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This study examines a near-field acoustic holography method consisting of a sparse formulation of
the equivalent source method, based on the compressive sensing (CS) framework. The method,
denoted Compressive–Equivalent Source Method (C-ESM), encourages spatially sparse solutions
(based on the superposition of few waves) that are accurate when the acoustic sources are spatially
localized. The importance of obtaining a non-redundant representation, i.e., a sensing matrix with
low column coherence, and the inherent ill-conditioning of near-field reconstruction problems is
addressed. Numerical and experimental results on a classical guitar and on a highly reactive dipole-
like source are presented. C-ESM is valid beyond the conventional sampling limits, making wide-
band reconstruction possible. Spatially extended sources can also be addressed with C-ESM,
although in this case the obtained solution does not recover the spatial extent of the source.
VC 2017 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4974047]
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I. INTRODUCTION

Reconstructing and visualizing the sound field near an
acoustic source is useful for understanding its sound radia-
tion and identifying the mechanisms that give rise to its
acoustic output. Near-field acoustic holography (NAH) is a
powerful reconstruction technique, that relies on measuring
with an array of microphones in the near-field of the source,
in order to reconstruct the entire sound field over a three-
dimensional space about the source.1,2 NAH makes it possi-
ble to estimate the sound pressure, particle velocity, and
sound intensity vectors in a different position than measured,
with enhanced spatial resolution due to capturing the evanes-
cent waves in the near-field of the source. As a consequence,
the evanescent waves make the inverse problem severely ill-
conditioned. There are numerous NAH methods, which can
be based on explicit Fourier transforms,1–3 plane or spherical
wave expansions,4–6 inverse numerical approaches,7,8 or
other.9,10 The Equivalent Source Method (ESM), also known
as the method of wave superposition, source simulation
method, etc.6,11–13 is a commonly used method in sound
radiation and scattering. The method is based on the funda-
mental idea that an arbitrary wave-field can be expressed as
the superposition of waves radiated by a collection of point
sources. In the particular case of acoustic holography, the
approach is appealing due to its simplicity, computational
efficiency, and the potential to reconstruct over non-
separable geometries.6,13

The ESM, as well as other holography methods, gen-
erally give rise to underdetermined problems, since there

are often more waves in the model than measurement
points. The classical way of solving the problem is in a
Least-Squares (LS) sense, by means of a regularized
pseudo-inversion. This corresponds to seeking the solu-
tion with minimum energy in the solution subspace.
However, alternative choices are possible. In acoustics, it
is often meaningful to obtain a sparse representation of
the sound field, i.e., sparse in the sense that it consists of
few waves or sound sources. Such a solution can be
obtained based on the compressive sensing (CS) frame-
work.14,15 CS is a signal acquisition and processing tech-
nique rooted on the idea that data have often a sparse
representation in some basis, i.e., they can be described
only with few non-zero coefficients.14,15 This sparse rep-
resentation can be obtained by means of solving an ‘1-
norm minimization problem. Sparse approaches have
been used in several studies concerned with localizing
acoustic sources.16–23 Recent studies have also examined
the use of sparse representations in near-field problems,
either by finding a sparse representation in wave number
domain using Fourier-based NAH,24 or direct spatial
sparsity.25–27

In this paper, we propose a sound field reconstruction
method based on the equivalent source method (or method
of wave superposition), which makes use of CS for obtain-
ing a sparse representation of the measured wave field
in the near-field of an acoustic source. In the following,
we refer to the method as Compressive–Equivalent
Source Method (C-ESM for brevity). The study addresses
the importance of having a non-redundant representation
of the observed data, as well as the physical significance of
the obtained sparse solutions for the reconstruction of
acoustic fields.a)Electronic mail: efg@elektro.dtu.dk
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II. THE EQUIVALENT SOURCE METHOD

Let us consider an arbitrary sound field in the near-field
of an acoustic source, where the sound pressure is sampled
in space and time by means of an array of microphones. The
sound pressure at a microphone position is expressed as due
to a continuum of sources distributed on the surface of the
sound source,11,12,28

pðrm;xÞ ¼ jxq
ð

S
qðr0ÞGðrm; r0ÞdSðr0Þ; (1)

where r0 is the position of the equivalent sources, qðr0Þ is
their volume velocity, and rm the position of a microphone.
In practice, the equivalent sources are retracted from the sur-
face of the source (or placed behind it) to prevent the singu-
larity (see Fig. 1). The frequency dependency x is omitted in
the following (the ejxt time convention is adopted).

