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Selection of a suitable objective function is an integral part of the inverse problem, and poor se-
lection can have a strong influence on the inverse result. Objective functions are here derived for
many practical occasions such as for single frequency and broadband, with and without knowledge
of source strength, and with and without the received signal phase. These objective functions are
all derived from a unified approach based on maximum likelihood and additive Gaussian noise
models. The assumptions for the objective function are thus clear and the resulting estimator has
good properties. From a Bayesian point of view, the solution to the inverse problem is the a poste-
riori probability distribution of the unknown parameters, which can be found from the likelihood
function. Thus using objective functions based on likelihood functions facilitates computing the a
posteriori distributions.

1. Introduction

Matched Field Processing or Matched Field Inversion has received much attention in the

ocean acoustics literature,1–3 and references herein. However there does not seem to be much

guidance in selecting objective functions. In this paper a class of objective functions derived

from an assumption of additive Gaussian errors by use of maximum likelihood principles

is presented. Under these assumptions the likelihood functions L and objective functions φ

are related:

L(m) = k exp

(
−φ(m)

T

)
(1.1)

where T is a scaling parameter4–6 and k is a normalization factor. The form in Eq. (1.1) is

also related to the scaling of the objective functions in simulated annealing and genetic algo-

rithms. m is the unknown parameters, these are any parameters used by an ocean-acoustic

forward model, as geoacoustic, source and receiver parameters.7 Good values of these pa-

rameters are found through optimization using exhaustive search, simulated annealing or
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genetic algorithms. The forward models, the objective functions and the search methods are

conveniently combined in one program package SAGA.8

The assumptions leading to these objective functions are thus clear. As they are derived

from maximum likelihood principles the resulting estimators have good properties. They

are consistent, asymptotically Gaussian distributed, and asymptotically efficient. Thus, they

converge to the true value for a large number of data samples: The bias disappears asymp-

totically and the variance of the estimator approaches zero. Moreover, no other bias-free

estimator exists with a smaller variance in the limit for a large number of data samples. The

Cramer–Rao Bound is asymptotically tight. This means that no other ambiguity surface has

stronger curvature at its peak if the peak is located at the true parameter. In that sense, it

is the peakiest surface. However, the Cramer–Rao Bound is only a local measure, it provides

no information about the mainlobe/sidelobe difference of the ambiguity surface.

For synthetic model inversion without errors, e.g., Ref. 9, there is no need for time

averaging for getting more stable estimates of the pressure vector, but for real data more

stable results are obtained by time-averaging leading either to an average pressure vector

or a covariance matrix. Objective functions based on either pressure vector or covariance

matrices are considered. Objective functions are derived for many practical occasions such

as for single frequency and broadband, with and without knowledge of source strength, and

with and without the received signal phase. These objective functions and their assumptions

are summarized in Table 1.

The objective functions presented here are not new. In fact, they are all available in

SAGA. Discussion of likelihood and objective functions from a signal processing point of

view was presented in Refs. 10 and 11 while a more ocean acoustic point of view was taken

in Ref. 2.

Further, the derived likelihood functions can be used in a Bayesian approach for comput-

ing the a posteriori probability distribution of the unknown parameters which fully charac-

terize the solution to the inverse problem. According to the Bayesian view, the full solution

to the inverse problem is the a posteriori probability distribution. This is a product of

the a priori probability distribution for the unknown parameters before the experiment

and the likelihood function for the unknown parameters based on the observed data af-

ter the experiment. The a posteriori probability density σ for the environmental model

m is

σ(m) = L(m)ρ(m) (1.2)

where ρ is the a priori probability density of m (before observing the acoustic pressure) and

L is the likelihood function, i.e., the probability density of the acoustic pressure given m.

Estimation of uncertainties from global methods have been discussed in Refs. 12–16.

Evaluation of the a posteriori probability distributions requires knowledge of the likelihood

function of the data. The practical approach for estimating these a posteriori distributions

is not trivial as evaluation of these requires evaluation of M -dimensional integrals, where M

is the number of unknown parameters. It has been suggested to use importance sampling

to evaluate the a posteriori probabilities.15 Importance sampling concentrates the sampling
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Table 1. Log-likelihood objective functions.

