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a b s t r a c t

We treat the estimation of a sparse set of sources emitting plane waves observed by a sensor array as a
complex-valued LASSO (c–LASSO) problem where the usual ℓ1-norm constraint is replaced by the
ℓ1-norm of a matrix D times the solution vector. When the sparsity order is given, algorithmically se-
lecting a suitable value for the c–LASSO regularization parameter remains a challenging task. The cor-
responding dual problem is formulated and it is shown that the dual solution is useful for selecting the
regularization parameter of the c-LASSO. The solution path of the c-LASSO is analyzed and this motivates
an order-recursive algorithm for the selection of the regularization parameter and a faster iterative al-
gorithm that is based on a further approximation. This greatly facilitates computation of the c-LASSO-
path as we can predict the changes in the active indices as the regularization parameter is reduced. Using
this regularization parameter, the directions of arrival for all sources are estimated.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

This paper proposes the complex-valued LASSO1 (c-LASSO [1])
to solve the sparse signal estimation problem from sensor array
data. This work proposes an array data model selection procedure
and high-resolution signal estimator by selecting a suitable value
for the c-LASSO regularization parameter. The key results in this
paper motivate an order-recursive algorithm for its solution and
two faster iterative algorithms.

Sparse signal estimation techniques retrieve a signal vector
from an undercomplete set of noisy measurements when the
signal vector is assumed to have only few nonzero components at
unknown positions. Research in this area was spawned by the
Least Absolute Shrinkage and Selection Operator (LASSO) [2]. In
the related field of compressed sensing, this sparse signal re-
construction problem is known as the atomic decomposition
problem [3]. The early results for sparse signals [4–6] have been
extended to compressible (approximately sparse) signals and
sparse signals buried in noise [7–11] which enables application to
problems in array processing.

We aim at selecting the best fitting configuration of plane wave
sources which satisfactorily explain the observed array data set
when the number of sources is constrained. Similar selection and

fitting problems in array processing can be treated by, e.g., model
order selection, multiple hypotheses testing, and cross-validation
[12].

Here, the real-valued approach in [13] is applied to the com-
plex-valued LASSO (c-LASSO, [1]) and the resulting fast LASSO-
Path solvers [14] are shown to solve the signal estimation problem
from complex-valued array data. The sparsity of the complex-va-
lued solution requires simultaneous sparsity of the real and ima-
ginary parts with identical support [1,15,16]. This relates the
c-LASSO to real-valued block-sparse compressive sensing.

It is shown here that the corresponding dual vector is inter-
pretable as the output of a weighted matched filter acting on the
residuals of the linear observation model, cf. [17].

The regularization parameter μ in LASSO defines the trade-off
between the model fit and the estimated sparsity order K given by
the number of estimated nonzero signal components. When the
sparsity order K0 is given, choosing a suitable value for the LASSO
regularization parameter μ remains a challenging task. The homo-
topy techniques [18,14,19] provide an approach to sweep over a
range of μ values to select the signal estimate with the given K0.

The maximum magnitudes of the dual vector can be used for
selecting the regularization parameter of the c-LASSO. This is the
basis for an order-recursive algorithm to solve the sparse signal
reconstruction problem [19–21] for the given K0. In this work, a
fast and efficient choice of μ is proposed for Direction of Arrival
(DOA) estimation from array data. The choice exploits the sidelobe
levels of the array's beam pattern. We motivate this choice after
proving several relations between the regularization parameter μ,
the c-LASSO residuals, and the c-LASSO's dual solution.
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The main achievements of this work are summarized as fol-
lows: We extend the convex duality theory [13] from the real-
valued to the complex-valued case and formulate the corre-
sponding dual problem to the c-LASSO. We show that the dual
solution is useful for selecting the regularization parameter of the
c-LASSO. Three signal processing algorithms are formulated and
evaluated to support our theoretical results and claims.

The developed methods have been applied to acoustic imaging
both with single and multiple data snapshots [22]. Its root mean
square error performance is superior to beamforming, minimum
variance distortion-free response (MVDR), and multiple signal
classification (MUSIC). Experiments with measured acoustic array
data indicate that the developed algorithms resolve multiple co-
herent waves [22].

1.1. Notation

Matrices …A B, , and vectors …a b, , are complex-valued and
denoted by boldface letters. The zero vector is 0. The Hermitian
transpose, inverse, and Moore–Penrose pseudo inverse are de-
noted as − +X X X, ,H 1 respectively. We abbreviate = ( )− −X XH H 1. The
complex vector space of dimension N is written as &N . ( )5 A is the
null space of A and ( )Aspan denotes the linear hull of A. The
projection onto ( )Aspan is PA. The ℓp-norm is written as · p. For a
vector ∈ &x M , ∥ ∥ = | |∞ ≤ ≤x xmax m M m1 , for a matrix ∈ ×&X N M , we
define ∥ ∥ = | |≤ ≤ ≤ ≤X Xmax maxn N m M nmmax 1 1 .

2. Problem formulation

We start from the following problem formulation: Let the
complex-valued array data ∈ &y N and array steering matrix

∈ ×&A N M be given. Find the sparse signal ∈ℓ &x M
0 for given

sparsity order ∈ 1K0 such that the squared data residuals are
minimal,

= − ∥ ∥ ≤ ( )ℓx y Ax x Kargmin subject to ,
P0x

2
2

0 00

where ∥·∥p denotes the ℓp-norm. The problem (P0) is known as
complex-valued ℓ0-reconstruction. It is non-convex and hard to
solve [23]. Therefore, the ℓ0-constraint in (P0) is commonly re-
laxed to an ℓ1 constraint which renders the problem (P1) to be
convex. Further, a matrix D is introduced in the formulation of the
constraint which gives flexibility in the problem definition. Let the
number of rows of D be arbitrary at first. In Section 3 suitable
restrictions on D are imposed where needed. Several real-valued
cases are discussed in [13]. Here, we generalize the c-LASSO [1]
problem by introducing the D matrix in the constraint,2

ε= − ∥ ∥ ≤ ( )ℓx y Ax Dxargmin subject to .
P1x

2
2

11

The sparsity of the complex-valued signal x implies joint sparsity
of its real and imaginary parts with identical support [15,1]. This
relates (P1) to real-valued block-sparse compressive sensing. In-
corporating the ℓ1 norm constraint into the objective function
results in the equivalent formulation (P1′),

( )μ= − + ∥ ∥ ( ′)ℓx y Ax Dxargmin .
P1x

2
2

11

The equivalence of (P0) and (P1′) requires suitable conditions to be
satisfied such as the restricted isometry property (RIP) condition
or mutual coherence condition imposed on A, cf. [24,25,5]. Under
such condition, the problems (P0) and (P1′) yield the same sparsity
order, =K K0 with = ∥ ∥ℓxK 01 , if the regularization parameter μ in

(P1′) is suitably chosen. The algorithms of Section 6 calculate
suitable regularization parameters in this sense.

