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Abstract—In this paper, the sequential reconstruction of source
waveforms under a sparsity constraint is considered from a
Bayesian perspective. Let the wave field, which is observed by
a sensor array, be caused by a spatially-sparse set of sources. A
spatially weighted Laplace-like prior is assumed for the source
field and the corresponding weighted Least Absolute Shrinkage
and Selection Operator (LASSO) cost function is derived. After
the weighted LASSO solution has been calculated as the maximum
a posteriori estimate at time step , the posterior distribution of
the source amplitudes is analytically approximated. The weighting
of the Laplace-like prior for time step is then fitted to the
approximated posterior distribution. This results in a sequential
update for the LASSO weights. Thus, a sequence of weighted
LASSO problems is solved for estimating the temporal evolution
of a sparse source field. The method is evaluated numerically
using a uniform linear array in simulations and applied to data
which were acquired from a towed horizontal array during the
long range acoustic communications experiment.

Index Terms—Bayesian estimation, sequential estimation, spar-
sity, weighted LASSO.

I. INTRODUCTION

C OMPRESSIVE sensing and sparse reconstruction is
widely used, but their sequential use have received little

attention. In a Bayesian framework, the sparseness constraint
is obtained using a Laplace-like prior which give rise to the
constraint. In the present contribution the focus is on devel-
oping a Bayesian sequential sparse approach by enforcing the
prior at each step to be Laplace-like.
Since the late nineties, numerous papers have appeared in

the areas compressive sensing and sparse reconstruction which
employ the penalization by a -norm to promote sparsity of
the solution, e.g., [1]–[6]. Excellent books on the topic are
available [7], [8]. The least absolute shrinkage and selection
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operator (LASSO) is a least squares regression constrained
by an -bound of the solution [1]. It is well-known that the
LASSO sets many regression coefficients to zero favoring
sparse solutions.
Research on compressive sensing and sparse reconstruction

has focused largely on batch processing. However, many
practical settings require the online estimation of sparse signals
from noisy data samples that become available sequentially
[9]–[11]. Angelosante et al. proposed time-recursive algo-
rithms for the estimation of time-varying sparse signals from
observations obeying a linear model, and become available
sequentially in time [10]. Their time-weighted LASSO is an
-norm regularized Recursive Least Squares algorithm. Eiwen

et al. [11] proposed a sequential compressive channel estimator
which is based on modified compressed sensing, which as-
sumes that a part of the signal support is known a priori. The
resulting compressive channel tracker uses a modified version
of the orthogonal matching pursuit algorithm. An iterative
pursuit algorithm is developed in [12] that uses sequential
predictions for dynamic compressive sensing. It incorporates
prior information using linear MMSE reconstruction.
Here, we extend the Bayesian approach [13]–[15] to sequen-

tialMaximum A Posteriori (MAP) estimation for sparse signal
reconstruction in a problem setting that is similar to [10]. First
the LASSO cost function is generalized by weighting the regu-
larization parameters. This allows to update the prior adaptively
based on the past history of observations. Based on ideas in [16],
we approximate a sequential MAP filter which preserves spar-
sity in the source field estimates. Two types of approximations
are derived in Sections III-D and III-E and their behavior is com-
pared in numerical examples. It is implemented by sequentially
minimizing adaptively weighted LASSO cost functions using a
single new measurement snapshot in each time step.
The theory is formulated so that it can be applied to sparse

source field estimation in higher spatial dimensions. We have
earlier demonstrated the sequential approach for a two dimen-
sional array, where an earthquake rupture process evolves se-
quentially with sparse locations in both time and two dimen-
sional space [17]. High resolution earthquake location has been
obtained using compressive sensing [18].
The advantages of the sparse formulation for source localiza-

tion and direction of arrival (DOA) estimation are:
• Numerical simulations indicate that it is a high-resolution
method [3].

• There is no need to estimate the cross-spectral density ma-
trix. Only one snapshot is needed. Eigenvalue based high-
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resolution methods require a full or nearly full Cross Spec-
tral Density Matrix (CSDM).

• As new information becomes available, the confidence in
the solution is build up and the trajectories are updated.