Known Source Error Observed Data Objective Function

Sec. Mag. Phase Distrib. Mag. Phase Distrib. Single Frequency Broadband

yes yes N C(0, νlI) yes yes N C(wl(m)Sl, νlI) ‖q−w(m)S‖2

3.1.2 yes no N C(0, νlI) yes yes N C(wl(m)Sl, νlI) ‖q‖2 + |S|2‖w(m)‖2 − 2|S| |q†w(m)| Eq. (3.16) or (3.18)

3.1.1 no no N C(0, νlI) yes yes N C(wl(m)Sl, νlI) ‖q‖2 − |q
†w(m)|
‖w(m)‖2 , (Bartlett Power) Eq. (3.11) or (3.7)

3.2.1 yes n/a
N C(0, νlI)

yes no
R(|wlSl|, νlI)

‖q‖2 + |S|2‖w(m)‖2 − 2|S| |q|† |w(m)| Eq. (3.26)
N (0, νlI) N (|wl(m)Sl|, νlI)

3.2.2 no n/a
N C(0, νlI)

yes no
R(|wlSl|, νlI)

‖q‖2 −
(
|q|†|w(m)|
‖w(m)‖

)2

Eq. (3.29)
N (0, νlI) N (|wl(m)Sl|, νlI)

Abbreviations & Notation:

n/a not applicable
νl error power spectral density at frequency ωl
ql observed data: complex acoustic pressure at frequency ωl
wl replica vector: complex acoustic pressure transfer function at frequency ωl
Sl complex source signal at frequency ωl
‖q‖ the 2-norm of vector q, i.e.,

√
q†q

|q| the vector composed of the magnitudes of the elements of q

q† Hermitian transpose of vector q

q†w scalar product of vectors q and w

N C(wS, νI) multivariate complex normal distribution with mean vector wS and covariance matrix νI
N (|wS|, νI) multivariate real normal distribution with mean vector |wS| and covariance matrix νI
R(|wS|, νI) multivariate real Rician distribution, i.e., distribution of the vector of component wise magnitudes of a

N C(wS, νI)-distributed complex-valued random vector

2
6
1
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in areas where the integrand has the largest contribution to the integrals. In Ref. 15, it was

implemented using genetic algorithms.

2. Assumptions on Broadband Data

The relation between the complex-valued acoustic pressure data vector q(ωl) on an N -

element hydrophone antenna array and the predicted data p(m, ωl) at an angular frequency

ωl is described by the model

q(ωl) = p(m, ωl) + e(ωl) , (2.1)

where e(ω) is the error term. The predicted data is given by p(m, ωl) = w(m, ωl)S(ωl),

where the complex deterministic source term S(ωl) may be unknown. The replica vector

w(m, ωl) describes the acoustic signal propagation. It is obtained using an acoustic propa-

gation code, e.g., SNAP,17 and an environmental model parameterized by the vector m ∈M
where M is the set of permissible parameter vectors. In the following, the abbreviation

ql = q(ωl), etc., is used where ωl for (l = 1, . . . , L) are the processed frequencies.

The errors are assumed to be additive. They stem from many sources: errors in describing

the environment, errors in the forward model, instrument and measurements errors, and

noise in the data. This error term is assumed complex Gaussian distributed, second-order

stationary with zero mean and diagonal covariance matrix νlI. For the measured field “close”

to the predicted field this assumption is expected to hold well. A Gaussian distribution of

the errors is easier justified in frequency than in time domain because the distribution of

the discrete Fourier transform approaches a Gaussian distribution for large samples.18

Thus, the data ql on the receiving array are also complex Gaussian distributed with

mean pl(m) and the covariance matrix νlI. Note that the spectral power of the error term is

frequency dependent and unknown in general. For the derivation of a Maximum Likelihood

(ML) estimate, it further is assumed that the data are uncorrelated across frequency and

time-snapshots. The source term Sl varies across time snapshots whereas the error power

spectral density νl is the same for all snapshots. Under the above assumptions the cross

spectral density matrix becomes Rl = E[qlq
†
l ] = pl(m)p†l (m) + νlI, where † refers to the

Hermitian transpose.a

Errors e(ω1), e(ω2) at differing frequencies ω1 6= ω2 are assumed uncorrelated. For large

observation times it is a good approximation for the error in the data but this might be

violated for deterministic modeling errors (parameter discretization and other numerical

errors in the environmental model are always present). Hence the data are uncorrelated

across frequency and the data covariance is given by

Cl = E[(ql − pl)(qk − pk)
†] =

{
νlI, for l = k

0, for l 6= k
. (2.2)

The broadband likelihood function L is the product of the single frequency likelihoods.

aother mathematical notation is explained in Table 1
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Equivalently, the broadband log-likelihood function L is the sum over the single frequency

log-likelihoods.

