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ABSTRACT

Radio wave propagation on low-altitude paths over the ocean above 2GHz is significantly affected by
negative refractivity gradients in the atmospheric surface layer, which form what is often referred to as an
evaporation duct (ED). Refractivity from clutter (RFC) is an inversion approach for the estimation of the
refractivity profile from radar clutter, and RFC-ED refers to its implementation for the case of evaporation
ducts. An approach for fusing RFC-ED output with evaporation duct characterization that is based on en-
semble forecasts from a numerical weather prediction (NWP) model is examined here. Three conditions of
air–sea temperature difference (ASTD) are examined. Synthetic radar clutter observations are generated
using the Advanced Propagation Model. The impacts of ASTD on the evaporation duct refractivity profile,
atmospheric parameter inversion, and propagation factor distributions are studied. Relative humidity at
a reference height and ASTD are identified as state variables. Probability densities from NWP ensembles,
RFC-ED, and joint inversions are compared. It is demonstrated that characterization of the near-surface
atmosphere by combining RFC-ED and NWP reduces the estimation uncertainty of ASTD and relative
humidity in an evaporation duct, with respect to using either method alone.

1. Introduction

Knowledge of the atmospheric surface layer (ASL) is
crucial in weather prediction and in the prediction of
radar and communication systems performance at fre-
quencies above 2GHz on low-altitude paths. Bulk mea-
surements and rocketsondes are in situ methods for
sampling the ASL (Rowland et al. 1996). While having
some limitations (Helvey 1983; Mentes and Kaymaz
2007), these methods are still in use today. Using radar
clutter returns to estimate the refractivity profile in the

ASL potentially can be done continuously (Rogers et al.
2000; Gerstoft et al. 2003b; Yardim et al. 2008). Ship-
borne radars commonly operate across the world’s oceans
and in many complex coastal environments. These sen-
sors can potentially sample the ASL continuously, in
otherwise data-denied regions and over water where
measurements, particularly vertical profiles, are scarce.
Refractivity profiles and their corresponding radar

clutter returns also can be modeled using mesoscale
numerical weather prediction (NWP; Burk et al. 2003;
Wang et al. 2012). Sea clutter predictions based on
range-varying ASL characterization from the Coupled
Ocean–Atmosphere Mesoscale Prediction System
(COAMPS) (Hodur 1997) were shown by Burk et al.
(2003) to be in agreement with clutter observed by
an S-band radar in the lee of Kauai in the Hawaiian
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Islands. Mesoscale NWP has steadily improved over
time and good levels of agreement with observed ASL
values have been reported (Haack et al. 2010; Wang
et al. 2012).
Mesoscale NWP models cannot represent all pro-

cesses in the atmosphere, and there always is some de-
gree of error in the information that is assimilated into
the model. The uncertainty of the estimations increases
as the distance (in both space and time) increases from
the observations that have been assimilated. The spatial
resolution of the NWP also might be too coarse to cap-
ture vertical variations of the atmosphere (Warner 2011).
Refractivity-from-clutter (RFC) techniques use ob-

served radar backscatter to estimate the ambient envi-
ronment refractivity profile (Karimian et al. 2011; Zhao
and Huang 2012). A strong correlation between the re-
trieved refractivity profile using an S-band radar and in
situ measurements by instrumented aircrafts has been
noted (Rogers et al. 2000; Gerstoft et al. 2003b). RFC
techniques enable the tracking of spatial and temporal
changes in the environment (Vasudevan et al. 2007;
Yardim et al. 2008). There have been attempts to incor-
porate theworldwide surfacemeteorological observations
database using the environmental library of the Ad-
vanced Refractive Effects Prediction System (Patterson
1998) in the RFC inversion (Yardim et al. 2009). This
method uses regional meteorological duct height sta-
tistics as a prior probability density in refractivity profile
inversions.
One drawback of RFC is the increased variance in

the estimated refractivity above the atmospheric duct
(Yardim et al. 2007). NWP potentially can be used to
regularize the RFC-ED solution above the duct. On
the other hand, RFC inversions potentially can re-
duce the NWP errors by increasing the number of ob-
servations from RFC-capable ships. Here, the
application of RFC in evaporation ducting conditions is
referred to as RFC-ED.
The COAMPS model is used here to generate en-