3. Dual problem to the c-LASSO

The c-LASSO problem [13,1] is written in constraint form, all
vectors and matrices are assumed to be complex-valued. The fol-
lowing discussion is valid for arbitrary ∈ 1N M, : both the over-
determined and the under-determined cases are included. Fol-
lowing [26,27], a vector ∈ &z M and an equality constraint =z Dx
are introduced to obtain the equivalent problem

( )μ− + ∥ ∥ = ( )y Ax z z Dxmin subject to .
1x z, 2

2
1

The complex-valued dual vector = ( … )u u u, , M
T

1 is introduced and
associated with this equality constraint. The corresponding La-
grangian is

μ( ) = − + ∥ ∥ + ( − ) ( )⎡⎣ ⎤⎦3 x z u y Ax z u Dx z, , Re 2H
2
2

1

( ) = ( ) + ( ) ( )3 3 3x z u x u z u, , , , . 31 2

To derive the dual problem, the Lagrangian is minimized over x
and z . The terms involving x are

( )( ) = − + ( )3 x u y Ax u Dx, Re . 4H
1 2

2

The terms in (2) involving z are

μ( ) = ∥ ∥ − ( ) ( )3 z u z u z, Re . 5H
2 1

The value lx minimizing (4) is found by differentiation, ∂ ∂ =3 x/ 01 .
This gives

( )= − ( )lD u A y Ax2 6H H

whereby

= − ( )lA Ax A y D u1
2

. 7
H H H

If ∈ ( )D u AspanH H the solution to (7) is expressible as a sum of
three terms,

ξ= + − ( )
( )

+ +l

l
 x A y A A D u1

2
,

8x

H H

LS

where (·)+ denotes the Moore–Penrose pseudoinverse. The Moore–
Penrose pseudoinverse +X is defined and unique for all matrices X .
The sole purpose of (8) is to provide a geometrical interpretation
of the three terms as illustrated in Fig. 1 and explained below. In
the following, we assume that A has full row-rank and

= ( )+ −A A AAH H 1 is a right-inverse [28]. Here, ξ ∈ ( )5 A is any vector
in the nullspace ξ ξ( ) = { ∈ | = }&5 A A 0M . By setting
ξ ξ= = − + ( ) ∈ ( )ℓ ℓ + + 5x A y A A D u AH H1

21 1 , we specialize (8) to the
solution of (P1′),

ξ= + − ( ) ( )ℓ +
ℓ

+x A y A A D u. 9
H H1

21 1

Thus, the solution (9) to the c-LASSO problem (P1′) consists of
three terms, as illustrated in Fig. 1. The first two terms are the least
norm solution +A y and the nullspace solution ξℓ1

which together
form the unconstrained least squares (LS) solution lxLS. The third
term in (9) is associated with the dual solution and lies in the same
subspace as xleast norm, namely ( )Aspan H , i.e., the row space of A.
Fig. 2 shows the three terms of (9) individually for a simple array-
processing scenario. The continuous angle φ is discretized uni-
formly in [ − ]°90, 90 using 361 samples and the wavefield is2 If D is invertible then this is equivalent to the c-LASSO [1].
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observed by 30 sensors resulting in a complex-valued 30"361 A
matrix (see Section 4.1). At those indices m which correspond to
DOAs at − °3 , °4. 5 and °74. 5 in Fig. 2, the three terms in (9) sum
constructively giving a non-zero xm (we say: “the mth source po-
sition is active”), while for all other entries they interfere de-
structively. Constructive interference is illustrated in Fig. 1 which is
in contrast to the destructive interference when the three terms in
(9) sum to zero. This is formulated rigorously in Corollary 1.

We evaluate (4) at the minimizing solution lx and express the
result solely by the dual u. Firstly, we expand

− = + − { } ( )l l ly Ax y Ax y Ax2 Re 10H
2
2

2
2

2
2

Secondly using (6),

= ( ) = ( − )
= − ( )

l l l l

l l
u Dx D u x y Ax Ax

y Ax Ax

2

2 2 11

H H H H

H
2
2

Adding Eq. (10) and the real part of (11) gives

( ) = −

= − ˜ − ˜ ( )

l l3 x u y Ax

y y y D u

,

, 12H H

1 2
2

2
2

2

2

where we used (8) which assumes ∈ ( )D u AspanH H and introduced
the abbreviations

˜ = ( )
+D DA , 13

1
2

˜ = = ( )+y P y P AA, with 14A A

The statement ∈ ( )v Aspan H is equivalent to =U v 0H , where U is a
unitary basis of the null space ( )5 A . With =v D uH , this becomes
( ) =DU u 0H , resulting in

( ) = − ˜ − ˜ ( ) =
− ∞ ( )

⎧
⎨⎪
⎩⎪

3 x u y y y D u DU u 0inf , , if ,

, otherwise. 15x

H H H
1 2

2

Next (5) is minimized with respect to z , see Appendix A,

μ( ) = ∥ ∥ ≤
− ∞ ( )

∞⎧⎨⎩3 z u
u

inf ,
0, if

, otherwise. 16z
2

Combining the results and conditions of (15) and (16), we obtain
the dual objective function and the dual constraints, i.e., the for-
mulation of the dual problem to (P1),

− ˜ − ˜
( )∈

⎛
⎝⎜

⎞
⎠⎟&

y y y D umax
17au

H H
2

2

M

μ∥ ∥ ≤ ( )∞usubject to , 17b

( ) = ( )DU u 0. 17cH

Eq. (6) is solvable for u if the row space constraint (17c) is fulfilled.
In this case, solving (6) directly gives

Result 1. If D is non-singular, the dual vector u is the output of a
weighted matched filter acting on the vector of residuals, i.e.,

= ( − ) ( )− ℓu D A y Ax2 , 18H H
1

where ℓx 1 is the c-LASSO solution (P1′).