3. Broadband Likelihood Functions

The assumptions of the previous section lead to the formulation of likelihood functions for

broadband data in the frequency domain.

3.1. Observed data: Magnitude and phase

If the magnitude and phase of the acoustic pressure can be observed by the array, we can use

the complex representation of the measurements. The basic starting point for formulating

the broadband likelihood function is the complex Gaussian density.

3.1.1. Source magnitude and phase unknown

Assuming a completely unknown source signal is probably most common in matched field

algorithms and leads to the Bartlett Power objective function. Here, a broadband analysis

is presented for deriving the log-likelihood function. Starting from Eq. (2.1) and using the

Gaussianity of e(ωl) as assumed in Sec. 2, the probability density for a single snapshot in

time is given by

L1(m, S, ν) =
L∏
l=1

(πνl)
−N exp

[
−‖ql −wl(m)Sl‖2

νl

]
. (3.1)

Measurement data ql,k from multiple snapshots in time k = 1, . . . , K is incorporated by

multiplying the corresponding probability densities (3.1) for each single time-frame. This

gives

L1 =
K∏
k=1

L∏
l=1

(πνl)
−N exp

[
−‖ql,k −wl(m)Sl,k‖2

νl

]
. (3.2)

The ML estimate m̂ML for m is obtained by jointly maximizing over the signal and error

parameters (Sl,k, νl ∀ l, k) and the model parameter vector m. The maximization with re-

spect to Sl,k can be obtained in closed form: Ŝl,k = w†l (m)ql,k/‖wl(m)‖2. It is seen that

Ŝl,k depends on m but not on ν. Inserting this into (3.2) yields

L2(m, ν) =
L∏
l=1

(πνl)
−NK exp

[
−φl(m)

νl/K

]
(3.3)

whereb

φl(m) = tr R̂l −
w†l (m)R̂lwl(m)

w†l (m)wl(m)
=

1

K

K∑
k=1

∥∥∥∥∥ql,k − (w†l (m)ql,k)

‖wl(m)‖2 wl(m)

∥∥∥∥∥
2

(3.4)

b“tr” denotes the trace operation
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264 C. F. Mecklenbräuker & P. Gerstoft

is the Bartlett objective function and

R̂l =
1

K

K∑
k=1

ql,kq
†
l,k (3.5)

is the usual estimate of the cross spectral density matrix. In the special case of known error

power spectrum ν, the known constants νl can be inserted into (3.3) and L2 is regarded as

likelihood function for the observed data. Often, the additional assumption of temporally

white errors is used, νl = ν0

L2(m, ν0) = (πν0)−NKL
L∏
l=1

exp

[
−φl(m)

ν0/K

]
. (3.6)

The corresponding log-likelihood function sums the Bartlett powers over all frequencies.

Λ2(m, ν0) = −K
ν0

L∑
l=1

φl(m)−NKL log(πν0)︸ ︷︷ ︸
const

(3.7)

If, however, the error spectral density is unknown then νl is treated as a nuissance parameter

and L2 in (3.3) must be optimized with respect to νl. Solving for ∂L2/∂νl = 0, the ML error

estimate is obtained

ν̂l
ML(m) =

1

N
φl(m) . (3.8)

This maximizing solution is then inserted into (3.3) giving the contracted form

L3(m) = L2(m, ν̂l
ML(m)) =

(
NK

eπK φ̄(m)

)NL

(3.9)

where φ̄ is the geometric mean of (3.4) over frequency

φ̄(m) = L

√√√√ L∏
l=1

φl(m) . (3.10)

It is known that the noise and error spectra are not constant with frequency, see e.g., the

frequency variation of the noise spectrum.19,20

Thus, Eq. (3.9) is preferred to (3.6). The corresponding log-likelihood function sums the

logarithms of the Bartlett powers over all frequencies

Λ3(m) = log L2(m, ν̂l
ML(m)) = −NK

L∑
l=1

log φl(m) + const (3.11)