sembles of air and sea temperatures, relative humidity,
and wind predictions at 10m above the sea. These en-
sembles are converted to vertical atmospheric profiles
in the vicinity of the sea surface using the Navy Atmo-
spheric Vertical Surface Layer Model (NAVSLaM;
Frederickson 2010). The atmospheric profile obtained
from the previous step is used in a joint cost function
minimization framework together with observed clutter
power to invert for the air-sea temperature difference
(ASTD) and the relative humidity in the ASL. It is shown
that the uncertainty of the estimated atmospheric variables
is reduced within this joint framework compared to us-
ing either NWP or RFC-ED alone. Subsequently, esti-
mated atmospheric parameter probability distributions

are used to obtain the radio refractivity profile distri-
bution, which in turn is used to find the distribution of
the propagation factor for electromagnetic waves.
The latter is important in the analysis of radio wave
propagations and the assessment of radar coverage in an
environment (Yardim et al. 2009).
The dependence of the environmental refractivity

index on the atmospheric parameters is discussed in
section 2, with an emphasis on evaporation ducting
conditions. Inversions of the refractivity profile and at-
mospheric bulk parameters using radar clutter obser-
vations are discussed in section 3. Mesoscale NWP and
ensemblemethods are reviewed in section 4. Integration
of NWP and RFC-ED for inversion of the atmospheric
bulk parameters, and subsequently the derivation of the
probability distribution of the propagation factor, are
discussed in section 5.

2. Dependence of refractivity index on atmospheric
parameters

Humidity typically decreases rapidly in the ASL
above the ocean surface, resulting in a leaky waveguide
that bends radio waves toward the surface. This feature
is known as an evaporation duct. Maritime evapora-
tion ducts are almost always present around the globe
(Skolnik 2008) and usually affect both low-altitude radar
detection and maximum communication ranges. As a
consequence, correct characterization of the ASL is im-
portant in determining the performance of these systems.
The vertical modified refractivity M is defined as the

part per million deviation of the index of refraction n
from that of a vacuum after transforming the spherical
earth propagation into a flat earth problem. The modi-
fied refractivityM is a function of atmospheric variables
with experimental constants for frequencies 0.1–100GHz
(Thayer 1974; Bevis et al. 1994):

M(z)5
77:6P(z)

Tair(z)
2

5:6e(z)

Tair(z)
13:753 105

e(z)

T2
air(z)

10:1568z ,

(1)

where P(z) and e(z) are the atmospheric pressure and
partial pressure of water vapor (hPa) and Tair(z) is the
absolute air temperature (K), all at altitude z (m).
Monin–Obukhov (MO) similarity theory is widely ac-
cepted as the means to relate physical quantities and
processes in the ASL (Foken 2006). MO-based models
can generate vertical atmospheric profiles given the sea
surface temperature Tsea, and values at a reference
height of air temperature, wind speed u, and relative
humidity (RH). Corresponding vertical refractivity pro-
files can subsequently be obtained using (1). Except for
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relatively rare subrefractive cases, the vertical M(z)
profile is concave with respect to height z and has an
inflection point referred to as the evaporation duct
height hd, as illustrated in Fig. 1. As a point of clarifi-
cation, the vertical M profile is not uniquely defined by
hd in most MO models including those of Liu et al.
(1979) and Frederickson et al. (2000).
Several MO evaporation duct models exists (Cook

and Burk 1992; Babin et al. 1997; Frederickson et al.
2000; Frederickson 2010). We choose NAVSLaM
(Frederickson et al. 2000; Frederickson 2010) to com-
pute the vertical atmospheric and refractivity profiles
in an evaporation duct from bulk parameters (air tem-
perature, humidity, and pressure at a certain height above
the sea surface). Bulk parameters can be provided by
in situ measurements, climatological databases, or NWP.
NAVSLaM uses an iterative method. The evaporation
duct height is much more sensitive to variations in
NAVSLaMmodel parameters in stable conditions, which
results in increased profile errors. Especially in highly
stable thermal stratification and low winds, the algorithm
either fails to converge or provides highly erroneous M
profiles. However, there are built-in safety loops in the
code, such as when the results are rejected if the process
takes more than a certain number of iterations. Some of
the problems with evaporation duct height estimation
under stable conditions are discussed in detail in Babin
et al. (1997). An alternative toNAVSLaM could be using
a noniterativemethod to find the evaporation duct height
(Babin and Dockery 2002).
Changes in duct height versusASTD (DT5 Tair2 Tsea),