The dual vector u gives an indication of the sensitivity of the
primal solution to small changes in the constraints of the primal
problem (cf. [26]: Section 5.6). For the real-valued case the
solution to (P1′) is more easily constructed and better understood
via the dual problem [13]. Result 1 asserts a linear one-to-one
relation between the corresponding dual and primal solution
vectors also in the complex-valued case. Thus, any results for-
mulated in the primal domain are readily applicable in the dual
domain. This allows a more fundamental interpretation of sequen-
tial Bayesian approaches to density evolution for sparse source
reconstruction [20,21]: they can be rewritten in a form that shows
that they solve a c-LASSO problem and its dual. It turns out that
the posterior probability density is strongly related to the dual
solution [21,29].

The following corollaries clarify useful element-wise relations
between the primal and dual solutions: Corollary 1 relates the
magnitudes of the corresponding primal and dual variables. Fur-
ther, Corollary 2 certifies what conditions on D are sufficient for
guaranteeing that the phase angles of the corresponding primal
and dual variables are equal. Finally, Corollary 3 states that both
the primal and the dual solutions to (P1′) are piecewise linear in
the regularization parameter μ.

Corollary 1. For a diagonal matrix D with real-valued positive di-
agonal entries, we conclude: If the mth primal coordinate is active, i.
e., ≠ℓx 0m,1 then the box constraint (17b) is tight in the mth dual
coordinate. Formally,

Fig. 1. Sketch of the relations between the primal solution and the terms in (9):
least norm solution xleast norm, least squares solution xLS, and the sparse solutions

ℓx 0 , ℓx 1. The nullspace term ξℓ1
is any vector along the line perpendicular to

( )( ) =+A Aspan span H . The red dashed arrow represents the last term in (9) which is
perpendicular to ξℓ1

, but need not be parallel to xleast norm . (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this paper.)

Fig. 2. Numerical example of the solution terms in Eq. (9) versus Direction of Ar-
rival (DOA).
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μ≠ ⇒ | | = ( = … ) ( )ℓx u m M0 , 1, , . 19m m,1

The proof is given in Appendix B.
Thus, the mth dual coordinate hits the boundary as the mth

primal coordinate becomes active. Conversely, when the bound on
| |um is loose (i.e., the constraint on um is inactive), the corre-
sponding primal variable xm is zero (the mth primal coordinate is
inactive). The active set 4 is

{ } { }μ= | ≠ ⊆ | | = = ( )ℓ4 <m x m u0 . 20m m,1

Here, we have also defined the dual active set < which is a su-
perset of 4 in general. This is due to Corollary 1 which states an
implication in (19) only, but not an equivalence. The active set 4
implicitly depends on the choice of μ in problem (P1′). Let 4
contain exactly K indices,

= { … } ( )4 m m m, , , . 21K1 2

The number of active indices versus μ is illustrated in Fig. 3.
Starting from a large choice of regularization parameter μ and then
decreasing, we observe incremental changes in the active set 4 at
specific values μ⁎p of the regularization parameter, i.e., the candi-
date points of the c-LASSO path [14]. The active set remains con-
stant within the interval μ μ μ> >⁎ ⁎ +p p 1. By decreasing μ, we tend
to enlarge the sets 4 and < [13,14]. By Eq. (20), we see that <
may serve as a relaxation of the set of active indices 4.

Corollary 2. If matrix D is diagonal with real-valued positive diag-
onal entries, then the phase angles of the corresponding entries of the
dual and primal solution vectors are equal.

θ( ) = ( ) = ∀ ∈ ( )ℓ 4u x marg arg , 22m m m,1

Corollary 3. The primal and the dual solutions to the c-LASSO pro-
blem (P1′) are continuous and approximately piecewise linear in the
regularization parameter μ > 0. The changes in slope occur at those
values for μ where the set of active indices 4 changes.

The proofs for these corollaries are given in Appendix B.

3.1. Relation to the ℓ0 solution

It is now assumed that 4 defines the indices of the K non-zero
elements of the corresponding ℓ0 solution. In other words: the ℓ1
and ℓ0 solutions share the same sparsity pattern. The ℓ0 solution
with sparsity order K is then obtained by regressing the K active
columns of A to the data y in the least-squares sense. Let

= [ … ] ( )4A a a a, , , , 23m m mK1 2

where am denotes the mth column of A. The ℓ0 solution becomes
(cf. Appendix C)

= ( )ℓ
+

4 4x A y. 24,0

Here, = ( )+ −
4 4 4 4A A A AH H1 is the left inverse of 4A . By subtracting (9)

from (24) and restricting the solutions to the contracted basis 4A
yields

( ) μ( − ) = = ˜
( )

θℓ ℓ
+

4 4 4 4 4 4 4 4 4 4A x x A A A D u D e , 25
H H H j

, ,
1
20 1

where (13) was used. For the diagonal matrix D, we conclude that
the ℓ0-solution (P0) and the c-LASSO solution (P1′) coincide in the
image of 4A , if the c-LASSO problem is pre-informed (prior
knowledge) by setting the mth column of ∈ 4D m, to zero. Such
prior knowledge is obtainable by iterative re-weighting [30] or by
a sequential algorithm on stationary sources [21,29].

4. Direction of arrival estimation

For the numerical examples, we model a uniform linear array
(ULA), which is described with its steering vectors representing
the incident wave for each array element.

