Il E. The pro-
jection matrix P5 is associated with the alternatives: it has
rank two. The signal space under the alternatives is spanned
by bothd, andd,. If the geoacoustic model is identifiable,
then it is asserted that the vectatg and d; are linearly
independent. Matrix) contains two columns being a unitary
basis of the two-dimensional space spannedpwandd, .

This test strategy ensures that the difference of the pro-
jection matrices in the denominator ¢8) is a projection
operator that is orthogonal to- P;. This makesV;(w) an
Fnl,nz—distributed random variable.

8
P,(w)=d,d}/|dy|?, ®

where Q=orth(dg,d,).

Hy: x=u,
S
A x=(do dl)(si)Jru, with [s|?+[s1|?#0;

H,: X=dgSp+u, with arbitrary s;#0

S
A2: X:(do d1)<si>+u, with Slio and Soio;

H;: x=d;s;+u, with arbitrary s;#0
So )
Az: x=(dy dy) s | TUs with sp#0 and s;#0.
1
) . . D. Interpretation in signal space

Step 1:First, we testH, against the alternativad,, and
if the hypothesis is rejected, we conclude tts data con- The test statistics can be easily interpreted in the signal/
tain a signal, and at least one of the models will be correct noise space analogy. The following discussion isSeep 2
we proceed with Step 2. If the hypothesis is accepted the te§f the test, but the reasoning for the third step is completely
stops at this point. In this case, we have an identifiabilityequivalent. Figure 3 describes graphically what eigenvalues
problem due to lack of signal power. of the spectral densit€, are grouped together in the nomi-

Step 2:We test the hypothesid, with arbitrary sy 0 nator and denominator of tHevariable(7) if the hypothesis
against the alternativA,. If the hypothesis is accepted, we H, is true. In this discussion, we replaéx,a(w,-) in (6) by its
conclude thaH, is true and the test stops here. If, on the expectationC,(w;) to make the analogy more clear. The
other handH, is rejected, we go to Step 3. frequency dependence of the quantities will be suppressed in

Step 3:This is a cross-check: we test the hypothésis
with arbitrarys; #0 against the alternativA;.

In each step, the test statistitgx), to(x), andt;(x)
can be put into the form

1 J
ti(x)=—3 2, log 1+2—;vi<wj>). (6)

j=1

with

_ My t(P3(@) —Pi_1(@))Cx(@)]

Vl(ll)) ~
N1t (1 —P3(w))Cy(w)]

@)

1741 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999

notation for convenience.

In the equation described in Fig. 3,denotes the unitary
eigenvector matrix ofC,. The dominant eigenvaluéeV)
corresponding to the signal eigenveatigris denoted by ; .
The noise EVs are given hy,,...,\y. The projection ma-
trix P5 projects onto a two-dimensional subspacé&®df The
dominant eigenvector of, and one of the noise eigenvec-
tors are a basis of this subspace. By resorting the eigenvec-
tors in U, we can always achieve thBg is associated with
the first two eigenvectors—and thus wikh ,\, in the fol-
lowing sense:

tI’[P3CX]=)\l+ )\2: |d0|2|S|2+ 2v.

Mecklenbrauker et al.: Hypothesis testing 1741



On the other hand®, is associated with the dominant signal noise could lead to trouble. In the latter case, we recommend
EV )\, alone, an interleaved scheme: a comb-like separation of estimator

and test frequencies. If such an approach is feasible then the
tr{P,C] =\ 1=]do|?8| >+ ». d PP

And the projection matrix of the difference projecty
— P, is associated with the single noise B\ only. The
nominator in(6) is associated with all the other noise EVs,
tr[(l _P3)CX]:)\3++)\N:(N_2)V
Thus, we see that the signal power is canceled out ofthe
variable(7) if the hypothesiH, is true:
n, t(Ps—PYCJ 1
n, 2 t[(I-PyC,] N-=2°
In this way, the test statistic becomes a pivot, i.e., indepen
dent of the unknown parametérsSomewhat loosely stated,

DOF do not depend on; orr,.

Alternatively, the DOF might be obtained from the Fis-
cher Information Matrix of the unknown parametens The
“nonlinear DOF” r, are strongly related to the numerical
rank of the Fischer Information Matr#®.