relative humidity, and wind speed are shown in Fig. 2 for
sea temperatures Tsea 5 158 and 308C. Atmospheric vari-
ablesTair, RH, and u are all taken at 10m. In general, ASL
models are insensitive to the atmospheric pressure (Fairall
et al. 2003), and a typical atmospheric pressure of 1020hPa
is used here. Figure 2 shows rapid changes to the duct
height with DT where DT . 0, and fewer variations
where DT, 0. Comparison of Figs. 2a,c and 2b,d shows

that the sensitivity of duct height to DT and RH in
warm sea waters is more significant than in colder wa-
ters. Clearly, the sensitivity of hd to changes in DT, RH,
and u is state dependent, and small errors in DT, RH,
and u can result in large errors in hd when DT . 0.

3. Refractivity from clutter

Radar clutter in a maritime environment depends on
the two-way propagation loss from the transmitter to the
range cell, and propagation loss depends on the refractivity
profile. Assume an environment described by a vector of
model parametersm through which the electromagnetic
waves are propagated. Previous RFC-ED studies have
considered the duct height of an evaporation duct as the
state parameter (Rogers et al. 2000; Yardim et al. 2009;
Douvenot et al. 2010) under the assumption thatDT5 0.
This assumption was important to constrain the possible
atmospheric solutions. The vector of atmospheric
parameters m 5 [DT, RH]T at a height of 10m is used
here as the state vector.

a. Sea clutter model

The expected radar clutter power in a maritime en-
vironment can be expressed as a function of the radar
parameters; the propagation factor F, which is a function
of the refractivity profilem and range r; and the grazing
angle u (Skolnik 2008):

Pc(m, r)5
PtG

2l2uBcts0 sec(u)F
4(m, r)

2(4pr)3L
, (2)

FIG. 1. The modified refractivity profile of an arbitrary evaporation
duct with DT 5 0 and duct height hd 5 24m.

FIG. 2. Evaporation duct height vs DT 5 Tair 2 Tsea and RH for
wind speed u of (a),(b) 5 and (c),(d) 10ms21 obtained byNAVSLaM
and Tsea 5 (left) 158 and (right) 308C. All atmospheric variables are
referenced to 10m above the sea surface.
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where Pt is the transmitter power, G is the antenna
gain, l is the wavelength, uB is the antenna pattern
azimuthal beamwidth, c is the propagation speed, t is
the pulse width, s0 is the expected sea surface re-
flectivity per unit area, and L is the total assumed
system losses. The grazing angle u is the angle between
the incident ray and the sea surface and it is a function
of m and r. The sea surface reflectivity in ducting
conditions typically is computed based on the work of
Dockery (1990).
For simplicity, synthetic clutter powers are computed

assuming range-independent refractivity profiles and
wind speed, using the parabolic equation–based Ad-
vanced Propagation Model (APM) (Barrios et al. 2006).
This method can easily be extended to range-dependent
profiles. Clutter power is a function of grazing angle and
there is a debate about the strength of this dependence,
especially for very low grazing angles under ducting
conditions (Gerstoft et al. 2003b; Karimian et al. 2012b).
The RFC inversion algorithm can be made more robust
by using clutter starting from a minimum range r0 where
the grazing angle converges to a constant value in an
evaporation duct. It was shown in Yardim et al. (2009)
that r0 5 5 km is good for commonly observed evapo-
ration ducting conditions:

Pn,c(m, r)5
Pc(m, r)

Pc(m, r0)
5

F4(m, r)r30
F4(m, r0)r

3
. (3)

Letting F and Pn,c represent the associated values in deci-
bels as opposed to real numbers, we can rewrite (3) as