4.1. Array data model

Let = ( … )x x x, , M1
T be a vector of complex-valued source am-

plitudes. We observe time-sampled waveforms on an array of N
sensors which are stacked in the vector y . The following linear
model for the narrowband sensor array data y at frequency ω is
assumed,

= + ( )y Ax n. 26

The mth column of the transfer matrix A is the array steering
vector am for hypothetical waves from DOA φm. To simplify the
analysis all columns are normalized such that their ℓ2 norm is one.
The transfer matrix A is constructed by sampling all possible
DOAs, but only few are active. Therefore, the dimension of A is
N"M with ⪡N M and x is sparse. The linear model (26) is
underdetermined.

The nmth element of A is modeled by

π φ= ( − ) ( )
⎡⎣ ⎤⎦A

N
n1 exp j 1 sin .

27nm m

Here φ = − °( − ) ° 90m
m

M
1 180 is the DOA of the mth hypothetical DOA

to the nth array element.
The additive noise vector n is assumed spatially uncorrelated

and follows a zero-mean complex normal distribution with diag-
onal covariance matrix σ I2 .

Following a sparse signal reconstruction approach [13,21], this
leads to minimizing the c-LASSO's Lagrangian

μ− + ( )y Ax Dx , 282
2

1

where the weighting matrix D gives flexibility in the formulation
of the penalization term in (28). Prior knowledge about the source
vector leads to various forms of D. This provides a Bayesian fra-
mework for sequential sparse signal trackers [20,21,29]. Specific
choices of D encourage both sparsity of the source vector and
sparsity of their successive differences which is a means to express
that the source vector is locally constant versus DOA [31]. The
minimization of (28) constitutes a convex optimization problem.
Minimizing the c-LASSO's Lagrangian (28) with respect to x for
given μ, gives a sparse source estimate ℓx 1. If ( ) <A Nrank , (28) is
no longer strictly convex and may not have a unique solution, cf.
[13].

Earlier approaches formulated this as a (ordinary) c-LASSO
problem [2,7,8] which is equivalent to (28) when specializing to

=D I .

4.2. Basis coherence

The following examples feature different levels of basis co-
herence in order to examine the solution's behavior. As described

Fig. 3. Illustration of the c-LASSO path: Number of active indices versus the reg-
ularization parameter μ. Increments in the active set occur at μ⁎p.
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in [32], the basis coherence is a measure of correlation between
two steering vectors and defined as the inner product between
atoms, i.e., the columns of A. The maximum of these inner pro-
ducts is called mutual coherence and is customarily used for per-
formance guarantees of recovery algorithms. To state the differ-
ence formally:

( ) = ( )a a a acoh , 29i j i j
H

( ) = − ( )A A A Imutual coh 30H
max

The mutual coherence is bounded between 0 and 1
The following noiseless example in Figs. 4 and 5 demonstrates

the dual solution for two different values of μ with N¼30 and
M¼361. In Fig. 4, the c-LASSO with μ = 1 is solved for a scenario
with three sources at DOA − ° ° °3 , 4. 5 , 84. 5 and all sources have
same power level and are in-phase (see Fig. 4b). The dual solution
u is shown for μ = 1 (black, ⋄‘ ’) compared with the dual solution u0

(blue, ▵‘ ’) for a very large choice of μ ≥ ∥ ∥− ∞D A y2 H H which gives
the trivial primal solution =ℓx 01 . Fig. 5 shows the dual solutions
for a scenario with an additional fourth source at °8 .

4.2.1. Low basis coherence
Fig. 4 shows the performance when the steering vectors of the

active sources have small basis coherence. The basis of source 1 is
weakly coherent with source 2, ≈coh 0.02 using (29).

Fig. 4 a shows the normalized magnitude of the dual vector for
a very large μ ≥ ∥ ∥− ∞D A y2 H H (blue, ▵‘ ’) and the normalized
magnitude of the dual vector for μ = 1 (black, ⋄‘ ’). The dual active
set < defined in (20) is depicted in red color. This figure shows
that the true source parameters (DOA and power) are well esti-
mated. It is also seen here that the behavior of the weighted
matched filter closely resembles the magnitude of the dual vector
and the weighted matched filter may be used as an approximation
of the dual vector. This idea is further explored in Section 6.

4.2.2. High basis coherence
Fig. 5 a shows that the sources are not separable with the

weighted matched filter, because the steering vectors belonging to
sources 2 and 3 are coherent, =coh 0.61 using (29). The c-LASSO
approach is still capable of resolving all four sources. The DOA
region defined by < is much broader around the nearby sources,
allowing for spurious peaks close to the true DOA. Fig. 5b shows

that the true source locations (DOA) are still well estimated, but
for the 2nd source from left, the power is split into two bins,
causing a poor source estimate.

5. Solution path

The c-LASSO solution path [13,14,1] gives the primal and dual
solution vector versus the regularization parameter μ. The primal
and dual trajectories are piece-wise smooth and related according
to Corollaries 1–3. Figs. 6–9 show results from individual c-LASSO
runs by varying μ.

The problem (P1) is complex-valued and the corresponding
solution paths behave differently from the real-valued case [13].
Here, the behaviors of magnitude and phase for the primal and
dual solution paths are given in Corollaries 1 and 2, whereas in the
real-valued setting this reduces to results for the sign of the so-
lutions. In the following figures, only the magnitudes of the primal
variables containing a source and the corresponding dual solutions
are illustrated. Note that Corollary 2 guarantees that the phase
angle of each active primary solution its duals are identical and
independent of μ.

Based on the observed solution paths, we notice that the hit-
ting times (cf. [13], i.e., the μ-values when μ| | =um for an additional

Fig. 4. Dual (a) and primal (b) solutions for 3 well separated sources at DOA − °3 ,
°4. 5 , °84. 5 with low basis coherence. (For interpretation of the references to color

in this figure caption, the reader is referred to the web version of this paper.)
Fig. 5. Dual (a) and primal (b) solutions for 4 sources at DOA − °3 , °4. 5 , °8 , °84. 5
with higher basis coherence.

Fig. 6. Magnitudes of the solution paths versus μ for the simulation parameters in
Table 1 and =SNR 40 dB: (a) dual, and (b) primal vectors for the case of the
complete basis. The path is obtained by solving (P1') and (18) repeatedly for many
values of μ.
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m) of the dual variables (at lower μ) are well predictable from the
solution at higher μ.