F. Calculation of thresholds

The test statistics fron(6) are easily interpreted as the
arithmetic mean of a sample of independent identically dis-
tributed random variables T;=log(1+(n;/ny)Vi(w;))
whose probability density and cumulants can be evaluated in
closed form(see Sec. 2 of the Appendjpe.g., for mean and

the test statistic compares one selected noise EV to the aritfariance, we obtain

metic mean of all the other noise EV. If this ratio exceeds
some predetermined threshold, we conclude that the selected wr=¥

replica vectod, is not the only dominant eigenvector 6f,
and the hypothesi#l, is rejected. If the alternativé,, is
true, V, depends ons|?/v.

In the nonasymptotic cas¥; in (7) can be interpreted as

the increase of the signal-to-noise ratio, if the model is en-

larged by the alternativa, .

E. Degrees of freedom

The degrees of freedom(DOF) n;,n, of the

F,. n.-distributed random variable are given'By
1172

in Step 1 n;=4KL, n,=KL(2N-4),

in Steps 2 and :3 n;=2KL, n,=KL(2N—-4),

if m, is not estimated from the same data where the tes
statistic is based upon. The factit. stems from Eq(3).
This was ensured by using a different and larger set of fre
quency binsw; for the test than for the inversion.

The ration,/n,=1/(N—2) is equal to the ratio of the
signal- and noise-subspace dimensions. Asymptotically, i.e
for a large observation tim&/;(w;) andV;(wy) are indepen-
dent if wj * Wy .

We must be more careful in the case whan s itself
dependent on the data. This is the casenif is estimated

from the measurement data. In this case, the DOF are give

by the more complicated formulas:
in Step 1 ny;=KL(ry+r,+4),
N,=KL(2N—(r{+r,+4));
in Steps 2 and 3 ny;=KL(r;+r,+2),
N,=KL(@2N—(ri+r,+4)),

wherer 1,1, denote the number of environmental parameters

(i.e., the dimension ofm;,m,).X® This can be circumvented
easily by splitting the data into two disjoint sets for the pur-

pose of estimation and test. We can either straightforwardly!
split in the time domain or exploit asymptotic mdependenceFlG_ 4. The boxclike structure for geoacoustic models

ny+n, n, Ny
2 —W(?>~|Og 1+n—2 s
9
- n, Ly nitng| - 2n 9
T 2 2 Ny(Ny+ny)°

Here, ¥ (x)=dlogI'(X)/dx and W¥'(x)=dW¥(x)/dx are
polygamma function$’ The a-critical valuet, can be de-
rived from a normal approximation for the distributi&r(t)
of (6) for a large number of frequencidsusing the inverse
error functiort’

O'T\/? 1
ta=,uT+Werf (2a—1). (10)
A more accurate value fot, can be obtained via the
Cornish—Fisher expansion of the inverse cumulative distri-
ution function of the test statistftor bootstrapping® Ex-
Eerimentally, it was shown that the performance of the test
does not improve using these more elaborate approxima-

tions.

Ill. MODEL STRUCTURE IDENTIFICATION

The replica-vector seb is now given an additional hi-
erarchical buildup. We define an increasing sequence
D1,D,,..., ofsubsets, such that

C0,5,20,50 (2)7 sed.att.(Z), Ch (2)
rd, ¢y, sed.att.
€0,5,20,50
bathy (2)
tilt
sr, sd
M
Mo
Ms
My
Ms
M,

Mg used for

.....

i'_" the frequency domain for adjac?nt fr_eql_JenCy bins. In thgne inversion of real data. The meaning of the parameter name abbreviations
first case, weak effects of nonstationarity in the backgrounds given in Table I.

1742 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999
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TABLE I. The models used for the inversidRRef. 9 of real data. BP is 80
Bartlett power in dB from(13); the maximum is zeror is the number of
parameters over which optimization was performed. The notg@prde- wor 1
notes that a value of this parameter was estimated for both the source and «
receiver range. Inversion parameters: source range, source depth, bathym-2 sor 1
etry, array tilt, velocity profile, receiver depth of deepest hydrophone in gso_ ° o |
array, bulk velocity in sediment, sediment attenuation. z °© o °©
g VT tom(X)—pT
- 40 or d
Model r BP Inversion parameters a
Boof ]
My 2 —041 sr,sd ‘s
M, 4  —-0.28 sr, sd, bathy2) € 20} o 1
Ms 5 —025 s, sd, bathy2), til % Tvesnoldotne Tost
My 9 —0.23 sr, sd, bathg?), tilt, ¢y 52050 10 .
Ms 12 -0.23 sr, sd, bathg?), tilt, ¢o5 2050 1d, Cp, sed. att. | T
Mg 18 —0.22 sr, sd, bathg), tilt, rd, Cos20,50(2), % 1 2 3 3 s 5
sed. att.(2), Cp (2) Model Order m