Pn,c(m, r)5 4[F(m, r)2F(m, r0)]1 3 log
r

r0
. (4)

b. Refractivity profile inversion and bulk parameters
for evaporation ducts

Inversion for the evaporation duct height from an
S-band radar clutter was reported inRogers et al. (2000).
The sensitivity of the radar clutter power to the duct
height at different frequencies was studied by Yardim
et al. (2009). RFC-ED studies in the past have assumed
sea and air temperatures to be equal. This assumption
simplifies the refractivity profile of an evaporation duct
to be logarithmic in the vicinity of the sea surface and
only dependent on the duct height.
An objective function JRFC that quantifies the differ-

ence between the normalized observed and modeled
clutter power, Pn,o and Pn,c(m), is formed here. The Pn,o

and Pn,c are the vectors of clutter power in decibels over
N range bins. The optimal solution minimizes the ob-
jective function:

m̂5 argmin
m

JRFC[Pn,o,Pn,c(m)] . (5)

The backscattered radar signal can be modeled using
a multiplicative random variable representing the vari-
able sea surface reflectivity and additive thermal noise.
Following Skolnik (2008), variation of the sea surface
reflectivity is assumed to have a lognormal density.
Working in the high clutter-to-noise ratio (CNR) re-
gime, the additive noise term can be neglected. There-
fore, the observed clutter power in the logarithmic domain
is obtained as

Pn,o 5Pn,c(m)1 n and (6)

n;G(0,Co) , (7)

where Pn,o and Pn,c(m) are in decibels, n is the vector of
logarithmic random sea reflectivity variations that is
assumed to beGaussian, andCo is the covariance matrix
of sea surface reflectivity variations. The log-likelihood
objective function JRFC is expressed by

JRFC5 [Pn,o 2Pn,c(m)]TC21
o [Pn,o2Pn,c(m)] . (8)

The slow rate of change of the clutter power with range
at the frequencies of interest enables the selection of
RFC range bin widths on the order of hundreds of meters
without any loss of clutter features. In addition, large bin
widths justify the assumption that the modeled sea
surface variations at consecutive bins are independent.
Thus,Co5 nI, where n is the variance of the logarithmic
sea surface reflectivity and I is the identity matrix.
Equation (8) is the negative log-likelihood function
under lognormal radar cross-sectional statistics. Mod-
eling random variations of the clutter power due to the
changes in the sea surface reflectivity by the lognormal
density often is a good approximation in RFC appli-
cations (Karimian et al. 2012a).
A weakness of RFC-ED as a stand-alone means for

characterizing the ASL’s refractivity is in using a log-
linear refractivity profile defined by a single parameter
(Rogers et al. 2000). This simplification causes small
errors when the inverted refractivity profile obtained
from RFC-ED is used for propagation calculations at
the same frequency as the sensing radar. Errors increase,
though, as the difference between the frequencies of the
sensing and the use of the profiles increases. Figure 3
shows that not only the duct height, but also the shape of
the profile, affects the radar clutter. This effect is more
pronounced at higher frequencies. In this example, the
sea surface temperature is 308C, wind speed is 5m s21,
and radar is 10m above the sea surface. The clutter
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power fall-off rates for a 14-m duct inDT, 0 andDT5 0
conditions are similar at 3GHz. However, those fall-off
rates differ at 10GHz. Thus, knowledge of the bulk pa-
rameters is required when inverted parameters at one fre-
quency are to be used at a different frequency. Using the
refractivity profile obtained from NWPmight improve the
modeling error at other frequencies. Figures 3 and 4 both
use NAVSLaM to obtain the refractivity profile from
COAMPS parameters. APM (Barrios et al. 2006) then is
used to compute the clutter power from these refractivity
profiles.
The radar clutter power is sensitive to changes in the

atmospheric variables. Dodgett (1997) showed that
radar propagation is also more sensitive to changes in
humidity and temperature than to those in pressure
levels. Figure 4 demonstrates the sensitivity of the
clutter power to atmospheric parameters. Figure 4 also
shows the changes in the clutter power of a radar at
10m above the sea surface, operating at 3GHz, when
ASTD changes by 18C, or relative humidity changes by
10%. Here, it is assumed that pressure is constant;
surface temperature and wind speed are obtained from
COAMPS ensemble forecasts; and radar clutter is used
to invert for humidity and ASTD.