The function Gðr; r0Þ in Eq. (1) corresponds to the
Green’s function in free-space between an equivalent source
at r0 and a point r in the sound field reconstruction domain

G r; r0ð Þ ¼
e$jkjjr$r0jj

4pjjr$ r0jj
; (2)

where jjr$ r0jj is the magnitude of the vector difference. It
is also possible to express the particle velocity vector uðr;xÞ
from Euler’s equation of motion,

uðr;xÞ ¼ $
ð

S
qðr0ÞrGðr; r0ÞdSðr0Þ; (3)

where rGðr; r0Þ denotes the gradient of G. It follows from
Eqs. (1) and (3) that any arbitrary sound field can be expressed
as due to the superposition of the waves radiated by such con-
tinuum of point sources (equivalent sources). By inferring the
complex amplitudes qðr0Þ, it is possible to predict the com-
plete sound field over the source-free domain: pressure, parti-
cle velocity, therefore sound intensity and sound power.

In practice, these equations are discretized. Equation (1)
becomes

pðrmÞ ¼
XN

n¼1

qnGðrm; r0;nÞ: (4)

The problem reduces to a simple system of linear equations,
in matrix form,

p ¼ Gq; (5)

where p ¼ ½pðr1;xÞ; :::; pðrM;xÞ&T 2 CM is the measured
pressure at M microphones, q ¼ ½q1; :::; qN&T 2 CN is the
coefficient vector containing the strength of the N sources,
which relate to their volume velocity Qn as qn ¼ jxqQn, and
G 2 CM'N contains the entries from the free-field Green’s
function describing the propagation between the positions of
the equivalent sources r0;n and microphones rm.

The solution of Eq. (5) leads to an estimate q̂, which
makes it possible to reconstruct the sound field. It is thus
possible, as shown in Eqs. (1)–(4) to reconstruct the entire
sound field, via a reconstruction matrix Gs, its elements con-
sisting of the Green’s function Gðrs; r0Þ from the equivalent
sources to the reconstruction points rs,

ps ¼ Gsq̂; (6)

us ¼ $
1

jxq
Gn

s q̂; (7)

where Gn
s ¼ @Gs=@n is the n-component of the gradient of

Gðrs;i; r0;jÞ. Once the sound pressure and particle velocity
are estimated, the sound intensity vector I ¼ Refp u(g=2
and sound power P ¼

Ð
SI ) dS can be obtained.

The estimation of the source strengths q̂ is crucial for
the accuracy of the reconstruction, because the problem is
severely ill-conditioned: the free-field Green’s function mod-
els the decay with distance of the spherical waves, and its
inversion entails an amplification that should be regularized.
Additionally, the problem is typically underdetermined
N>M, i.e., more coefficients than measurement points, lead-
ing to a non-unique solution subspace.

III. METHODOLOGY (C-ESM)

Solving the underdetermined system of equations (5)
for the unknown coefficient vector q requires regularization
to constrain the coefficient vector towards desirable (mean-
ingful) solutions. Commonly, from all vectors q which sat-
isfy Eq. (5), we seek the one with the minimum ‘x-norm
defined as,

jjqjjx ¼
XN

i¼1

jqijx
 !1=x

: (8)

The estimation constitutes an optimization problem which
can be formulated as,

q̂ðeÞ ¼ arg min
q

jjqjjxx subject to jj~p $Gqjj2 * e; (9)

where e + knk is the estimated noise floor.
An alternative formulation leads to the regularization

problem,

q̂ðkÞ ¼ arg min
q
k~p $Gqk 2

2 þ kkqkx
x; (10)

where the regularization parameter k > 0 controls the relative
importance between the data fitting term and the ‘x-norm of
the solution vector. For some values of e and k, the

FIG. 1. Equivalent source diagram. Note that the equivalent sources are
retracted behind the source (away from the reconstruction area), to avoid
their singularity being in the field.
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constrained formulation [Eq. (9)] and unconstrained formula-
tion [Eq. (10)] are equivalent. The selection of the regularisa-
tion parameter k in (10) requires an iterative solution of the
problem along with prior knowledge on the relative noise
level.20 In this study, we make use of Eq. (9), as it is appropri-
ate for applications where the maximum noise level in the
data is known or can be estimated.

