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For a sound field observed on a sensor array, compressive sensing (CS) reconstructs the direction of

arrival (DOA) of multiple sources using a sparsity constraint. The DOA estimation is posed as an

underdetermined problem by expressing the acoustic pressure at each sensor as a phase-lagged

superposition of source amplitudes at all hypothetical DOAs. Regularizing with an ‘1-norm con-

straint renders the problem solvable with convex optimization, and promoting sparsity gives high-

resolution DOA maps. Here the sparse source distribution is derived using maximum a posteriori
estimates for both single and multiple snapshots. CS does not require inversion of the data covari-

ance matrix and thus works well even for a single snapshot where it gives higher resolution than

conventional beamforming. For multiple snapshots, CS outperforms conventional high-resolution

methods even with coherent arrivals and at low signal-to-noise ratio. The superior resolution of CS

is demonstrated with vertical array data from the SWellEx96 experiment for coherent multi-paths.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4929941]
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I. INTRODUCTION

Direction-of-arrival (DOA) estimation refers to the

localization of several sources from noisy measurements of

the wavefield with an array of sensors. DOA estimation can

be expressed as a linear underdetermined problem with a

sparsity constraint enforced on its solution. The compressive

sensing1,2 (CS) framework asserts that this is solved effi-

ciently with a convex optimization procedure that promotes

sparse solutions.

In DOA estimation, CS achieves high-resolution acous-

tic imaging,3–5 outperforming traditional methods.6 Unlike

the high-resolution subspace-based DOA estimators,7,8 DOA

estimation via CS is reliable even with a single snapshot.9–11

The least absolute shrinkage and selection operator

(LASSO)12 has been extended to multiple measurement vec-

tors (here multiple snapshots).3,13 They modify the LASSO

objective function by introducing a mixed-norm penalty

term that promotes spatial sparsity. More specifically, the

snapshots are combined with the ‘2-norm, whereas the

spatial samples are combined with the ‘1-norm. Multiple-

snapshot CS offers several benefits over other high-

resolution DOA estimators,3,4,13 (1) it handles partially

coherent arrivals; (2) it can be formulated with any number

of snapshots, in contrast to, e.g., the minimum variance

distortion-free response (MVDR) beamformer. (3) Its flexi-

bility in formulation enables extensions to sequential

processing, and online algorithms.10 Here we show that CS

achieves higher resolution than MUSIC and MVDR even in

scenarios that favor these classical high-resolution methods.

In ocean acoustics, CS has found several applications in

matched field processing14,15 and in coherent passive fath-

ometry for inferring sediment interfaces depths and their

number.16 Various wave propagation phenomena from a sin-

gle source (refraction, diffraction, scattering, ducting, reflec-

tion) lead to multiple partially coherent arrivals received by

the array. High-resolution beamformers cannot resolve these

coherent arrivals.

CS for single snapshot has high-resolution capabilities

and contrary to eigenvalue-based beamformers works for

coherent arrivals.3,4,11 CS is limited by basis mismatch,17

which occurs when the DOAs do not coincide with the look

directions of the angular spectrum and by basis coherence.

Solutions to basis mismatch involve, for example, using

atomic norm and solving the dual problem,5,18,19 which are

not addressed here. Grid refinement alleviates basis mis-

match for high signal-to-noise ratio (SNR) at the expense of

increased computational complexity. A denser grid causes

increased coherence among the steering vectors (basis coher-

ence); this translates to bias and spread in the DOA estimates

as demonstrated here. This is especially true in large two- or

three-dimensional geo-acoustic inversion problems as, e.g.,

seismic imaging.20–22

We use least squares optimization with an ‘1-norm regu-

larization term, also known as the LASSO,12 to formulate

the DOA estimation problem for single and multiplea)Electronic mail: gerstoft@ucsd.edu
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snapshots. The LASSO formulation complies with statistical

models as it provides a maximum a posteriori (MAP) esti-

mate, assuming a Gaussian data likelihood and a Laplacian

prior distribution for the source acoustic pressure23,24 for

both single (Sec. II B) and multiple snapshots13 (Sec. III).