For the following simulations and Figs. 6–9, the signal to noise
ratio (SNR) is defined as

( )= ( )Ax nSNR 10 log E /E dB. 3110 2
2

2
2

Results for high =SNR 40 dB are shown in Figs. 6–8, 9a, c, whereas
lower =SNR 20 dB is in Figs. 9b and d.

5.1. Complete basis

First (Fig. 6) discusses the dual and primal solution for a com-
plete basis with M¼6, sparsity order K¼6, and N¼30 sensors
linearly spaced with half wavelength spacing. This simulation
scenario is not sparse and all steering vectors am for ≤ ≤m M1
will eventually be used to reconstruct the data for small μ. The
source parameters that are used in the simulation scenario are
given in Table 1.

We discuss the solution paths in Figs. 6–9 from right (μ = ∞) to
left ( μ = 0). Initially all dual solution paths are horizontal
(slope¼0), since the primal solution =ℓx 01 for μ > ∥ ∥− ∞D A y2 H H .
In this strongly penalized regime, the dual vector is = −u D A y2 H H

which does not depend on μ.
At the point μ = ∥ ∥− ∞D A y2 H H1 the first dual coordinate hits

the boundary (17b). This occurs at μ = 211 in Fig. 6a and the cor-
responding primal coordinate becomes active. As long the active
set 4 does not change, the magnitude of the corresponding dual
coordinate is μ, due to Corollary 1. The remaining dual variables

change slope relative to the basis coherence level of this index and
the active set.

As μ decreases, the source magnitudes at the primal active
indices increase since the ℓ1-constraint in (P1′) becomes less im-
portant, see Fig. 6b. The second source will become active when
the next dual coordinate hits the boundary (at μ = 171 in Fig. 6).

When the active set is constant, the primary and dual solution
is piecewise linear with μ, as proved in Corollary 3. The changes in
slope are quite gentle, as shown for the example in Fig. 6. Finally,
at μ = 0 the problem (P1′) degenerates to an unconstrained (un-
derdetermined) least squares problem. Its primal solution =l lx xLS,
see (8), is not unique and the dual vector is trivial, =u 0.

5.2. Overcomplete basis

We now enlarge the basis to M¼81 with hypothetical source
locations φ ∈ [ − ° °]20 , 20m with °0. 5 spacing, and all other
parameters as before. The solution is thus sparse.

The c-LASSO path [14] is illustrated in Fig. 7 where we expect
the source location estimate within ±2 bins from the true source
location. The dual Fig. 7a appears to be quite similar to Fig. 6a.

To obtain a simple figure, we plot the maximum magnitude of
five adjacent bins near each true source, i.e., we define

| | = (| | … | |) ( )− +x x xmax , , . 32m m1 2 2m

This shows that changes in slope at points not predicted by Cor-
ollary 3 (i.e. μ = 10 in Fig. 7b).

Corollary 3 gives that the primary solution should change lin-
early, as demonstrated for the complete basis in Fig. 6b. Here we
explain why this is not the case for the overcomplete basis primary
solution in Fig. 7b. This is understood by examining the full solu-
tion at selected values of μ (asterisk (n) in Fig. 7). At μ = 20 just one
solution is active, only the black source (source 5) is active though
one bin to the left, as shown in Fig. 8a2. The dual vector in
Fig. 8a1–d1, has a broad maximum, explaining the sensitivity to
offsets around the true DOA. The shape of this maximum is im-
posed by the dictionary; the more coherent the dictionary, the
broader the maximum. Between μ = 16 and μ = 11, the black
source appears constant, this is because at large values the source
is initially located in a neighboring bin. As μ decreases, the true bin
receives more power, see Fig. 8b2 and Fig. 8c2 for μ = 15 and
μ = 10, respectively. When the bin is stronger than the neighbor-
ing bin at μ ≤ 11, see Fig. 8d2, this source power starts increasing
again. This trading in source power causes the fluctuations in
Fig. 7b.

One way to correct for this fluctuation is to sum the coherent
energy for all bins near a source, i.e., multiplying the source vector
with the corresponding neighbor columns of A, which also touch
the boundary (marked region in Fig. 8) and then compute the
energy based on the average received power at each sensor. This
gives a steady rise in contributed power to the array data. This is
observed in Fig. 7c which shows the steady increase in | |x menergy
defined by

∑| | =
( )=−

− −axx
33

m
j

m j m jenergy
2

2

2

for all ∈ 4m when μ decreases.
We motivated solving (P1′) as a substitute for ℓ0-reconstruction

(P0)—finding the active indexes of the ℓ1 solution, see Fig. 7d. The
ℓ0 primal can be found with the restricted basis and the value of
the ℓ1 primal from (8), which depends on μ, or by just solving (24).

To investigate the sensitivity to noise, 10 c-LASSO paths are
simulated for 10 noise realizations for both =SNR 40 dB (Figs. 9a
and c) and =SNR 20 dB (Figs. 9b and d). The primal | |ℓx 1 (Figs. 9a
and b) show quite large variation with noise. This is because the

Fig. 7. Magnitudes of the solution paths versus μ for the simulation parameters in
Table 1 and =SNR 40 dB: (a) dual, and (b, c and d) primal vectors for the case of an
80-vector overcomplete basis. For the primal solution, the peak within ±2 bins from
the true bin is tracked based on (b) maximum (c) energy. The magnitudes of the
corresponding elements of ℓx 0 are shown in (d). The figure is produced by solving
(P1') and (18) repeatedly for many values of μ.
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noise causes the active indexes to shift and thus the magnitude to
vary. The mapping to energy | |x menergy defined in (33) is shown in
Figs. 9c and d.

6. Solution algorithms

Motivated by Result 1 and Corollary 1, we propose the order-
recursive algorithm in Table 2 for approximately solving problem
(P0) by selecting a suitable regularization parameter μ in problem
(P1′), a faster iterative algorithm in Table 3, and a dual-based
iterative algorithm in Table 4.