Thus, the log-likelihood functions Λ2(m, ν0) and Λ3(m) differ substantially in their fre-

quency averaging. Whilst Λ2(m, ν0) calculates the arithmetic mean of Bartlett power over

frequencies, Λ3(m) is associated with the geometric mean of Bartlett power. It was found
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empirically that frequency averaging over Bartlett power in log-units gives better sidelobe

rejection than averaging over Bartlett power itself.21 In practice there is not a large differ-

ence between Eqs. (3.3) and (3.9) if the error power spectrum does not vary too much over

the frequency range of interest and the signal-to-noise ratio is high.

The ML solution m̂ML is obtained by maximizing L2 or L3 (whichever is appropriate)

over all m ∈M. Finally, an overall estimate for the error power spectral density is obtained

from (3.8) at the environmental ML solution: ν̂ML

l (m̂ML) and can be re-inserted into the

likelihood function (3.3). For simplicity, we consider the error spectral density as known and

only keep the free argument m of the objective function φl. This approach leads to15

L(m) = L2(m, ν̂l
ML(m̂ML)) =

L∏
l=1

[
N

πφl(m̂ML)

]N
exp

[
−N φl(m)

φl(m̂ML)

]
. (3.12)

However, a posteriori densities can also be based on (3.9). The expressions (3.9) and (3.12)

differ in their error spectral estimates: In (3.9), the error spectrum is estimated for each

geoacoustic model vector m. In (3.12) the global ML estimate of the error spectrum (which

was found from optimization) is a posteriori estimated and is then (as an a priori) applied

to all model vectors m.15 The main results of this section are summarized in Table 1.

3.1.2. Source magnitude known

It is assumed here that the magnitude of the source |Sl| is known but the phase of the

source is unknown. It is assumed that the source magnitude does not vary among snapshots

whereas the phase may be fluctuating. This situation closely resembles an ocean acoustic

tomographic experiment. It has been found in simulations that this objective gave better

results for the electromagnetic refractivity estimation.22 It is expected that the objective

function for this case could often give better accuracy than the Bartlett objective function

which is commonly used in ocean acoustic tomography.

After maximizing the likelihood (3.2) over all possible source phases, the ML estimate

ŜML

l,k of the complex source signal at frequency ωl and snapshot k is obtained

ŜML

l,k = |Sl|
w†l (m)ql,k

|w†l (m)ql,k|
. (3.13)

Inserting this solution into the likelihood function results in the following single-frequency

log-likelihood objective function22

φl,3(m) =
1

K

K∑
k=1

(‖ql,k‖2 + |Sl|2‖wl(m)‖2 − 2|Sl| |q†l,kwl(m)|) . (3.14)

This can also be expressed as

φl,3(m) = tr R̂l − 2|Sl|
1

K

K∑
k=1

|q†l,kwl(m)|+ |Sl|2‖wl(m)‖2 . (3.15)
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Just as in the preceding section, different error situations can be distinguished: Firstly, the

error spectral density could be known theoretically or from a previous measurement: This

leads to weighted arithmetic averaging of φl,k,3(m) over frequencies and the corresponding

broadband log-likelihood reads

Λ2,3(m) = −
L∑
l=1

φl,3(m)

νl
−NK

L∑
l=1

log(πνl)︸ ︷︷ ︸
const

. (3.16)

Secondly, the error spectrum can sometimes be assumed flat over the frequency range of

interest, i.e., νl = ν0 for all l. Finally, an arbitrary unknown spectral density ν(ω) > 0 can

be allowed and estimated from the data

ν̂ML

l,3 =
1

N
φl,3(m) . (3.17)

giving a broadband log-likelihood function which is very similar to (3.11)

Λ3,3(m) = −N
L∑
l=1

log φl,3(m) + const (3.18)

3.2. Observed data: magnitude only

For some types of ocean acoustic experiments, the phase of the acoustic pressure data is not

available for inversion. Geoacoustic parameters are often estimated from acoustic pressure

magnitude alone, see for example Refs. 22–25. The likelihood function is substantially differ-

ent from the previous cases. Knowledge of the source phase is irrelevant in this case because

it cannot improve the geoacoustic parameter estimates. There are two possible cases: either

the source signal magnitude is known or unknown. These cases are treated separately.