• The solution is presented in terms of a sparsifying Lapla-
cian distribution which can then be used as a prior in the
sequential processing. Relative to more general solutions
like particle filters, the solution requires just one param-
eter per possible source location.
II. ARRAY DATA MODEL AND PROBLEM FORMULATION

Let be a set of hypothetical source locations
on a given fixed grid. Further, let be
the associated complex-valued source vector at time step

and frequency . We observe time-sampled waveforms
on an array of sensors which are stacked in a vector. We
obtain the following linear model which relates the short-time
Fourier transformed sensor array output at time step and at
frequency to the source vector ,

(1)

The th column of the transfer matrix is the array steering
vector for hypothetical source location . The transfer ma-
trix is constructed by sampling all possible source locations,
but only very few of these can correspond to real sources. There-
fore, the dimension of is with and
is sparse. In our setting, the number of hypothetical source lo-
cations is much larger than the number of sensors , i.e.,

and the linear model (1) are underdetermined.
We model the th element of by . Here is

the traveltime from hypothetical location to the th sensor
element of the sensor array. The additive noise vector is as-
sumed to be spatially uncorrelated and follows the zero-mean
complex normal distribution with diagonal covariance matrix

. Further, the noise is assumed to be uncorrelated across time
and frequency.
The history of all previous array observations is summarized

in . Given the history and
the new data , we seek the maximum a posteriori (MAP)
source estimate under a sparsity constraint. To reconstruct
a physically meaningful source vector , we enforce its spar-
sity through the introduction of a prior probability density on
which promotes sparsity. A widely used sparseness prior is

the Laplace probability density [14], [19] which puts a higher
probability mass than the normal distribution both for large and
small absolute deviations.
The prior distribution for each is assumed to follow a

Laplace distribution with hyperparameter , condensed in
vector . A time-recursive expression of
the sparse MAP source estimate at step is obtained using a
sequential Bayesian sparse update rule

(2)

Where the function will be derived in the following. In ad-
dition to , the hyperparameter for the prior distribution
for the next time step is computed. Due to the sparsity
constraint it is necessary to let the hyperparameters carry the

sequential information from each step, and not the extracted pa-
rameters as is customary in sequential filtering [20].
Since the conditional distribution for given follows a

Gaussian (3) it is not given that the posterior will be Laplace-
like. As the posterior for time step is used as a prior in the
next time step it is required to approximate the posterior
with a Laplace-like distribution. The hyperparameter is
determined by matching either the probabilities for large source
amplitudes (i.e., the tail of the distribution, see Section III-D) or
the expected source amplitudes (Section III-E).

III. BAYESIAN FORMULATION

For the linear model (1), we arrive at the following condi-
tional probability density for the single-frequency observations
given the source vector ,

(3)

where is the -norm.
We assume a multivariate complex Laplace-like probability

density [21] for the source vector at step , conditioned on
the history ,

(4)

is the complex source signal at step and
hypothetical source location . Note that (4) defines a joint dis-
tribution for and at step for all . The
associated hyperparameters model the prior knowl-
edge on the occurrence of a source at step , at location .
Taking the logarithm gives

(5)
For the posterior probability density function (pdf) ,
we use Bayes’ rule to obtain the weighted LASSO cost function
to be minimized, cf. Equation (6) in [16]:

(6)

L (7)

in which the notation L is introduced and

(8)

Minimizing the weighted LASSO cost function (7) with re-
spect to for given and , gives
the MAP source estimate . The in (6) is the element-wise
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(Hadamard–) product, making it clear that this is a cost func-
tion promoting sparse solutions in which the constraint is
weighted by giving every source amplitude its own hyperpa-
rameter . The minimization of (7) constitutes a convex op-
timization problem.

A. Posterior Probability Density

The purpose of this section is deriving an expression for the
posterior pdf . We distinguish the variable , a free
variable for , and , the MAP source estimate which
is treated as constant.
The set of active indices at step is introduced as the set

of such that is non zero, i.e.,

(9)

The true and the estimated source amplitude vectors are
related by the source vector error :

(10)

using the active indices

for
for (11)

The log-likelihood function (7) is expanded

(12)

where we separated the sum and used (11). The sum over
is simplified by the following

Theorem 1: For given weighting , the MAP source esti-
mate (minimizing solution) to (7) is characterized by (cf.
[16])

(13a)

(13b)

with the normalized residual vector

(14)

The proof is in Appendix A. Continuing from (12), gives

(15)

We expand the LASSO cost functionL (7) around the MAP
source estimate using (15) and then (10):

L

(16)

L

(17)

where we introduced the polar representations,

(18)

is the magnitude of the projection of the
normalized residual vector onto the th array steering vector.
By Theorem 1, for . Equation (17) shows
that the posterior pdf depends on both the unknown source
magnitudes and phases . In the Section III-B, an
approximate marginal posterior pdf for the source magnitudes
is derived. This allows to approximate the next MAP estimate

as the minimizer of an updated weighted LASSO cost
function.