FIG. 5. The standardized test statistig, for each stage in the model
hierarchy as applied to the real data. The horizontal indebenotes the test
N of hypothesiH, ,,= M, _, against the alternativ&, ,= M,_, or M. For
DCD,C--CD,C---CDCC. details see Table I. The dashed horizontal line shows the thresholdtyalue
for a false-alarm rate o=5%.
The model subset®, are associated with parameter sets
M, because each replica vectif-;m,) € D, is indexed by

a parameter vectan,e M,CR'r. The dimensiom,e N of  the “relative importance” of the individual parameters. In

the parameter set1, increases monotonically witp. this way, the question arises as to how to design the hierar-
For two arbitrary models, we say “model structukd,, chy.
is included inMg" iff DyCDy. We write Mp<M,. We The rigorous approach consists in fixing one parameter

can think of thesmallermodel structure\t,, being generated
from M, by freezingsome elements ah, to constant nomi-
nal values of aseline model

of the highest-order modeM; to the nominal value of the
baseline model. After this has been done for all parameters in

o . . . . turn, the very set oP — 1 parameters is selected, which gives
As a specific example, consider Fig. 4. The Russmn-th least d dati £ th ) likelihood vallei
doll"-like figure gives an intuitive visualization of the prob- "¢ €St degradation of the maximum-iikelinood valt@is

lem. The meaning of the parameter name abbreviations jgrocedure is repeated flp_;, Mp_»,..., and so onThis
given in Table I. ModelM; only includes the two source approach is computationally prohibitive for a practical num-
coordinategsr,sd as unknown parameters; all other physical bers of inversion parameters.

quantities are given from the reference model, Fig. 1. The The experienced acoustician can get help from two
next model additionally includes the tilt of the receiving sources: first, he can calculate the Fischer information matrix
(nominally vertica) array (tilt is defined as horizontal dis- for the parameters at therominal valuesthis gives an in-
placement between the bottom and top hydrophone in thgication of variances in the single parameter estimates and
array. Model M3 is enlarged to include two parameters for thejr mutual correlations. This could be called theal ap-
bathymetry: the ocean depth at the source and receiver |°Cﬁ'roach and should be repeated for several model vectors.

tlon.Th d £ th N _ Mo Finally, the a posteriori distributions of Genetic

e order of the parametens, =(m,,...,mp) € Mp in Algorithms'®* also indicate spreading of the estimates: this
the pth model structureM,, seems to be completely arbitrary racticalalobal aporoach for hierarch nstruction

at first. However, the acoustician has an intuitive idea abouf® & Prac alglobal approach for hierarchy construction.

TABLE Il. Models used for simulatioriRef. 28. r is the number of parameters over which optimization was
performed. Parameters: source range, source depth, bathymetry, array tilt. Unspecified parameters are given in
Fig. 1. Model M generated the simulated datasets.

Model r Inversion parametens Search ranges Fixed values
M,y 2 sr, sd 5500 msr<5700 m tilt=0m
75 m<sd<85m bathy=127 m
M, 3 sr, sd, tilt 5500 misr<5700 m bathy=127 m
75 m<sd<85m
—3m<tilt<3m
M3 4 sr, sd, tilt, bathy 5500 risr<5700 m
—3m<tilt<3m
125 m<bathy<133 m
M sr=5600 m, se=80 m

tilt=0.3 m, bathy=130.5m

1743 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999 Mecklenbrauker et al.: Hypothesis testing 1743



A. ldentification algorithm using LRT

We can now formulate Algorithm 1 for the structure

lar, dg«—d(-;my) andd;«d(-;m, ) are substituted in Eq.
(8). The algorithm starts with Step 1 fo¥1,: this decides

identification problem. It returns the estimated model ofiler Whether there is a significant input signal. This step is only

and the corresponding parametay. We need hypotheses

needed once, whereas Steps 2 and 3 are repeated for all

and alternatives analogous to Sec. Il B for each model ordenodel orders.

m: they are denoted bi; .,, A; ,, respectively. In particu-

Algorithm 1: model identification using a LRT.