3.2.1. Source magnitude known

For calculating the likelihood function, the probability density of the acoustic pressure

magnitude is needed. For clarity of presentation, the single sensor case is treated first.

The probability density of the acoustic pressure amplitude r = |ql,k,n| at frequency ωl, snap-

shot k, and sensor n is obtained by expressing ql,k,n (which are N C(wS, νI)-distributed)

by amplitude and phase (r, ψ). Transformation of variables from the real and imaginary

part to the amplitude and phase (r, ψ) shows that the joint (r, ψ) probability density is

given by

fl,k,n(r, ψ) =
r

πνl
exp

[
−‖re

jψ − wlnSl‖2
νl

]
. (3.19)

Here, wln = wln(m) denotes the nth component of the replica vector wl = wl(m). In a
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second step, the phase is averaged out

fl,k,n(r) =

∫ π

−π
fl,k,n(r, ψ)

dψ

2π

=
r

πνl
exp

(
−r

2 + |wlnSl|2
νl

)∫ π

−π
exp

(
2r|wlnSl| cos ψ

νl

)
dψ

2π

The remaining integral is recognized as the modified Bessel function of first kind and

zero order, i.e., I0(2r|wlnSl|/νl). This gives a Rician probability density for the acoustic

amplitude.26 The symbol R(|wlSl|, νlI) is introduced for specifying the multivariate Rician

probability density which describes the statistics of the component-wise magnitude vector

of a complex Gaussian N C(wlSl, νlI)-distributed random vector. For a single snapshot,

the broadband likelihood function for an N -element array is given by a product of Rician

densities

LR(m|S, ν) =
L∏
l=1

R(|wlSl|, νlI)

=
L∏
l=1

Q

νNl
exp

[
−‖ql‖

2 + |Sl|2‖wl‖2
νl

] N∏
n=1

I0

(
2|wlnSlql,1,n|

νl

)
(3.20)

The constant scaling factor Q does not depend on the parameter vector m and is omitted

below. Taking the logarithm of (3.20) yields the broadband log-likelihood function

ΛR(m|S, ν) =
L∑
l=1

[
−N log νl −

‖ql‖2 + |Sl|2‖wl‖2
νl

+
N∑
n=1

log I0

(
2|wlnSlql,1,n|

νl

)]
(3.21)

If the error spectrum νl is known, ΛR can be used directly as a broadband objective function.

However, if the error spectrum is unknown, it needs to be estimated. Taking the partial

derivative of (3.21) with respect to νl gives

∂ΛR
∂νl

=

−Nνl + ‖ql‖2 + |Sl|2‖wl‖2 − 2|Sl|
N∑
n=1
|wlnql,1,n|Υ

(
2|wlnSlql,1,n|

νl

)
ν2
l

. (3.22)

Here the logarithmic derivative is defined

Υ(x) =
d log I0(x)

dx
=

I1(x)

I0(x)
(3.23)

which is a smooth and increasing function of x and 0 ≤ Υ(x) < 1. By equating (3.22) to zero

and solving it numerically, the ML estimate for the error spectral power is found. Additional

insight is gained by discussing the limiting case of high signal-to-noise ratio analytically.
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For high SNR, Eq. (3.22) can be simplified by setting Υ(x) → 1 which is equivalent to

approximating I0(x)→ exp(x). This leads to

ν̂l
ML(m) =

1

N
φl,1(m) (3.24)

with the definition

φl,1(m) = ‖ql‖2 + |Sl|2‖wl(m)‖2 − 2|Sl|
N∑
n=1

|ql,1,n| |wl,n(m)| . (3.25)

Now, the ML estimate ν̂l
ML can be reinserted into the broadband log-likelihood (3.21) giving

the high SNR broadband log-likelihood

ΛR(m|S, ν̂lML(m)) = −N
2

L∑
l=1

log φl,1(m)− 1

2

L∑
l=1

N∑
n=1

log |wl,n(m)|+ const (3.26)

The broadband log-likelihood function (3.26) is a sum of two terms: The first term describes

an incoherent frequency summing of log φl,1(m) and the second term is a penalty function

of m which does not depend on the observed data. The single-frequency case is included in

(3.26) for L = 1. In Ref. 22, the φl,1(m) is used as an objective function for matched field

processing based on wavefield magnitude.