The “classical” approach uses the ‘2-norm to promote
smooth, minimum-energy estimates through the convex
problem (resulting in the conventional ESM estimation),

q̂‘2
ðeÞ ¼ arg min

q
jjqjj22 subject to jj~p$Gqjj2 * e: (11)

Note that the standard form of the analytic solution to the
‘2-norm regularized least-squares problem, q̂ðkÞ ¼ GH

ðGGH þ kIÞ$1p, is derived from Eq. (10).
Sparse solutions are obtained ideally by solving the ‘0-

pseudo norm problem, where kqk0 ¼ ðijqi 6¼ 0Þ is a count of
the non-zero terms in the vector q. However, this problem
constitutes a combinatorial search that is non-convex and
easily becomes intractable. On the contrary, CS postulates
that the ‘0-norm minimization problem can be relaxed to a
convex ‘1-norm minimization problem when the underlying
problem is sparse and the columns of the sensing matrix
[G, in the problem of Eq. (5)] are sufficiently incoherent (see
Sec. III A). Hence, solving the convex problem,

q̂‘1
ðeÞ ¼ arg min

q
jjqjj1 subject to jj~p$Gqjj2 * e; (12)

promotes sparse solutions. The C-ESM method makes use of
this sparse estimate q̂‘1

ðeÞ. In this study, we use the CVX
computing package,32 based on an interior-point method,
which is robust for sparse recovery problems.33 Although this
method is suitable for the size of the problems considered
here, when the size of the optimization problem increases sig-
nificantly (i.e., large and/or dense equivalent source grids),
the approach becomes slow. For large problems, it may be of
interest to employ alternative algorithms34 as, e.g., Refs. 35
and 30 (FISTA) and 36 (Sparse Bayesian learning).

A. Sensing matrix coherence in NAH/ESM

A sensing matrix G with incoherent columns will guar-
antee a perfect recovery. However, due to the underlying
physical structure of the problem, coherence in G will affect
the robustness of the reconstruction, for closely spaced
source positions and in the presence of noise.

A general coherence measure for the sensing matrix G
is the restricted isometry property (RIP) condition,29

ð1$ dlÞjjqjj22 * jjGqjj22 * ð1þ dlÞjjqjj22; (13)

where dl + 0 is defined as the lth restricted isometry constant
of the matrix G for an l-sparse vector q. Define GL the sub-
matrix composed by any subset L of maximally l normalized
columns of G. Then, the condition (13) implies that the
Gramian matrix CL ¼ GH

L GL has its eigenvalues in the inter-
val ½1$ dl; 1þ dl&. Thus, for dl < 1 the Gramian of GL has
full rank and the matrix G satisfies the RIP of order l. It

follows that the sequence of restricted isometry constants is
non-decreasing, dl * dlþ1.29

The simplest coherence measure is the mutual coherence,
which describes the maximum linear dependency between
any two different column-vectors of G ¼ ½g1; :::; gN&,

l Gð Þ ¼ max
1*i 6¼j*N

Cij ¼ max
1*i6¼j*N

jjgH
i gjjj

jjgijj ) jjgjjj
; (14)

where the matrix C ¼ ½Cij& is the Gramian of G. It follows
from the RIP condition that l ¼ d2 * dl>2 thus the mutual
coherence is a sufficient indicator of coherence.