B. Marginalization With Respect to Source Phases

From (4), it follows that the prior for the source phases
is i.i.d. uniformly distributed on . We regard
the phases as nuisance parameters and marginalize

L in (7) inserting (17) and
integrating the phases out. The source vector errors are
assumed small and is neglected in (17). Assuming the er-
rors to be small is common in sequential methods. For example
the Extended Kalman Filter (EKF) also assumes small errors so
that the parameter estimate remains Gaussian. As demonstrated
in the sequel, we use this approximation so that the posterior
remains Laplacian. This is motivated by the assumption that the
posterior pdf is concentrated around its peak point . Using
(17), the approximate marginal posterior pdf depends solely on
the source magnitudes

L

L

(19)
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where is the vector of source magnitudes with elements
, is a normalization constant defined by

L

for
for

(20)

and is the modified Bessel func-
tion of first kind and zero order, cf. [23]:9.6.16. To assess the
quality of the approximation in (19), we use the first order Taylor
expansion in the vicinity of the MAP estimate ,

(21)

In (19), only the constant term was retained and the quality of
the approximation depends on the magnitude of . The
approximate marginal pdf (19) becomes improper as

because it cannot be normalized on the half line
in the limit . This difficulty occurs when the index
becomes active (see Section III-C). Its form is not Laplace-

like (4) and we develop two types of approximations for fitting
the posterior distribution at time step to a Laplace-like prior
distribution for time step in the following Sections III-D
and III-E.

C. Active Indices

To estimate the posterior distribution for the active indices we
use (19). For any given , the Laplace-like pdf (4) favors
a model with small source amplitude . In the limiting case

, however, the Laplace-like pdf approaches a uniform
pdf for the source amplitude which cannot be
normalized. We express this informally as

(22)

Thus, when some index has become active in the current
time step there will be no constraint on the corresponding
amplitude and we define the posterior hyperparameter

(23)

Note that this model has no information to see how likely an
active index is to become inactive.

D. Asymptotic Fit of Laplace-Like Distribution

Here we are concerned with the for the inactive indices
. The for any conveys prior informa-

tion about how likely the index is to transition to the set of
active indices at the next time step . The approxi-
mate marginal pdf (19) is close to Laplace-like (4) in terms of
asymptotic behavior for large values of . TheMAP estimate
is sparse and many , but the variables can take

any value. In this section, is assumed large. The first-order
asymptotic expansion is used,

(24)

For amplitude we get

(25)

The asymptotic expansion (24)–(25) has a small approximation
error for . Taking the logarithm analogously to
(5), gives

(26)

Since (Theorem 1) and is large, we neglect
and in (26). Finally, all these steps and approx-

imations give the posterior weighted -penalty

(27)

Comparison with (4) and combination with (23) shows that this
translates to the posterior weight vector with elements

for
for

(28)

The weight reduces to zero when index becomes active
(see Section III-C ). The first line in (28) is always positive as

.

E. Mean Fit of Laplace-Like Distribution
Alternatively to the approach in Section III-D, the expected

source amplitudes for the assumed the Laplace-like distribution
(4) can be fitted to the expected posterior source amplitudes.

(29)

Proceeding from (19) for , this gives

(30)

(31)

For a Laplace-like distribution,

(32)

Combining (31) and (32) gives the elements of the posterior
weight vector for . The corresponding elements
for are obtained in the limit consistent
with (23). The posterior weight vector becomes

for
for

(33)

For , the weight reduces to zero when index
becomes active.
The posterior weight according to (28) is always smaller than

posterior weight (33) for because for



6348 IEEE TRANSACTIONS ON SIGNAL PROCESSING

Fig. 1. Number of active indices versus the regularization parameter for the
example in Section VI.

by Theorem 1.We choose (33) rather than (28), because the
weighting in the cost function (6) will then play a stronger role.