My :=arg max_(my)
mye My
if Hy, cannot be rejected againAt , then
" stop “ identifiability problem: we don’t know what p is”
main Toop
for p:=1,2,...do
_mpﬂ::arg_ma)rg]pHEMpHE(mpﬂ)
if H,, cannot be rejected againa} , then
p:=p, stop *“this is a conservative selection
else —
~ i Hjp cannot be rejected againit , then
T p=p+1,stop T
else
~ p=p+1,continue with the loop over p
end of for loop =~
output ~ p,m,

B. Akaike's information criterion

Alternatively, we can adopt Akaike’s Information Crite-
rion (AIC) approach to the order selection problem for

acoustic models: cf. Ref. 7. In the present application, thd@meterW=6.25<10"

AIC selects the model ordahe N, which minimizes the
criterion:
r
AIC[m]=— L(f,)+ N" (11)

From this simple form of AICm], we can directly calculate

the required increase in likelihood to equalize the cost of

additional parameters. The AIC prefekd,,,; over M, iff

1
E(mp+1)_£(mp)>ﬁ(rp+1_rp)- (12)

IV. EXAMPLES

The examples are all based on the environment from th
North Elba sea triat® see Figs. 1 and 2. In Sec. IVA the

Fourier-transformed snapshots of 4-s duration each. The
4000 samples per snapshot were zero padded to enable a
FFT of length 22 L=4 data windows with bandwidth pa-

4 were used in3), making KL =60.
Adjacent frequency bins are separated byaf

=18 Hz~0.244 Hz.

512
A. Simulation of sequential test

First the algorithm is used to determine the correct
model order as a function of the SNR. Simulated datasets are
enerated as follows: TheNAP code calculates the replica
vector for the range-independent environmgwtt given in
Table Il. Uncorrelated Gaussian noise is added to the replica
for obtaining a desired SNR. For each SNR, we conduct 50
independent random experiments: each experiment is carried
out with a new choice of signal and corrupted by noise that is
independent of the other realizations. The data were gener-
ated by a selected model in the largest model structure con-
sidered and corrupted by additive noise at a prescribed SNR.
In each experiment, we calculated the ML estimates and ap-

examples are based on synthetic data and in Secs. IV B arglied the proposed algorithm for the first model structures by

IV C on real data.

global optimization of(2a) using a genetic algorithm, analo-

The experimental data were collected near the Island ofjous to Ref. 10. For each SNR, this is repeated 50 times in
Elba in the Mediterranean Sea during a sea trial in Octobesrder to make a statistical interpretation of the result. For

1993114 A vertical array of N=48 sensors approximately

each model order and SNR, 22500 forward models were

spanning the whole water column of 128-m ocean depth wasalculated during optimization.

used. The signal source was located at a range of 5600 m and The nonoptimized parameters in each modd|, are

at depth 80 m below the surface. The transmitted signal wagiven fixed values from the baseline model, Fig. 1. The base-
centered at 170 Hz and modulated with a pseudorandonine model is different from thérue model, although its pa-
noise sequence giving a total bandwidth of approximately 2Qameters are close guesses to the true values based on geo-

Hz. A record of one minute (8 10* samples at a sampling
frequency of 1 kHg of time samples was used. The SDM

C,(w) was estimated fror = 15 nonoverlapping windowed

1744 J. Acoust. Soc. Am., Vol. 105, No. 3, March 1999

logical archives. If the fixed parameters wenee it is clear
that we would always favor a low-order model.
Monte Carlo estimates for the probabilities of the test
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FIG. 6. The simulation of LRTM, againstM, for various SNR levels. FIG. 8. The AIC simulation result based on 100 Monte Carlo runs.