The first and second term in Eq. (3.25) is the total energy of the observed and predicted

field at the array, respectively. The energy of the predicted field depends mainly on the

attenuation of the field. The last term in (3.25) is a scalar product of the observed and

predicted magnitude vectors. It depends on the detailed interference patterns of the data

and predicted field.

It is interesting to note that the objective function (3.25) can also be derived as the least

squares estimate for the magnitude data, i.e., least squares fitting of |q| to |w|. This would be

an ML approach if the error resulted in zero-mean Gaussian errors for the magnitude of the

field. And it would be unbiased if the errors for the magnitude of the field were symmetrical

around zero. These assumptions become true for high SNR.

3.2.2. Source magnitude unknown

The high SNR case is treated exclusively. The assumption on the received data are the

same as in Sec. 3.2.1, thus the magnitude of the received data is also Rician distributed and

the derived likelihood and objective function are the same except that the unknown source

magnitude |Sl| needs to be estimated from the data. Taking the derivative of Eq. (3.25) with

respect to |Sl| leads to the estimate

|Ŝl| =
|ql|†|wl(m)|
‖wl(m)‖2 (3.27)

and the reduced objective function becomes

φl,4(m) = min
|Sl|

φl,1(m) = ‖ql‖2 −
(
|ql|†|wl|
‖wl‖

)2

(3.28)
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Among all objective functions in this paper, this one uses the least amount of information:

It uses only the magnitude of the observed acoustic pressure and does not require knowledge

about the source. It can be interpreted by saying that this objective function is fitting the

shape of the observed magnitude curve to the shape of the replica: It tries to fit relative mag-

nitudes. The high SNR broadband log-likelihood is given by (3.26) when replacing φl,1(m)

by φl,4(m)

ΛR(m|S, ν̂lML(m)) = −N
2

L∑
l=1

log φl,4(m)− 1

2

L∑
l=1

N∑
n=1

log |wl,n(m)|+ const . (3.29)

4. Conclusion

A consistent choice of objective functions is important for obtaining good inversion results.

Clearly the selection of objective functions depends on the properties of both the transmitted

signal, the propagation, and the received signal. In the present formulation, the propagation

is only indirectly included via the received signal.

A class of objective functions derived from an assumption of additive Gaussian noise by

use of maximum likelihood principles is presented. These objective functions are summarized

in Table 1 for many practical occasions such as for single frequency and broadband, with

and without knowledge of source strength, and with and without the received signal phase.

It is expected that usage of these consistently derived likelihood functions gives reasonable

inversion results because they incorporate all the available data and a priori knowledge

about the transmitted signal in a statistically justified way.

Acknowledgments

The authors thank one of the reviewers whose constructive criticism helped to improve this

paper.

References

1. A. Tolstoy, Matched Field Processing for Underwater Acoustics (World Scientific Publishing Co.,
1993).

2. A. B. Baggeroer, W. A. Kuperman, and P. Mikhalevsky, “An overview on matched field methods
in ocean acoustics,” IEEE J. Ocean. Eng. 18 (1993), 401–424.

3. J.-P. Hermand and P. Gerstoft, “Inversion of broadband multitone acoustic data from the yellow
shark summer experiments,” IEEE J. Oceanic Eng. 21 (1996), 324–346.

4. L. N. Frazer, “Seabed sediment attenuation profiles from a movable sub-bottom acoustic vertical
array,” J. Acoust. Soc. Am. 106(1) (1999), 120–130.

5. W. Seong and C. Park, “Geoacoustic inversion via genetic algorithm using a broadband signal
and two hydrophones,” in Proc. IEEE OCEANS’99, Seattle, WA, 13–16 September 1999.

6. L. Jaschke and N. R. Chapman, “Matched field inversion of broadband data using the freeze
bath method,” J. Acoust. Soc. Am. 104(4) (1999), 1838–1851.

7. P. Gerstoft, “Inversion of seismoacoustic data using genetic algorithms and a posteriori proba-
bility distributions,” J. Acoust. Soc. Am. 95(2) (1994), 770–782.



July 5, 2000 15:24 WSPC/130-JCA 00023

270 C. F. Mecklenbräuker & P. Gerstoft
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