An upper bound of the condition number of the sensing
matrix G, i.e., the ratio between its largest and smallest sin-
gular value, is given by the mutual coherence as,

cond Gð Þ *
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l Gð Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ l Gð Þ

p : (15)

This follows from the fact that the singular values of G are
equal to the square root of the eigenvalues of its Gram
matrix C which are in the interval ½1$ d2; 1þ d2&. Hence,
the closer lðGÞ is to unity, the more ill-conditioned is the
matrix G. The condition number is an indication of how
well-invertible a matrix is. Although here we do not per-
form an explicit inversion, the condition number is still
representative of the underlying physical problem (i.e., that
the waves decay as they propagate away from the source,
therefore can pose a challenge in the back-propagation
process).

For the matrix G with elements defined in Eq. (2) the
mutual coherence is,

l Gð Þ¼ max
1*i 6¼j*N

$$$$$
XM

m¼1

ejk krm$r0ik$krm$r0jkð Þ

krm$r0ikkrm$r0jk

$$$$$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

m¼1

1

krm$r0ik2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

m¼1

1

krm$r0jk2

s

¼ max
1*i 6¼j*N

$$$$$
XM

m¼1

e$jkDj

krm$r0ik2þDjkrm$r0ik

$$$$$
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

m¼1

1

krm$r0ik2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

m¼1

1

krm$r0ikþDj

% &2

vuut
;

(16)

where krm $ r0jk ¼ krm $ r0ikþ Dj. Hence, Eq. (16) shows
that as Dj ! 0, i.e., krm $ r0ik - krm $ r0jk, the mutual
coherence approaches unity, lðGÞ! 1, resulting in a
severely ill-conditioned problem. The coherence of G
increases when dense grids are required to achieve fine reso-
lution reconstruction and/or when the distance between the
measurement plane and the source plane is increased, as
depicted in the schematic of Fig. 2. For large standoff distan-
ces (jjr0i $ r0jjj) or dense equivalent source meshes, the
mutual coherence increases as shown in Eq. (16), resulting
in estimation error. Contrarily if the equivalent source mesh
is less dense, the coherence will decrease, but the equivalent
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source model cannot model rapid spatial changes of the
sound field.

Figure 3 shows an example of the Gramian matrix
[ C 2 RN'N , with elements Cij defined as in Eq. (14)] of the
sensing matrix G in Eq. (5). We consider a random array of 60
microphones and 1 m diameter (see Sec. V). The equivalent
source grid consists of 25' 25 sources uniformly distributed
over an area of 1' 1 m2, and situated at 12 cm distance from
the array, in a parallel plane. The apparent block pattern (Fig. 3)
results from the vectorization of the equivalent source grid.

Because of the underlying physical structure of the problem,
the column-vectors of G which correspond to neighboring
source locations are highly correlated, as apparent from the
Gramian in Fig. 3. At low frequencies, even the column-vectors
of G corresponding to distant equivalent source locations
become correlated [Fig. 3(a)], whereas at higher frequencies
[Fig. 3(b), 1200 Hz], this is only the case for neighboring equiv-
alent sources. To relate the coherence structure with the equiva-
lent source positions for this measurement, Fig. 4 shows a row
of the Gramian matrix with its values rearranged to the source
grid. The middle row is chosen (row i¼ 313) to show the corre-
lation of the column-vectors of G due to the equivalent source
at the center of the grid. The higher is the correlation between
the column-vectors of G, the more susceptible is the accuracy
of source localization to noise. The high coherence lobe indi-
cates the possible extent of erroneous localization.19

B. Sparsity in ESM

If the problem under study is inherently sparse, CS guar-
antees perfect recovery provided that the mutual coherence
of the sensing matrix (see Sec. III A) is sufficiently low. In
sound source localization problems, the sound field is often
due to sources that are confined to a specific location, and
most of the solid angle from the array is source-free. In the
particular case of near-field problems, the source is sparse
when it consists of localized radiation “hot-spots” (or when

FIG. 2. Schematic showing the relative distance between a measurement
point rm and a source point r0 for several source positions i, j, k both in a
near and a far plane from the array. The difference in relative distances,
Dk=jjrm $ r0ijj, decreases for nearby source positions in the same plane or
for the same source position at a distant plane.

FIG. 3. (Color online) Gramian for the sensing matrix G of size 625' 625
constructed from a grid of 25' 25 equivalent sources and a 1 m diameter 60
channel microphone array.