decisions as a function of the SNR are given in Figs. 6 and 7B. Application to North Elba data
Typical threshold effects can be clearly observed in the fig- For a set of six range-dependent ocean acoustic

ures: at a characteristic SNR value, the test decides with higﬁ'mdels%l the environmental parameters were estimated by a
probability in favor of the correct model order. In specific globally convergent stochastic algorithm using a frequency—
intervals of SNRdowngradednodels are preferred to a full gomain measurement data at three distinct frequencies
model containing all parameters. Each downgraded lower¢167.72, 169.19, and 172.61 HZhe search range used for
order model has its own range in the SNR in which it iseach parameter is indicated in Table Ill. This rather slim
dominant, indicating identification problems for higher-orderbroadband approach was selected for computational reasons,
models at the corresponding SNR levels. Thus, in Fig. 6 fodue to the large number of forward models that had to be
a SNR lower than 6 dB, there is not enough signal in the dataalculated during the optimization: 20000 forward models
to determine even tha1; model, and above 10 dB there is are calculated for each model order. In a second step, the
enough information to determine at least thé, model. obtained results were validated by the LRT using measure-
Around 8 dB, the model structur#1; is best. In Fig. 7 we ment data at the much broader frequency range 159.91-
also include the modeM,. It is seen that above 10-dB 179.93 Hz, incorporating the measurement at 82 39 dis-

model M is favored, andM, is only favored in a narrow tinct frequency bins. From the selected frequencig&m
region around 9 dB. =Af(2j+653), forj=1,...,42, we discarded the three fre-

The corresponding results for the AIC criteriét®) are ~ 9uency bins mentioned before that were used for parameter
shown in Fig. 8. If the improvement in the maximum likeli- inversion. The SNR in the data varies between about 33 dB

hood betweenM, and M,,, exceeds M= 1~2083 at the center frequency and 22 dB at the ends of the range—

~ . . . hich is quite high.
X102 per additional parameterM,,, , is preferred. It is w . . . . .
seen that this approach is not as conservative as the LRT, but dThedmodels bw!d a hierarchy of |r.1c|reasm.g complbelxny
AIC does not guarantee a false-alarm rate We accept and modelM,, containsM,, -, as a special case; see Table |,
model M3 down to a level of 6 dB and for a low SNR we

accept modeM, . TABLE Ill. GA inversion model with parameter search bounds. Each pa-
rameter was discretized into 128 values.

Model parameter Lower bound Upper bound
or Geometric
5 Source rangém) 5300 5900
2.8l Source deptitm) 72 82
5 Array tilt (m) -3 3
3 Receiver deptt{m) 110 115
Eaadl Bathymetry-srom) 127 134
g Bathymetry-rcv(m) 127 134
i 0.4F .
£ Noise-only. Sediment
E e ﬁ; Sound speed;, (/9 1510 1560
2% M, Sound speeds; (m/s 0 100
Sound speeds, (m/9 0 100
o Sound speed§; (m/s) 0 100
. . Attenuation(dB/\) 0 0.4
4 6 8 SN () 10 12 14 Bottom
Sound speedy, (m/9) 0 200

FIG. 7. The simulation of multiple sequential LRT for the first three models.
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where also the Bartlett Powéin dB) for the best estimated
models are shown;

BP,=10logo>, [1—B(w;;mhy)],
]

with j €{687,693,707. (13
Using Eq.(6) with H,,, as a hypothesis anf,,, as an

receiver depth. By interpretation of tleeposterioridistribu-
tions from Mg, we obtain an indication on the order of the
parameters that should be incorporated i, for p>3.

In general, it would be expected that the source and
receiver depths are about equally important. The source
depth is much more important here because it is placed in the
thermocline. Further, the search interval for the receiver
depth is half of the search interval for the source depth.

alternative, the test statistics in Fig. 5 are computed. We

cannot adopt both model structurdd, and M, , at the
same timejf they differ in their parametersThis is what the
test decides. If the test statistig(x) is smaller than the
a-critical value(shown as a solid horizontal lipethen M,

V. CONCLUSIONS

Hypothesis testing is a powerful tool as part of an acous-
tic inversion procedure. For a given model struct(set of

is rejected. Thex-critical value for the test was found from parameters to estimatethe estimated values of parameters

the normal approximation given by EQLO). Figure 5 shows

found by the optimization can be statistically justified. This

the result of a sequential test for identifying the correctis in clear contrast to the usual procedure, where we just

model structure. The calculated LRT test statisticg for
the model hierarchyM ;< --< Mg are shown together with
the thresholddashed horizontal lingfor «=5%.