IV. SIMPLE SOURCE MOTION MODEL
After having estimated the posterior with elements de-

fined by (33), the next step is to predict for the Laplace-like
prior (4) at time step . Time-varying source signal esti-
mates are obtained by varying the active set (creating new active
indices as well as annihilating old ones). Here, a very simple
random walk model is assumed: A source occurring at loca-
tion at time step is either inherited from the previous
time step with probability or newly generated from
an unweighted (uninformed) Laplace-like prior with parameter
with probability . Thus, we define the hyperparameter for

time step ,

(34)

where is the all-1 vector. plays a role
which is similar to the process noise covariance in
the Kalman filter, see Section VI. If is large then

will be close to one.
Then, the history has only little influence on the future
estimate . Conversely, for a smaller , the adaptivity of
the weighting through the posterior (28) will be more influential
to the future sequential estimates.

V. IMPLEMENTATION OF USING LASSO PATH
We define the positive parameter and the vector of non-neg-

ative weighting coefficients via ,
equivalently . Thus the weights are ob-
tained by the previous data and the source model and normal-
ized so that . For the data the source vector
is found by minimizing

L (35)

The optimization (35) is convex and is solved assuming a fixed
number of sources . However, is unknown and adjusted to
reach a desired number of active indices as described below.
The weighted complex-valued LASSO is based on solving
LASSO by homotopy [16], [22], as indicated in Fig. 1.

The solution of (35) evolves with , due to the uniform con-
tinuity of the cost. Furthermore, for sufficiently large , .
Thus, a solution with active indices is found by pursuing the
continuum from a large . The evolution of from large to
smaller values is segmented into intervals for

, in which the set of active indices is constant, for
corresponds to . Varying within an interval changes just

for the active indices . Each interval
has an end-point at a candidate point , where the active set

changes by including or deleting an element (potentially
multiple elements).
Creation is defined as including an index into

if as decreases below . Vice versa, annihila-
tion is the process of deleting an index as with
decreasing . Due to the (rather unlikely) possibility of anni-
hilation, the number of active indices can be less than for

.
The sequence of with source amplitudes is found

using the optimality conditions in Theorem 1. Starting from
large, in the first interval , . Then,

is the smallest value, for which Theorem 1 is satisfied with
:

(36)

The LASSO is next solved for . Recalling Theorem 1
with a given active set from the previous candidate solution

, the next candidate point is the smallest
with the active indexes unchanged, i.e.,

(37)

where is the LASSO solution for given and is the
set of active indexes in the interval :

(38)

The contracted dictionary , its Moore-Penrose pseudoin-
verse , contracted source amplitudes , and contracted
phase-weighted weights are defined by

(39)
(40)
(41)

(42)

The projection matrix defines the projection onto the or-
thogonal complement of the range of ,

(43)

is a unitary basis of the range of . The following Theorem 2
provides an approximate solution to the minimization problem
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TABLE I
SEQUENTIAL BAYESIAN SPARSE SIGNAL RECONSTRUCTION.

(37) for a given set of active indices. The approximation is based
on the assumption that the vector (42) is constant inside
the interval . Equivalently, the phase angles of all
elements of are assumed to be constant which is a first
order approximation in .
Theorem 2: The approximate solution to (37) is given by

(44)

where the creation and annihilation are

(45)

(46)

where is defined in Appendix C, and

(47)
(48)

is the bias-corrected estimate.
The proof is in Appendix B. The implementation of the se-

quential Bayesian sparse signal reconstruction update
in (2) is given concisely in Table I. Line 8 “Define active set”
is implemented with a numerical peak finder and subsequent
thresholding. Note the bias correction step in line 13 “choice 2”
using just the active indexes [30]:

(49)

VI. NUMERICAL EXAMPLE
In this section we investigate the performance of the proposed

sequential sparse estimation procedure using computer simula-
tions. For the sequential Bayesian sparse signal reconstruction,
we initialize the prior vector with all ones: all hypothetical
source locations have the same prior. We then apply (2) sequen-

tially for all time steps with the implementation
given in Table I with .
We use synthetic data on a uniform linear array with

elements with half-wavelength spacing and using 50 snapshots
sequentially . The traveltime for plane
waves impinging on the th sensor is modeled as

(50)

for a hypothetical source at direction of arrival
with and

. The simulated scenario has far-field
sources modeled as emitting plane waves (1). The uncor-
related noise is , i.e., power. Eight sources
are stationary at
degrees relative to endfire with constant power levels (PL)

. The moving source starts
at 65 and moving /snapshot and has a power level of

.