FIG. 4. (Color online) Coherence between the center of the equivalent
source grid q313ð0; 0Þ, and the other positions in the grid q(x, y).
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the radiated field can be described by a few functions).
However, it is also frequent to have spatially extended sour-
ces that cover a large solid angle from the array and are not
sparse. It is therefore of importance to consider when a
sound source consists of localized or extended sources
(being inherently sparse or not), as the latter case affects the
accuracy of the sound field extrapolation in Eqs. (6) and (7).
This is illustrated experimentally in Secs. IV and V.

IV. NUMERICAL RESULTS

A simulation is conducted to examine the C-ESM method.
The estimated solution vector q̂ and the reconstructed sound
field (p and u) are analyzed, comparing C-ESM [based on Eq.
(12)], with the conventional ESM solution [based on (11)].

Let us consider a longitudinal quadrupole, of length
10 cm, radiating at f¼ 500 Hz. A 50 cm diameter 60 channel
microphone array, with pseudo-random spatial sampling is
used. The quadrupole is placed 10 cm away from the array
(zh¼ 10 cm) and centered on it. The reconstruction takes

FIG. 5. (Color online) Measured sound pressure level due to a longitudinal
quadrupole on the x-y plane, at a distance zh¼ 10 cm from the array. The
sound pressure level (SPL) is plotted at the microphone positions, indicating
the array geometry.

FIG. 6. (Color online) Equivalent source strengths, i.e., solution to the system
of Eq. (5), z0 ¼ 0. (a) Solution based on the proposed C-ESM method—
Eq. (12). (b) ESM as in Eq. (11). True point source positions indicated with'.

FIG. 7. (Color online) Reconstructed sound pressure level of a longitudinal
quadrupole. Reconstruction at zs¼ 6 cm. (a) True pressure. (b) C-ESM
reconstruction. (c) ESM reconstruction.
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place at 6 cm away from the source (zs¼ 6 cm), thus entailing
a back-propagation of the wave field. The equivalent sources,
consisting a grid of 21' 21 sources, are placed on the same
plane as the quadrupole. Complex Gaussian noise is added to
the pressure with a 30 dB spatially averaged signal-to-noise
ratio, SNR, defined as SNR ¼ 20 logðjjpjj=jjnjjÞ. Figure 5
shows the simulated measured field. The problem is solved as
in Eq. (12), estimating a noise floor e ¼ jjpjj ) 10$SNR=20,
assuming that the SNR is known.

Figure 6 shows the coefficient solution vector, i.e., the
recovered equivalent source distribution, for both the proposed
C-ESM and the conventional ESM solution (least squares). In
the C-ESM case, the solution is sparse, and the location of the
quadrupole is visible (the location of the equivalent sources
are slightly different than the true ones, presumably due to
local high coherence of the columns of G). The ESM solution
recovers a source distribution that is far from sparse, and has
minimum energy, as required by Eq. (11). It is observable that
jjq̂‘2
jj2¼ 1:9'10$6; jjq̂‘1

jj2¼ 4:03'10$6, and that jjq̂‘2
jj1

¼ 22:1'10$6 while jjq̂‘1
jj1¼ 5:9'10$6. This indicates that

the power of the C-ESM solution is greater than ESM,
although the sum of all coefficient magnitudes is lower, as
expected from the objective functions defined in (11) and (12).

There is an analogy between the recovered solution
shown in Fig. 6 and sound source localization methods

(where the conventional least squares solution corresponds
to a convolution between the ideal source map and the array
response, yielding a “blurred” image of the true solution).30

The apparent source mislocation in Fig. 6(a) can be under-
stood from Sec. III A, considering the high coherence lobe
in the source map, and the sensitivity to measurement
noise.

Figure 7 shows the true and reconstructed pressures
with C-ESM and the conventional ESM on the reconstruc-
tion plane at zs¼ 6 cm. The spatially averaged error of the
reconstruction !p ¼ jjpt $ ~pjj=jjptjj is of 10%, indicating a
fairly accurate reconstruction. In the case of ESM, !p is 17%,
and deviations near the edges are observable.