C. Confidence regions and posteriori distributions

arbitrarily select a set of parameters and then optimize the
parameter values.

A multiple sequential LRT was applied to the model
identification problem and shown suitable for the validation
of estimated parameters. Auxiliary hypotheses and alterna-
tives were needed to circumvent problems due to otherwise

During the GA optimization, all obtained samples of theincomplete knowledge of the test statistics. In each step of

search space are stored and used to procdu@esteriori

the proposed sequential test, the computed LRT test statistic

probability distributions for the parameters. For a system of can be interpreted in terms of the estimated incremental SNR
parameters, the result is ardimensional space. This is dif- if the corresponding hypothesis is true. In the single fre-
ficult to display and therefore only marginal probability dis- quency case, all cumulants of the test statistics are given
tributions are shown. The samples are ordered according tanalytically. In the broadband case, the distribution of the
their energy, and the probability distribution is scaled using dest statistics can be closely approximated by a Gaussian dis-
Boltzmann distributiort® The a posteriori distributions are  tribution.
useful for evaluating the convergence of the inverse solution  The examples illustrate several uses of hypothesis test-
and uniqueness of the solution. While it does not give thdéng. Before the test, an inversion algorithm should have de-
model order it clearly indicates which parameters are importermined the parameter estimates. This is usually done for a
tant for the inversion; see also the comments in Sec. lll.  set of different model structures. A multiple sequential LRT
An example of this is shown for the North Elba cdSe. can then be used to estimate the correct model structure, i.e.,
For the Mg model thea posterioridistributions for the more how many free parameters should be used in an inversion. It
important parameters are illustrated in Fig. 9. It is seen thats illustrated that the posterioridistributions obtained from
except for the receiver depth, the geometric parameters wethe inversion can be used to order the set of parameters. This
well determined. That is, all distributions were compact overhelps in designing the structure hierarchy.
the search interval and had well-defined single peaks. The How many parameters can be estimated for a given
model M contains all geometric parameters, except for themodel structure depends on the SNR. The higher the SNR,
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the more parameters we can afford to fit. Conversely, foR. Proof of Eq. (9)
poor SNR, it is best to focus on just the most important
parameters. Otherwise, the higher-order parameters are just
fitted to the noisdthus increasing the variance of the esti-
mate.

By varying the SNR in Monte Carlo simulations, we can
determine a minimum required SNR at the receiver arraf
during a sea trial that will be needed to invert a given set of Def B(p—

; . . : B _ (p—s,9)
geoacoustic parameters. This was implemented using both \(s):=E[e"*]=E[e (092s]=E[Z 5]= ————,
hypothesis testing and Akaike’s Information Criteri@C). B(p.q)
From the simulation_s, it is _ob_served that the LRT at a fals_eby means of the beta function. Using the identgyx,y)
alarm rate of 5% gives similar results to the AIC, but is =T ()T (y)/T(x+Y), the cumulants of can be expressed

shghtl.y more conservauve.. . by polygamma functions,
Finally, we conclude with some remarks concerning the

Let T=log(1+ (ny/n,)F) be a random variable, where
is Fn,.n, distributed. Observe that the related random vari-
ablez=1/[1+(n4/n,)F] is beta distributed with parameters
p=n,/2 and q=n,/2; cf. Ref. 30. Knowing this, we can
xpress the moment-generating function

practical case where the signal space is not strictly rank one. Def gf

We must distinguish two possible causes for signals with  «,:= as logM+(s)

rank higher than one: First, the source might vibrate with s=0

higher degrees of freedom, e.g., multipole radiatioA.log- =(—1) ¥ Y (p)— ¥ V(p+q)].

likelihood function can be formulated for this case also.

Thus, this does not, in principle, present a problem to thérhey are defined as derivatives of the log-gamma function:
LRT. Although the details of the presented algorithm will Def

change. Second, the signal might decorrelate due to randoi”(x) :=(d"/dx")log'(x); see Refs. 25 and 24 for further
environmental effects, losing coherence between the souretetails and approximations. The mean and varigngeos
and receivers. This case is more difficult. A log-likelihood in (9) are given byk,,«,, respectively. If both DOy ,n,
function is not known to the authors in this case and, conseare even this reduces to the finite sum

quently, no LRT can be formulated.

n/2—1 1

= 20 (K+n,/2)""
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