As shown by Result 1, the dual vector is evaluated by a weighted

matched filter acting on the c-LASSO residuals. The components of
the dual vector which hit the boundary, i.e., μ| | =um , correspond to
the primal variables containing a source | | >x 0m . As μ| | =um con-
stitutes a necessary condition, this condition is at least | |4 times
fulfilled. Informally, we express this as: “The dual vector must have
| |4 peaks of height μ, where the shaping is defined by the dic-
tionary A and the weighting matrix D.”

The key observation is the reverse relation. By knowing the
peak magnitudes of the dual vector, one estimates the appropriate
μ-value to make i peaks hit the boundary. We denote this reg-
ularization parameter value as μi. This is a necessary condition to
obtain i active sources.

Fig. 8. Dual and primal solutions at selected values of μ for 81-vector overcomplete basis for =SNR 40 dB.
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We define the ( )u ipeak , –function which returns the ith largest
local peak in magnitude of the vector u. A local peak is defined as
an element which is larger than its adjacent elements. The peak
function can degenerate to a simple sorting function giving the ith
largest value, this will cause slower convergence in the algorithms
below.

Proposition 1. Assuming all sources to be separated such that there
is at least a single bin in between, the peak function relates the
regularization parameter to the dual vector via

Fig. 9. For 10 noise realizations, magnitudes of the primal solution path versus μ are shown for the settings in Table 1 and an overcomplete basis, M¼81. The peak within ±2
bins from the true bin is tracked based on the maximum (top: (a) and (b)) or energy (bottom: (c) and (d)). Left ((a) and (c)): SNR¼40 dB, right ((b) and (d)): SNR¼20 dB.

Table 1
Source parameters for simulation scenario.

No. DOA ( °) Power (lin.)

1 #6.0 4.0
2 #1.0 7.0
3 4.0 9.0
4 9.0 7.0
5 14.0 12.0
6 19.0 5.0

Table 2
Order-recursive algorithm to select μ for given spar-
sity order K0.

Given: ∈ ×&A N M , ∈ 5D diag M , ∈ &y N

Line Given: ∈ 1K0 , ∈ ] [F 0, 1 , ℓx 1.

1 δ= { || | > }ℓ4 m x m i1, , δ = ϵ ∥ ∥ℓ ∞xi
i
1

2 ( )= −− − ℓu D A y Ax2i H H1
1

3 if | | <4 K0
4 { }= − < ϵμ μ

| |< m 1 um

5 = | | +<i 1
6 ( ) ( )μ = ( − ) + +− −u uF i F i1 peak , peak , 1i i1 1

7 else if | | >4 K0
8 bisecting between μi-1 and μi defined in (34)
9 end
10 Output: μ

Table 3
Iterative primal based algorithm to select μ for given
sparsity order K0.

Given: ∈ ×&A N M , ∈ 5D diag M , ∈ &y N

Line Given: ∈ 1K0 , ∈ ] [F 0, 1 , ℓx 1 .

1 δ= { || | > }ℓ4 m x m i1, , δ = ϵ ∥ ∥ℓ ∞xi
i
1

2 ( )= −− − ℓu D A y Ax2i H H1
1

3 if | | <4 K0
4 { }= − < ϵμ μ

| |< m 1 um

5 = | | +<i 1
6 ( ) ( )μ = ( − ) + +− −u uF K F K1 peak , peak , 1i i1 1 0

7 else if | | >4 K0
8 bisecting between μi-1 and μi defined in (34)
9 end
10 Output: μ
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( ) ( )μ μ μ= ( ) = ( ) ( )u ui ipeak , peak , . 34
i i i

Eq. (34) is a fixed-point equation for μi which is demanding to
solve. Therefore we approximate (34) with previously obtained
dual vectors.3 At a potential new source position n, the dual vector
is expanded as

∑μ μ( ) = − ( )
( )

⁎
∈

ℓ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

4
a y a xu

D
2

35
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n n
n
H

m
m m
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,
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i

1
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i 2

1
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⋮

( ) ≈
( )⁎ a yu

D
2

38
n

i

n n
n
H

,

The approximations used in (36)–(38) are progressive. These
approximations are good if the steering vectors associated with
the active set are sufficiently incoherent: | | ≈a a 0n

H
m for ∈ 4n m, .

Eq. (38) corresponds to the conventional beamformer A yH for a
single snapshot. In the solution algorithms, the approximations
(36)–(38) are used for the (fast) selection of the regularization
parameter μ only. Even if the approximations (36)–(38) do not
hold, the bisection algorithm in Tables 2, 3, and 4 will guarantee
the correct size of the active set. Thus, the accuracy of the
approximations (36)–(38) affects the computation time only, but
not the numerical accuracy of the ℓx 1 solution.

Our simulations have shown that a significant speed-up
achievable, so we named it fast-iterative algorithm, cf Section 6.2.
From the box constraint (17b), the magnitude of the ith peak in u
does not change much during the iteration over i: It is bounded by
the difference in regularization parameter. For any μ μ< −i i 1, we
conclude from (19) and (36) that

μ μ μ μ( ( ) ) − ( ( ) ) ≤ −
( )μ μ

−

≤ =

−

−
     u ui ipeak , peak , .

39

i i i i1 1

i i1

Thus, the magnitude of the ith peak cannot change more than the
corresponding change in the regularization parameter. The left
hand side of (39) is interpretable as the prediction error of the
regularization parameter and this shows that the prediction error
is bounded.

Assuming our candidate point estimates ( μ μ …⁎ ⁎, ,1 2 ) are
correct, we follow a path of regularization parameters μ μ …, ,1 2

where μp is slightly higher than the lower end μ⁎ +p 1 of the reg-
ularization interval. Specifically, μ μ μ= ( − ) +⁎ ⁎ +F F1p p p 1 with

<F 1. For the numerical examples F¼0.9 is used. This F is chosen
because the primal solution ℓx 1 is closest to ℓx 0 at the lower end of
the interval.

In the following we focus on the order recursive algorithm, and
indicate the differences to the other approaches.