A. Beamforming
In beamforming the Cross Spectral Density Matrix (CSDM)

is estimated based on all snapshots for . The
CSDM estimate is singular as it is snapshot deficient, with at
least eigenvalues equal zero. For conventional
beamforming, the resolution is not sufficient to separate all the
sources (Fig. 2). To numerically stabilize the matrix inversion
in the adaptive beamforming, diagonal loading is applied at a
level of relative to the sum of the eigenvalues. The
stabilized beamformer output for a given steering vector is

(51)

For the stationary case (Fig. 2(a)), the conventional beam-
former, in (51), resolves all 8 sources whereas the Min-
imum Variance Distortionless Response (MVDR) ,
just resolves 6 sources. For this scenario, we observe that above
beamforming finds the source location well for the stationary
case (Fig. 2(a)), but the moving source masks the stationary
source at (Fig. 2(b)). The observed bias in the power
estimate for the MVDR is due to the snapshot deficient CSDM
[24]. More advanced adaptive beamforming might be able to
better estimate the source locations in this scenario with higher
time resolution, e.g., the multi-rate adaptive beamforming
[25], [26]. Multi-rate beamforming uses long time averages to
produce the MVDR steer vectors and shorter averages for the
data CSDM. It was introduced to track a stable signal in the
presence of dynamic interferers [25].
In contrast, the sparse localization works directly with a

single snapshot optimization (7) giving higher time-resolution.
Successive snapshot localizations then include the information
carried forward from previous localizations via the prior and the
hyperparameters. This enables finding lower powered sources
than if each snapshot was used independently.

B. Sequential LASSO
Going down the LASSO path, Section V, is computation-

ally demanding, especially for the 9 sources involved in the
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Fig. 2. MVDR and conventional beamforming for the a) stationary sources (*),
and b) stationary (*) and moving (o) sources for the 50 snapshot observation
period.

studied scenario. Since the noise level is constant over time, the
should not change much.
It is not necessary going down the full LASSO path. There-

fore, each iteration is started at a slightly larger than the ex-
pected final . Assuming that the active indices do not change,
the second term in (35) is proportional to . We use
for and for .
For a given value of , the convex optimization (35) is solved

using CVX [27]–[29]. We carry out the simulations with the
mean fitting approach in Section III-E which corresponds to
“choice 4” in line 14 of Table I.
1) Stationary Sources: The posterior weights defined by

(33) are updated after each step and used as prior information to
the following snapshot forming the sequential estimation
approach. The non-sequential LASSO results shown in Fig. 3(a)
show more variation than those from the proposed sequential
Bayesian sparse signal reconstruction shown in Fig. 3(b).
The constraint in (7) that sparsifies the solution causes the

power estimates (peak of solid in Fig. 3(a)) to be underestimated
especially for the low-power sources (e.g., and 99 ).
Using the unbiased estimate (choice 2 in line 13 of Table I) gives
powers within 3 dB of the correct ones.
The posterior weights show how the solution is being guided

towards the solution of the active indices in the next step.
2) Moving Sources: For a moving source scenario (Figs. 5

and 6), it will be difficult observing the stationary sources using
beamforming. Since the proposed approach works directly on a

Fig. 3. Track over 50 time steps for the 8 stationary sources (dots) for a) non-
sequential LASSO and b) sequential LASSO with . Background
(color, dB) shows the conventional beamformer power.

Fig. 4. a) Output of the sparse optimization (8, solid) with . The
unbiased (o) and true (*) source power. b) The posterior weights for .

snapshot, there is sufficient time resolution to track both moving
and stationary sources, cf. Fig. 5(a).
The temporal evolution of the weights is shown in Fig. 6. The

weights for the asymptotic fitting technique in Section III-D are
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Fig. 5. Track for or the 8 stationary and 1 moving source sources (dots) using
sequential LASSO with a) b) . Background color shows
the conventional beamformer power (dB).

Fig. 6. Evolution of posterior weights versus , left: Asymptotic fitting
using (25) and right: mean fitting using (31). Large in a) and c). Small

in b) and d).

shown in Figs. 6(a) and 6(b). For the asymptotic fitting tech-
nique, the difference in the weights between active indices and
inactive ones is rather small. On the other hand, the weights
for the mean fitting technique in Section III-E are shown in

Fig. 7. Evolution of posterior weights for . Prior at
(red), posterior at (blue), and posterior at (green).