4. Numerical weather prediction

COAMPS is a nonhydrostatic mesoscale model devel-
oped from the Navier–Stokes equations that produces
predictions of the ocean and atmosphere on time scales
of hours to several days (Hodur 1997). This model can

be used for the prediction of winds, potential tempera-
ture, perturbation pressure, and five species of water and
their autoconversions including mixing ratios of water
vapor, clouds, rain, snow, ice, and graupel. It contains
physical parameterizations appropriate for high-resolution
characterizations of the surface energy budget, surface
fluxes, planetary andmarine boundary layers, short- and
longwave radiation, and convection.
External sources of data such as measurements from

radiosondes and aircraft, buoy, and ship data can be
used to blend the observed data with the first-guess field
generated by COAMPS (Hodur et al. 2001). Multi-
variate optimum interpolation analysis of wind and
pressure and univariate interpolation of temperature
and moisture are used to combine the observational
data with the first guess from the COAMPS previous
12-h forecast.
Three nested grids were used here in forecasts with

horizontal spacings of 45, 15, and 5 km, respectively.
Each domain has 45 vertical levels with the lowest lo-
cated at 10m. The vertex of the grid with 5-km resolu-
tion (origin in Figs. 5 and 6) is at 18.100488N, 199.05488E,
southwest of the Hawaiian Islands. Sea temperatures
are obtained from satellite data, and no perturbation is
introduced to this parameter in the generation of en-
semble members. Here, the ensemble transform (Bishop
and Toth 1999) is used to generate initial states for en-
semble predictions (McLay et al. 2008). One of the

FIG. 3. (a) Modified refractivity profiles, all with duct heights of
14m. Also shown are the corresponding clutter powers when the
radar is located at 10m for operational frequencies of (b) 3 and
(c) 10GHz. The Tsea 5 308C and u 5 5m s21.

FIG. 4. (a),(c) Modified refractivity profiles and (b),(d) the
corresponding clutter powers. Radar frequency is 3GHz, and
it is located at 10m above the sea surface. The Tsea 5 158C and
u 5 5m s21. In (a) and (b), RH 5 70% for different DT condi-
tions; in (c) and (d), DT 5 18C for different humidities.
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ensemblemembers is the control run and the rest are run
with perturbed conditions. The error covariance of the
ensemblewith respect to the average prediction is formed
at the start of each forecast cycle (i.e., every 6 h).
Two NWP ensembles in the region of the Hawaiian

Islands are used here that are known to have evapo-
ration ducting conditions. The first is a 16-member
ensemble on the air–sea boundary layer at 1200 UTC
7 May 2008, and the second is a 32-member ensemble
that corresponds to 26–28 July 2008 with 3-h gaps
starting from 1200 UTC. The data that correspond to
1200 UTC 7 May 2008 are shown in Fig. 5. Atmospheric
parameters shown in Fig. 5 are all at 10m. Sea tempera-
ture in general is higher than the air temperature in this
dataset. COAMPS outputs at 10m are used as inputs to
NAVSLaM to find the evaporation duct profiles at each
location. The average and standard deviation of duct
heights are shown in Fig. 6. Duct height is not very
sensitive to DT changes where the air temperature is less
than the sea temperature. The ensemble for 26–28 July
2008 shows similar variations in the standard deviation
of the atmospheric variables and duct heights, which are
not shown.
Ensemble methods provide the environmental param-

eter uncertainty in NWP predictions. This will allow the
integration of the NWP results with the RFC. The data
assimilation method given in the next section will merge
these two sources of information (NWP and RFC) onto
the ASL parameters, taking into account how much
confidence we have in each method via the uncertainties
attached to each method.

5. Integration of radar observations and weather
prediction

Data assimilation generally can be described as an
optimization problem to integrate observations with
predictions (Kalnay 2003). Gerstoft et al. (2003a) used
clutter powers from multiple grazing angles to infer the
refractivity profile of surface ducts and introduced limits
on possible refractivity profile solutions from climato-
logical constraints. Within a similar framework, ocean
salinity and temperature measurements in the water
column were used to update the water-mass properties
in oceanic circulation models (Thacker and Esenkov
2002). Underwater acoustic propagation loss has been
used by Lermusiaux et al. (2011) for coupled oceano-
graphic and acoustic data assimilation.
A quadratic metric is defined to measure the fitness

of each set of candidate atmospheric variables (m) to
predicted values by NWP and inversions of observed
clutter power Po. Here, m 5 [DT, RH]T, with atmo-
spheric variables at a height of 10m. The clutter power
fall-off rate does not convey information about the air
pressure and the absolute value of the wind speed, and
it is a weak function of sea surface temperature. Hence,
these are used directly from NWP.
Variational data assimilation studies typically have con-

sidered a quadratic cost function that assumes the predic-
tion andobservation error terms to haveGaussian densities
(Kalnay 2003; Warner 2011). The joint cost function of
NWP and RFC-ED is obtained by statistics yielded from
the NWP ensemble and the RFC-ED inversion Eq. (8):