6.1. Recursive-in-order algorithm

The recursive-in-order algorithm in Table 2 finds one source at
a time as μ is lowered. For this purpose it employs an approx-
imation of the height of the ith local peak given a solution with
( − )i 1 peaks. The underlying assumption is that the next source
will become active at the location corresponding to the dual co-
ordinate of the next peak. Eq. (36) allows to approximate

μ μ μ= ( ( ) ) ≈ ( ( ) ) ( )−u ui ipeak , peak , . 40i i i 1

This assumption is not universally valid as it may happen that the
coordinate corresponding to the ( + )i 1 th peak becomes active
first, although ( ) > ( + )− −u ui ipeak , peak , 1i i1 1 . In this case, two
sources become active as the regularization parameter is chosen
too low. This exception can be handled by, e.g., bisection in μ.

The recursive-in-order algorithm provided in Table 2 takes as
input the dictionary A, the generalization matrix D, the mea-
surement vector y , the given sparsity order K0 and the previous
order c-LASSO solution ℓx 1. In line 1 the actual active set is de-
termined by thresholding and line 2 produces the dual vector by
Result 1. Line 2 can be omitted, if the c-LASSO solver makes the
dual solution available, e.g., through primal–dual interior point
methods or alternating direction method of multipliers. If the size
of the active set of the previous c-LASSO solution is less than the
given sparsity order K0, the algorithm determines the dual active
set < in line 4, cf. Eq. (20). The incremented cardinality of < is the
new requested number of hitting peaks in the dual vector, cf. [13].
Finally, line 6 calculates μ based on the candidate point estimate
(40).

6.2. Fast-iterative algorithm

The approximation in Eq. (40) is not limited to a single itera-
tion. From (37)–(38) with (19), we extend (40) to

μ μ

μ

μ

≈ ( ( ) )

≈ ( ( ) )

≈ ⋯

≈ ( ( ) ) = ( ) ( )

−

−

−

u

u

u D A y

i

i

i i

peak ,

peak ,

peak , peak 2 , . 41

i i

i

H H

1

2

0

This observation motivates the iterative algorithm in Table 3. The
main difference to the recursive-in-order algorithm is found in line
6. The peakfinder estimates the maximum of the K th peak. This
leads to a significant speed-up, if sources are well separated and

Table 4
Iterative dual based algorithm to select μ for given
sparsity order K0.

Given: ∈ ×&A N M , ∈ 5D diag M , ∈ &y N

Line Given: ∈ 1K0 , ∈ ] [F 0, 1 , u.

1 { }= − < ϵμ μ
| |< m 1 um

2 =ℓ +
<x A y0

3 δ= { || | > }ℓ4 m x m0, , δ = ϵ ∥ ∥ℓ ∞x 0
4 if | | <4 K0
5 = | | +<i 1
6 ( ) ( )μ = ( − ) + +− −u uF K F K1 peak , peak , 1i i1 1 0

7 Else if | | >4 K0
8 Bisecting between μi-1 and μidefined in (34)
9 End
10 Output: μ

3 For the first step, we define = −u D A y2 H H0 .
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their basis coherence is low.

6.3. Detection in the dual domain

As a demonstrative example, we provide the fast iterative al-
gorithm formulated solely in the dual domain in Table 4. Note that
the gird-free atomic norm solutions [33–37] follow a similar
approach.

As asserted by (20), searching for active indices in the dual
domain is effectively a form of relaxation of the primal problem
(P1′). This amounts to peak finding in the output of a weighted
matched filter acting on the residuals, cf. Result 1. In line 1, the
active set 4 is effectively approximated by the relaxed set < .
Therefore, the ℓ0 solution is determined by regression on the re-
laxed set in line 2 and the primal active set is found by thresh-
olding this solution in line 3. The remainder of the algorithm
equals the primal based ones.

7. Simulation

In this section, the performance of the proposed dual esti-
mation algorithms is evaluated based on numerical simulation.
We use synthetic data from a uniform linear array with N¼64
elements with half-wavelength spacing. The DOA domain is
discretized by φ = ( − ) − °°m 1 90m M

180 with m¼1,…,M and

M¼180. The simulation scenario has =K 80 far-field plane-
waves sources (26). The uncorrelated noise n is zero-mean
complex-valued circularly symmetric normally distributed
∼ ( )5 I0, , i.e., 0 dB power. Eight sources are stationary at
φ = [ − − − ]45, 30, 14, 9, 17, 30, 44, 72T degrees relative to
broadside with constant power level (PL)
[ − ]5, 10, 5, 0, 11, 12, 9, 25 dB [21].

The dual solution for the order-recursive approach, Table 2,
corresponds to the results shown in Fig. 10. The faster iterative
approach, Table 3, yields the results in Fig. 11. The dual solution
using the primal solution from the previous iteration is interpreted
as a weighted matched filter and used for the selection of μ (left
column). Next, the convex optimization is carried out for that value
of μ giving the dual solution. We plot the dual solution on a linear
scale and normalized to a maximum value of 1 which is customary
in implementations of the dual for compressed sensing [33–35]. The
number of active sources (see the right column in Figs. 10 and 11)
are determined according to line 1 in Tables 2 and 3.

For the order-recursive approach step 1, Fig. 10a, the μ is se-
lected based on the main peak φ = °72 and a large side lobe at
φ = °80 . Once the solution for that μ is obtained it turns out that
there is no an active source in the sidelobe.The solution progresses
steadily down the c-LASSO path. Fig. 11 shows the faster iterative
approach in Table 3 for the 8-source problem. In the first iteration
we use a μ between the 8th and 9th peaks based on the weighted
matched filter solution (Fig. 11a). There are many sidelobes

Fig. 10. Dual solution for order-recursive approach corresponding to step i¼1 (a and b), i¼2 (c and d), and i¼8 (e and f). Left column: Dual (dB) for the previous step which
is used for selecting μ (horizontal line). Right column: Dual (lin) normalized with μ (maximum is 1), the true source locations are marked with ○, and the actual value of μ and
number of sources found is also indicated.
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associated with the source at φ = °72 . As soon as the dominant
source is determined, the sidelobes in the residuals are reduced
and only five sources are observed. After two more iterations, all
eight sources are found at their correct locations.