Figs. 6(c) and 6(d). It is clearly seen that the contrast between
the weights for active and inactive indices is much larger.
The value of determines how long the weight will re-

member a track, the non-sequential LASSO results are obtained
with in (34). A large causes the weights to
faster forget a previously estimated source position (Figs. 6(a)
and 6(c) ) and gives more stable track estimates (Fig. 5(a) than
for the smaller . The weights for the small
are shown in Figs. 6(b)–6(d) and the corresponding sequen-
tial Bayesian sparse signal reconstruction in Fig. 5(b). A small
results in a longer memory as seen in Figs. 6(b) and 6(d)

which is beneficial for the sparse reconstruction of static source
scenarios.
From Fig. 7 it is observed that the posterior weights become

close to zero near the active indices. The weights have a broader
valley near endfire where the resolution cells are larger. As the
moving source moves from 65 to 75 the weights for the cor-
responding set of source locations shift.

VII. EXPERIMENT

The data is from a towed horizontal array during the long
range acoustic communications (LRAC) experiment [32], [33]
from 10:00–10:13 UTC on 16 September 2010 in the NE Pacific
in 5-km water depth. Other data periods yield similar results to
those shown here. The array was towed at 3.5 knots at a depth
of 200 m. The data were sampled at 2000 Hz using a nested
array with each configuration having 64 channels [34] with the
ultra low frequency (ULF) array hydrophone spacing 3 m

.
Each 4 s snapshot was Fourier transformed with samples

without overlapping snapshots. The beamformed time series,
Fig. 8(a), is based on single snapshots and performed at one
quarter wavelength element spacing, i.e., 125 Hz. The broad
arrival at 150–165 is from the towship R/V Melville (180 is
forward looking). Apparently, the two arrivals at 45 and 60
come from distant transiting ships, although a log of ships in
the area was not kept. Overall, the beam time series shows little
change with time.
The sparse sampling was performed assuming dis-

crete signals and for sequential processing .
Fig. 8(b) shows the non-sequential estimates, while the dis-

crete features are well-captured with the processing, there are
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Fig. 8. Real data example. a) Beamformer output. Tracks for 10 sources (dots)
using b) non-sequential LASSO and c) sequential LASSO with .
Background color shows the conventional beamformer power (dB).

significant fluctuations in the estimates from each snapshot. This
is stabilized when using the sequential processing, Fig. 8(c).

VIII. CONCLUSION
A sequential weighted LASSO problem formulation is used

to estimate the spatiotemporal evolution of a sparse source field
from observed samples of a wave field. The prior is adapted
based on the past history of observations. A sequential MAP
filter is derived which preserves sparsity in the source field es-
timates by enforcing the priors at each estimation step to be
Laplacian. The sequential information is carried in the hyper-
parameters.
With a uniform linear array it is demonstrated that the pro-

posed sequential Bayesian sparse signal reconstruction obtains
high resolution in both time in space relative to adaptive beam-
forming. Using towed array data, the estimated tracks become
more stable with the sequential estimation.

APPENDIX A
The proof of Theorem 1 is similar to Appendix A in [22], see

also [31]. Suppose the active set in (7) is given by at the

global minimum L . For an infinitesimal change at
the th element of , we have

L

(52)

The variations inL at the global minimum satisfy L
for every and . The minimality

condition is satisfied for if and only if

(53a)

Alternatively, if then

(53b)

APPENDIX B
The proof of Theorem 2 proceeds similar to Appendix B in

[22]. The aim is to find the next singular point defined in
(37). We rewrite the minimality condition (53a) as

(54)

This is solved by

(55)

It is assumed that the phase of the solution is approximately con-
stant in one -interval [16]. Then also is approximately
constant for all and depends approxi-
mately linearly on . Then, we have

(56)

where is the orthogonal projection matrix defined in (43).
For the creation case, according to (37) and (56), is the
smallest value, for which

(57)

for every index . This implies that is the largest value in
the set of positive solutions of

(58)

for every , which is solved by the -function in Appendix C.
For the annihilation case, (37) and (55) is combined. After
defining and (47)–(48), we express (55) as

(59)
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Due to (37) annihilation occurs when , which gives
for some . Thus, is the

maximum of such annihilation points. This completes the proof.

APPENDIX C

In (45), the function is introduced. The real-valued
function of complex numbers is defined as the
positive root of . The resulting quadratic equation
is

(60)

Its roots are

(61)

If then else .
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