FIG. 5. (top) Average values and (bottom) standard deviation of COAMPS ensemble of (left) wind speed, (left center) DT, and (right
center) RH at 10m around the Hawaiian Islands at 1200 UTC 7 May 2008 using 5-km grid spacings. (right) The observed surface
temperature (sea or ground) during the same time using buoy and ship data.
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J(m)5 JNWP(m)1 JRFC(m)

5
1

2
(m2mNWP)

TC21
N (m2mNWP)

1
l

2
[Pn,o 2Pn,c(m)]TC21

o [Pn,o 2Pn,c(m)] , (9)

where mNWP and CN are the average and covariance of
NWP ensemble atmospheric variables. Ensemble mem-
bers are assumed to be independently and identically
distributed samples in the RH–DT space. Hence, the
covariance matrix can be approximated with the sample
covariance. The larger the number of ensemblemembers,
the better the estimate is going to be. Even though the
available dataset had a 16-element ensemble for one of
the examples, future implementations will be using a
minimum of 32 ensemblemembers. The l is a constant to
balance the effect of RFC-ED and NWP on the joint
penalty function. Here, l 5 1 is used, which corresponds
to a Bayesian solution using the NWP term as a prior and

RFC-EDas the likelihood termwithGaussian variations.
A two-dimensional search through the DT and RH para-
meter space is used here to find the optimum m.
Analysis of NWP outputs indicates that assuming a

range-independent profile for a radius of 20–25km is rea-
sonable far from the coasts. Simulations in this paper are
made by taking the average COAMPS predictions at the
locationof interest and assuming that theDT, humidity, and
wind profiles are range independent up to a range of 25km.
The same approach can be extended to range-dependent
profile inversions where the state vector will be larger.
Three atmospheric conditions classified by values of

DT are investigated. The cases of DT . 0, DT 5 0, and
DT , 0 loosely correspond to the stable, neutral, and
unstable thermodynamic atmospheric conditions, respec-
tively. The geographic locations of these examples are
shown with white crosses in Fig. 6. The most prevalent
situation in the dataset is the DT , 0 condition. This
condition is investigated with the example in Fig. 7.
The DT 5 0 condition occurs rarely. One example of this
condition is studied in Fig. 8. The DT. 0 condition in our
dataset occurs only near the coast where the assumption of
a range-independent profile fails. We only use the range-
independent refractivity profile assumption in Fig. 9 to
demonstrate an inversion example under the DT. 0 con-
dition. The priors for DT and RH for RFC-ED inversions
are assumed to be uniformly distributed with DT 5 (248,
28C) and RH 5 (50%, 100%) for all examples.
All three examples in Figs. 7–9 consider the radar

clutter with CNR of 25 dB at the range of 10 km. A 58

FIG. 6. (a) Average and (b) standard deviation of duct heights
obtained by running NAVSLaM on the COAMPS ensemble in
Fig. 5. The geographic locations of cases analyzed in Figs. 7, 8,
and 9 are marked by white asterisks, times signs, and squares,
respectively.

FIG. 7. Case 1, DT, 0 corresponding to 1200 UTC 7May 2008 at
position (120, 330) km in Figs. 5a–c. Scatterplots of DT and RH, and
each of their marginal densities obtained by (a) the COAMPS en-
semble, (b)RFC-ED, and (c) the joint NWP–RFC-EDmethod. The
NWP ensemble mean (squares) is used for clutter power simula-
tions. (d) Histogram of duct heights obtained by RFC-ED in (b).
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azimuthal segment is used for each inversion where
synthetic clutter power is generated with independent
noises and 18 azimuthal spacing. The logarithmic radar
cross section is assumed to have a Gaussian density with
0 mean and 3-dB standard deviation. The average of the
NWP ensemble is taken as the true state and used to
generate 100 clutter power realizations. Synthetic clut-
ter powers in the range of 5–25 km with bins every 1 km
are used for RFC-ED inversions and joint NWP–RFC-
ED inversions. Implementation of RFC-ED is based on
theminimization of (8), and implementation of jointNWP-
RFC-ED is based on using the cost function (9). Two-
dimensional andmarginal densities of the NWP ensemble,
RFC-ED inversions, and joint inversions are all demon-
strated in these plots. Histograms of inverted duct heights
obtained from RFC-ED inversions are also plotted.
An example with DT, 0 corresponding to 1200 UTC