Figure 8 shows the sound pressure level along a line on
the array axis ð0; 0; zÞ, from z¼ 3 cm until z¼ 20 cm at
points spaced Dz ¼ 1 cm, for both the C-ESM method and
the ESM. Both methods are accurate near the measurement
aperture, where the data are fitted [the jj~p $Gqjj2 * e con-
strain in Eq. (9)], as well as in the domain zh> zs, where the
reconstruction constitutes a forward problem. However,
closer to the source ð0 < z < zhÞ, where the reconstruction is
an inverse problem, we can see differences between the
methods. The estimation with the C-ESM method is more
accurate, because the obtained coefficients approximate bet-
ter the acoustic source, as apparent from Fig. 6.

FIG. 8. True and reconstructed sound pressure level as a function of distance
for a quadrupole, as in Fig. 5. The vertical dashed line denotes the measure-
ment plane.

FIG. 9. (Color online) Relative error
[Eq. (17)] of the sound pressure recon-
struction near the array (the dashed
line indicates the array measurement
plane zh¼ 10 cm). (a) True SPL; (b)
Error of C-ESM method; (c) Error of
ESM.

FIG. 10. (Color online) Spatially averaged error, Eq. (18), of the sound pres-
sure reconstruction (black lines) and particle velocity reconstruction (red
lines) versus frequency.
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The reconstruction error is further examined in Figs. 9
and 10. From a true pressure p and a reconstructed pressure
~p, the relative error of each element is

ei ¼
jjpi $ ~pijj
jjpijj

; (17)

and the spatially averaged relative error (normalized root-
mean-square error) is given as

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

ðpi $ ~piÞ
2

r !' ffiffiffiffiffiffiffiX

i

r
p2

i

 !
: (18)

Figure 9 shows the true quadrupole field, and the error
of the sound pressure reconstruction for ESM and C-ESM
methods. The error is generally higher in the areas where
there is a rapid change of the sound field, or values of the
sound pressure close to zero. It is remarkable that the C-
ESM method is more accurate in the inverse region, i.e.,
zs< zh (zs is the reconstruction plane and zh the measurement
plane), and in particular, in the area far from the center of
the array. This is due to the fact that the CS solution provides
a more faithful representation of the actual acoustic source,
and the wave extrapolation used for the reconstruction is
more accurate than the least square estimate (ESM). These
results are consistent with the ones shown in Fig. 8.

The spatially averaged error over the reconstruction area
[Eq. (18)] versus frequency is shown in Fig. 10. The simula-
tion setup is the same (except that the equivalent source grid
is now 17' 17). It is apparent from Fig. 10 that the C-ESM
solution is accurate over a broader frequency range, due to
the ‘1-norm minimization. In the case of conventional ESM,
the random microphone array prevents a sharp aliasing limit
(above which the reconstruction would be meaningless) at
the cost of having greater sidelobe levels that result in higher
error, as observed in Fig. 10. When solving the problem in a
least-squares sense, a solution is obtained with minimal
energy (due to the ‘2-norm objective function), that is accu-
rate close to the measurement area, where the data are fitted.
At high frequencies, many coefficients are needed to fit these
data with minimum energy. However, as we move far from
the measurement area, this representation of the sound field

FIG. 11. (Color online) (a) Measurements in DTU’s anechoic chamber,
where the dipole source is visible. (b) Measured sound pressure level at
250 Hz.

FIG. 12. (Color online) Experimental
results for the dipole source at 250 Hz.
(top)Estimated magnitude of the equiv-
alent sources, and (bottom) the result-
ing reconstructed sound pressure, (a-b)
for the proposed C-ESM methodology,
and (c-d) the classical ESM solution.
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is inaccurate, and the error increases drastically. Contrarily,
there are no sidelobes the CS solution of C-ESM, because of
seeking a sparse vector (due to the ‘1-norm objective func-
tion). Consequently, the solution is accurate over a wide fre-
quency range, beyond the conventional notions of aliasing
limits/errors.14 The solution obtained by CS (i.e., few coeffi-
cients), promotes a meaningful representation of the actual
source and of the sound field, regardless of the frequency
range.