For both algorithms, the main CPU time is used in solving the
convex optimization problem. Thus the iterative algorithm is a
factor 8/3 faster in this case than the straightforward approach
which strictly follows the c-LASSO path. The approach described in
Table 2 has approximately the same CPU time usage as the ap-
proach in Ref. [21], but it is conceptually simpler and provides
deeper physical insight into the problem.

8. Conclusion

The c-LASSO problem is convex. The corresponding dual pro-
blem is interpretable as a weighted matched filter acting on the
residuals of the c-LASSO. There is a linear one-to-one relation
between the dual and primal vectors. Any results formulated for
the primal problem are readily extendable to the dual problem.
Thus, the sensitivity of the primal solution to small changes in the
constraints can be easily assessed. Further, the difference between
the solutions ℓx 0 and the ℓx 1 is characterized via the dual vector.

Based on mathematical and physical insight, an order-recursive
and a faster iterative c-LASSO-based algorithm are proposed and
evaluated. These algorithms use the dual variable of the c-LASSO
for regularization parameter selection. This greatly facilitates

computation of the c-LASSO-path as we can predict the changes in
the active indexes as the regularization parameter is reduced.
Further, a dual-based algorithm is formulated which solves only
the dual problem. The examples demonstrate the algorithms,
confirming that the dual and primal solutions are piecewise linear
in the regularization parameter μ.
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Appendix A. Proof of (16)

Set = ( … ) ∈ &u u u, , M
T M

1 . From (5),

Fig. 11. Dual solution for iterative approach corresponding for localizing =K 80 sources for step i¼1 (a and b), i¼2 (c and d), and i¼3 (e and f). Left column: Dual (dB) for the
previous step which is used for selecting μ (horizontal line). Right column: Dual (lin) normalized with μ (maximum is 1), the true source locations are marked with ○, and the
actual value of μ and number of sources found is also indicated.
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( )∑μ μ∥ ∥ − ( ) = | | − ( )
( )=

⁎z u z z u zRe Re
A1

H

m

M

m m m1
1

∑μ μ ϕ∥ ∥ − ( ) = ( − | | ) | |
( )μ
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  z u z u zRe cos ,
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m mm m1
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where we set * = | || | ϕu z u z em m m m
j mm. The phase difference ϕmm de-

pends on both um and zm. If all coefficients μ̃m in (A2) are non-
negative, μ̃ ≥ 0m , for all ∈ &zm , then

( )μ ∥ ∥ − ( ) = ( )z u zmin Re 0, A3z
H

1

otherwise there is no lower bound on the minimum. Therefore, all
| |um must be bounded, i.e., μ| | ≤ ∀ = …u m M1, ,m to ensure that all
μ̃ ≥ 0m for all possible phase differences ϕ− ≤ ≤1 cos 1mm . Finally,
we note that ∥ ∥ = | |∞u umaxm m .

Appendix B. Proofs of Corollaries 1, 2, and 3

Proof of Corollary 1

Let the objective function of the c-LASSO problem (P1′) be

μ= − + ∥ ∥ ( )3 y Ax Dx . B12
2

1

In the following, we evaluate the subderivative ∂3 [38] as the set
of all complex subgradients as introduced in [39]. First, we observe

μ∂ = − ( − ) + ∂∥ ∥ ( )3 A y Ax Dx2 . B2H
1

Next, it is assumed that D is a diagonal matrix with positive real-
valued diagonal entries. Then the subderivate ∂∥ ∥Dx 1 evaluates to

∂∥ ∥ = | | ≠

{ ∈ | | ≤ } = ( )

⎧
⎨⎪
⎩⎪ &

Dx
D x

x
x

z z x

for 0

, 1 for 0. B3

mm m

m
m

m

1

The minimality condition for 3 is equivalent to setting (B2) to
zero. For all m with ≠x 0m and with (18), this gives

μ= | | ( )D u D x
x

.
B4mm m

mm m

m

It readily follows that μ| | =um for ≠x 0m and ≠D 0mm .

Proof of Corollary 2

Starting from Eq. (B4), dividing by μ and invoking Corollary 1,
we conclude for matrices D with positive diagonal entries and for

∈ 4m ,

( )μ = − = ( )
( ) e A y Ax

D
ue 2 ,

B5
j x

mm
m
H H

m
arg m

where em is the mth standard basis vector. This concludes the
proof of Corollary 2.

Proof of Corollary 3

For the primal vector, this was shown in the real-valued case by
Tibshirani [2] and for the complex-valued case, this is a direct
consequence of Appendix B, Eq. (55) in [21] under the assumption
of a piecewise constant phase angle of the primal solution, cf. [20].

For the dual vector, this was shown in the real-valued case by
Tibshirani [13] and for the complex-valued case, this readily fol-
lows from Result 1: If the primal vector ℓx 1 depends linearly on μ
in (18) then so does the dual vector u.

Appendix C. ℓ0 Solution

The gradient (cf. Appendix B) of the data objective function is

( )∇ − = − − ( )y Ax A y Ax2 C1H
2
2

For the active source components, xm with ∈ 4m , the
ℓ0-constraint of (P0) is without effect and the solution results from
setting the gradient to zero, i.e., solving the normal equations.

= ⇒ = ( )ℓ ℓ
+

4 4 4 4 4 4A y A A x x A y C2H H
, ,0 0

We set

Δ= + ( )ℓ ℓ4 4 4x x . C3, ,0 1

This is inserted into (C1),

( )Δ∇ − = − − ( − ) ( )ℓ ℓ4 4 4y Ax A y A x2 . C4
H

, 2

2
,1 0

Using (6) gives

( )= − ( )ℓ4 4 4 4 4D u A y A x2 C5
H H

,1

( )( )μ Δ= − − ( )θ ℓ4 4 4 4 44D A y A xe 2 C6
H j H

,0

μ Δ= ( )θ
4 4 4 44D A Ae 2 C7H j H

This results in

( )μΔ = ( )
θ+

4 4 4 4 4A A D e
2 C8

H H j

which depends on μ both explicitly and implicitly through 4. If
the set of nonzero elements of (P0) is equal to the active set of
(P1′), the solutions of (P0) and (P1′) differ by (C8).
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