7May 2008 at position (120, 330) km in Fig. 5 is shown in
Fig. 7. RFC-ED is insensitive to DT and more sensitive
to the humidity. This is consistent with Fig. 2, where the
duct height is rather insensitive to DT where DT, 0 but
is highly sensitive to changes in the level of relative
humidity. In contrast, the NWP has a larger uncertainty
for RH and smaller for DT. Hence, the combination
of RFC-ED and NWP reduces the uncertainties in at-
mospheric parameter estimation drastically. Figure 7a
shows the distribution of a 16-member ensemble found
by COAMPS. A total of 100 realizations of clutter power
are obtained by adding 3-dB variance Gaussian noise to
the clutter power of the average ensemble. Inversion
results of these clutter power realizations are shown in
Fig. 7b. The distribution of pairs of [DT, RH]T found by
RFC-ED form a curve of points with very similar duct
heights. This is shown by the narrow histogram of

inverted duct heights in Fig. 7d. This is consistent with
strong dependence of clutter power on duct height, es-
pecially with DT # 0 (Rogers et al. 2000). Figure 7c
shows the distribution of atmospheric parameters using
minimization of the joint cost function (9).
An example with almost DT 5 0 is considered in

Fig. 8. Figure 8a shows the distribution of the atmo-
spheric parameters obtained from 32 COAMPS en-
semble predictions. RFC-ED, shown in Fig. 8b, provides
a set of solutions that all correspond to similar clutter
power patterns. These solutions all yield similar
duct heights, as demonstrated by the narrow proba-
bility density in Fig. 8d. Similarity of duct heights of
inverted profiles is expected, since clutter power is
a strong function of the duct height in evapora-
tion ducts, rather than the minor changes in the re-
fractivity index gradient. The joint inversion of NWP
and RFC-ED, shown in Fig. 8d, reduces the uncertainty
of the lower-atmospheric parameter estimation found
from either method.
An example with DT . 0 is demonstrated in Fig. 9.

Figure 9a shows the distribution of 32 ensemble predic-
tions of COAMPS. Figure 9b shows inversion results of
100 clutter power realizations, obtained by adding 3-dB
variance Gaussian variations on the clutter power of
the average ensemble. The duct-height uncertainty ob-
tained from RFC-ED (Fig. 9d) is increased in this case
(DT . 0) compared to other cases seen in two previous
examples. The reason is that the M profile converges to
a vertical profile when DT . 0. For example, compare
the shape of theM profiles in Fig. 3, where allM profiles
have the same duct height.
The environment can evolve after earlier COAMPS

predictions. An example of this scenario is provided in

FIG. 8. As in Fig. 7, but for case 2, DT 5 0 corresponding to 0300
UTC 27 Jul 2008 at position (415, 340) km.

FIG. 9. As in Fig. 7, but for case 3, DT . 0 corresponding to 1200
UTC 28 Jul 2008 at position (150, 450) km.
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Fig. 10. This example considers the original atmospheric
parameters to be DT 5 0 and RH 5 60% obtained by
COAMPS. The environment is assumed to have evolved
into a new state where DT5 1.58C and RH5 65%. The
combination of RFC-ED and NWP helps to obtain in-
version results closer to the current environmental state.
Constant duct-height contours are shown in Fig. 11,