V. EXPERIMENTAL RESULTS

An experiment was conducted to examine the proposed
C-ESM method. Two sources of fundamentally different
nature are considered, a dipole source and a classical guitar.
The array used for the measurements is a Br€uel & Kjær
(Naerum, Denmark) Combo array of 1 m diameter, consist-
ing of 60 1

4 in. electret microphones with pseudo-random spa-
tial sampling.25 The experiments were conducted in the
Technical University of Denmark large anechoic chamber
(Kongens Lyngby, Denmark) in February 2016.

A. Dipole source

A dipole source is examined in this section (see Fig. 11).
The source consists of two loudspeaker drivers (5 in. diame-
ter, 6.35 cm radius) mounted against each other and driven in
antiphase. This source was examined in Ref. 31, and it is of
interest due to it being spatially confined and highly reactive.
The array was placed at z¼ 7 cm (the edge of the units is at

z¼ 0 and therefore the physical center of the source at
ðx; y; zÞ ¼ ð0; 0;$6:35Þ cm. The plane of the loudspeaker
drivers oriented normal to the array plane, such that the zero
pressure plane traverses the center of the array. The grid of
equivalent sources used is of 25' 25, and they are placed at
z¼ –5 cm. The source was driven with white noise, and 1 s
Hanning windows were used for the analysis. The noise floor
estimate in Eqs. (11) and (12) is selected based on the highest
measured noise-floor of the transducers. The reconstruction of

FIG. 13. (Color online) As Fig. 12, but
at 1200 Hz.

FIG. 14. (Color online) The experimental set-up for the measurements on
the guitar.
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the sound pressure field takes place at zs¼ 3 cm, (i.e., near the
edge of the loudspeaker units).

Figure 12 shows the estimated equivalent sources and
reconstructed sound pressures based on the C-ESM and con-
ventional ESM methods at 250 Hz. In agreement with the
numerical results, it can be seen that the reconstructed pres-
sure by the two methods is fairly similar, although the recov-
ered equivalent sources are drastically different. In this case
(contrary to the numerical results) the finite extent of the
sources, as well as scattering from the setup is noticeable in
the recovered equivalent sources. The C-ESM methodology
estimates a fairly sparse solution, consisting on a few non-
zero sources, localized at the two poles of the dipole source
and near the tripod. The ESM solution consists of a similar
distribution, but where the characteristic lobes and sidelobes

are noticeable. As for the reconstructed sound field, the C-
ESM reconstruction results in a field that is closer to the
radiation pattern of a dipole.

Figure 13 shows the reconstructed sound pressures and
estimated equivalent sources at a frequency of 1200 Hz. The
effects of discretization start to be critical in the ESM (least-
squares) estimate, and strong sidelobes appear, as can be
appreciated in Fig. 13(c). Also the reconstructed pressure
field by the ESM method shows the appearance of error and
spatial artifacts (rapid, single point spatial variations are
observable far from the source, more than a wavelength
away). Conversely, the solution based on the C-ESM meth-
odology identifies the two drivers, represented by a few
dominant sources. The C-ESM solution conforms more to
the radiation characteristics of the dipole source. It is noted

FIG. 15. (Color online) Sound field reconstruction of the field radiated by a Yamaha C45 classical guitar. The figure shows the estimated equivalent sources
(top row), and reconstruction at 3 cm of the sound pressure level (mid-top row), normal particle velocity (mid-bottom row) and normal component of the active
sound intensity (bottom row). Four natural frequencies are shown: the breathing mode at 122 Hz (left column), the A1 resonance at 379 Hz (mid-left column),
mode in the top-plate (0,2) at 490 Hz (mid-right column), and a natural frequency at 570 Hz (right column).
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that the C-ESM solution at 1200 Hz is more precise than at
250 Hz, because the observed data are less redundant at high
frequencies, which favors a more accurate representation, in
good agreement with the analysis in Sec. III A. In fact the
Gramian of the sensing matrix G for the 250 Hz and 1200 Hz
cases are the ones shown in Sec. III A (Fig. 3). The high
coherence at 250 Hz, results in the spurious sources of high
magnitude observable in Fig. 12. At 1200 Hz, the mutual
coherence of the sensing matrix is lower, and the spurious
sources are reduced, indicating a greater robustness to mea-
surement noise.