with conditions similar to Figs. 7–10. Inverted atmo-
spheric parameters obtained from RFC-ED in those
examples also are shown. The inversion results follow the
contours of the duct height (as seen in Fig. 11) due to the
strong dependence of the clutter power on duct height.
This is consistent with narrow histograms of duct heights
obtained from RFC-ED inversions in panel d of Figs. 7–
10. This shows that in most cases RFC can invert for the
duct height accurately but that does not translate into
a unique solution in the atmospheric parameter domain.
This creates RFC uncertainty surfaces that closely follow
the constant duct-height contours. NAVSLaM does not
provide reliable refractivity profiles for large positive DT
(white area in Fig. 11). Thus, the spread of inverted duct-
height histograms gets larger for DT . 0. Subsequently,
inverted duct heights obtained from RFC-ED diverge
from contours with larger positive DT in Fig. 11.
The propagation factor F is defined as the ratio of the

magnitude of the electric field at a given point under
specified conditions to themagnitude of the electric field
under free-space conditions with the same transmitter:
F(r)5 jE(r)/Efs(r)j (Skolnik 2008). The probability
densities of the propagation factor using atmospheric
parameters from the three methods discussed are shown
in Fig. 12 for heights of 10 and 40m and a range of 25 km.

This example uses 1000 synthetic clutter powers in each
case to generate histograms. The propagation factor
probability density obtained fromNWP appears to have
a flat distribution and is more peaked for RFC-ED.
RFC-ED yields atmospheric parameters that result in
similar clutter power and, thus, also result in similar
propagation factors. The probability density of F using
the joint technique appears to be a combination of the
propagation factor densities obtained from NWP and
RFC-ED. However, this combination is not linear since
the relationship between F and atmospheric variables
DT and RH is not linear. The importance of estimating
the true atmospheric conditions for radar performance
prediction can be seen by comparing the estimated F
values to the F of a standard atmosphere with no duct-
ing. Standard atmosphere propagation factors at 25-km
range and heights of 10 and 40m are 227 and 235 dB,
respectively. Thus, failing to model the evaporation duct
can lead to errors of 10–40dB in the expected radar signal
power in the assessment of radar propagation.

6. Conclusions

Numerical weather prediction and refractivity-from-
clutter results were combined, opening the way for a full
data assimilation of the refractivity profile. NWP and
RFC can be used jointly in maritime environments to
reduce the estimation variance of atmospheric variables
near the sea surface. Advantages of NWP (providing
prior information to a high altitude) and RFC (real-time
tracking of atmospheric parameters) can be utilized
jointly to provide a powerful inversion method. This

FIG. 10. As in Fig. 7, but for case 4, evolution of the environment
after predictions. The scatterplot ofDT andRH, and their marginal
densities are obtained in (a) by COAMPS from Fig. 8. The square
shows the assumed true state used for clutter power simulations.

FIG. 11. Duct height (circles) (m) as a function of DT and RH
with Tsea 5 268C and u5 8m s21, conditions similar to those of the
average ensemble in Fig. 5. Symbols with legend at top right show
inversion results obtained by RFC-ED with cases 1–4 referring to
Figs. 7–10, respectively.
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investigation focused on RFC for evaporation ducts
(RFC-ED) within the atmospheric surface layer.
Spatial and temporal variabilities in the atmospherewere

captured by COAMPS nonhydrostatic mesoscale forecasts
at 5-km horizontal grid spacing. Atmospheric ensemble
hindcasts were used here from the summer of 2008 around
theHawaiian Islands where prevailing evaporation ducting
conditions were known to exist. These deterministic fore-
casts provided the control runs for 16- and 32-member
ensemble suites. An ensemble transform technique was
used in which the initial conditions at each forecast cycle
were perturbed to depict how uncertainty due to errors in
the initial state would evolve within the forecasts.
TheRFC-EDwas implemented by creating an objective

function that matched the measured clutter power in
a range interval and at a given azimuth to the modeled
clutter power. Sea temperature, air pressure, and wind
speed were directly used fromNWP. Air–sea temperature
difference (ASTD) and humidity were identified as the

state vectors to be found by theNWP-only,RFC-ED-only,
and joint methods. An ensemble of Hawaii hindcasts and
a range of possible ASTD values were considered through
four examples. It was shown that NWP and RFC had
different sensitivities to ASTD and RH under varying
stability conditions. Thus, using a joint method enabled us
to reduce significantly the overall uncertainties in these
parameters. Likewise, the real-time RFC updates were
able to mitigate the error in atmospheric parameters cre-
ated under a hypothetical case when the true environment
deviated from the initial COAMPS estimates.
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