B. Classical guitar

A classical acoustic guitar, Yamaha C-45 (spruce top-
plate, mahogany back-plate and rosewood fingerboard) was
used as a test source. The measurements took place in the
large anechoic chamber at DTU (see Fig. 14). A shaker
driven with white noise was placed on the back-plate of the
guitar (the back-plate was chosen instead of the bridge or the
top-plate, to prevent scattering). The guitar was placed on a
stand on rubber pads, and the strings were muted with
Basotec (open cell foam made from melanine resin). The ori-
gin of coordinates was set on the acoustic port of the guitar,
on its point closest to the bridge (see Fig. 15). The measure-
ments were conducted using the same 60 channel micro-
phone array as in Sec. V A, and the noise-floor estimated in
the same way. The array was positioned in a plane 6 cm in
front of the guitar, and the reconstruction took place 3 cm in
front of the top-plate. The equivalent sources were distrib-
uted on a uniform grid of 25' 25, spaced in 4 cm intervals
(covering an area of approximately 1 m2), and retracted 4 cm
behind the guitar’s top-plate.

The classical guitar radiates very differently across fre-
quency (Fig. 15). At low frequency, most of the radiation
occurs from the acoustic port, whereas at high frequencies, it
is the body of the guitar that radiates most effectively. The
estimated equivalent sources, and the reconstructed pressure,
velocity and intensity fields are shown for the natural fre-
quencies 122, 379, 490, and 570 Hz. At 122 Hz, Fig. 15
shows the breathing mode of the guitar, where the sound is
radiated through the acoustic port. The method (C-ESM)
recovers a sparse monopole-like behavior, and the recon-
structed sound pressure, velocity and intensity conform
essentially to a spherical wave, as expected. At 379 Hz the
A1 mode of the guitar is found, corresponding to the first
acoustic resonance in the acoustic cavity (when the length of
the cavity is approximately half the acoustic wavelength),
and the air motion on the guitar’s port is in anti-phase with
the upper half of the plate.37 This explains the strong circula-
tion of acoustic energy as seen from the sound intensity map
between the top-plate and acoustic cavity. The radiation
characteristics are reminiscent of a longitudinal quadrupole,
and the C-ESM methodology recovers such a source distri-
bution. At 490 Hz we identify a mode of similar characteris-
tics, although in this case it is due to a (0, 2) structural mode
on the top-plate, and a similar interaction with the acoustic
port as in the A1 mode is found.37 Finally, at 570 Hz most of
the acoustic output is radiated by the guitar’s body, due to its

vibration, rather than from the acoustic port. The mode at
570 Hz presumably corresponds to the fourth mode of the
guitar’s top-plate, due to the identified deflection shape and
the resulting sound field, in agreement with Ref. 38.
However, the equivalent source distribution (q̂‘1

) is not rep-
resentative of the spatial extent of the acoustic source. The
C-ESM solution, rather approximates the guitar’s deflection
shape by a set of point sources that mimic the observed
sound pressure on the array. It is worth noting that this solu-
tion is not representative of the spatial extent of the source,
although the reconstructed sound field conforms to the
expected radiation (for example, see Fig. 9.16 of Ref. 37).
This agrees with numerical results.

VI. CONCLUSIONS

A sound field reconstruction method is examined, based
on the principle of wave superposition (i.e., equivalent
source method) formulated as a sparse problem that can be
solved via CS. The importance of having a non-redundant
representation of the observed data is emphasized.

The numerical and experimental results indicate that the
method can model accurately the radiation of spatially local-
ized sources, resulting on a lower error over a greater recon-
struction volume than the solutions based on conventional
least-squares. The method is valid for wide band reconstruc-
tion, as the sparsity constraint suppresses sidelobes. For spa-
tially extended sources that exhibit a pronounced modal
behavior (e.g., a classical guitar at high frequencies, Sec.
V B), the sparsity assumption results in a non-physical
equivalent source distribution. Nonetheless, the recon-
structed field still conforms to the actual wave field.
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