The LASSO is known to be a convex minimization problem

and solved efficiently by interior point methods. In the

LASSO formulation, Sec. IV A, the reconstruction accuracy

depends on the choice of the regularization parameter that

controls the balance between the data fit and the sparsity of

the solution. We indicate that the regularization parameter

can be found from the properties of the LASSO path,25,26

i.e., the evolution of the LASSO solution versus the regulari-

zation parameter.

The main focus of the paper is on performance evalua-

tion for single and multiple snap-shots using both simulated

(Sec. V) and real data (Sec. VI). Other excellent papers11

have already performed performance evaluation for single

snapshot, consistent with our simulations. We are not aware

of performance evaluation for multiple snapshots.

In the following, the ‘p-norm of a vector x 2 C
N

is

defined as kxkp ¼ ð
PN

n¼1 jxnjpÞ1=p
. By extension, the ‘0-

norm is defined as kxk0 ¼
PN

n¼1 1xn 6¼0 and the ‘1-norm as

kxk1 ¼ max1�n�N jxnj. For a matrix F 2 C
M�L

the

Frobenius norm k � kF is defined as kFk2
F ¼

PM
i¼1

PL
j¼1 jfi;jj2.

II. SINGLE SNAPSHOT DOA ESTIMATION

We assume plane wave propagation and narrowband

processing with a known sound speed. We consider the one-

dimensional problem with a uniform linear array (ULA) of

sensors with the source location characterized by the DOA

of the associated plane wave, h 2 ½�90�; 90��, with respect

to the array axis. The propagation delay from the ith poten-

tial source to each of the M array sensors is described by the

steering (or replica) vector,

aðhiÞ ¼
1ffiffiffiffiffi
M
p 1; ej 2pd=kð Þ1 sin hi ;…; ej 2pd=kð Þ M�1ð Þsin hi

� �T
;

(1)

where k is the wavelength and d the sensor spacing.

Discretizing the half-space of interest, h 2 ½�90�; 90��,
into N angular directions the DOA estimation problem can

be expressed as a source reconstruction problem with the lin-

ear model,

y ¼ Axþ n; (2)

where y 2 C
M is the complex-valued data vector from the

measurements at the M sensors, x 2 C
N is the unknown vec-

tor of the complex source amplitudes at all N directions on

the angular grid of interest, and n 2 C
M

is the additive noise

vector. The sensing matrix,

A ¼ ½aðh1Þ;…;aðhNÞ�; (3)

maps the hypothetical sources x to the observations y and

has as columns the steering vectors, Eq. (1), at all look

directions.

In the following, the noise is generated as independent

and identically distributed (iid) complex Gaussian. The array

signal-to-noise ratio (SNR) is defined as

SNR ¼ 10 log10

E kAxk2
2

n o
E knk2

2

n o dBð Þ: (4)

A. Sparse reconstruction with CS

The problem of DOA estimation is to recover the set of

non-zero components in the source vector x 2 C
N , given

the sensing matrix AM�N and an observation vector

y 2 C
M

. Even though there are only a few sources K<M
generating the acoustic field, we are interested in a fine re-

solution on the angular grid to achieve precise localization

such that M�N and the problem in Eq. (2) is underdeter-

mined. A way to solve this ill-posed inverse problem is

constraining the possible solutions with prior information.

Traditional methods solve the problem in Eq. (2) by

seeking the solution with the minimum ‘2-norm, which pro-

vides the best data fit (‘2-norm regularized least squares),

x̂‘2
ðlÞ ¼ argmin

x2C
N

ky� Axk2
2 þ lkxk2

2: (5)

The regularization parameter, l	 0, controls the relative im-

portance between the data fit and the ‘2-norm of the solution.

The minimization problem in Eq. (5) is convex with analytic

solution, x̂‘2
ðlÞ ¼ AHðAAH þ lIMÞ�1

y, where IM is the

M�M identity matrix. However, it aims to minimize the

energy of the source x through the ‘2-norm regularization

term rather than its sparsity, hence the resulting solution is

non-sparse.

Conventional beamforming (CBF)7 is related to the ‘2

solution for large l. From Eq. (5),

x̂CBF ¼ lim
l!1
ðlx̂‘2

ðlÞÞ ¼ AHy: (6)

In principle, CBF combines the sensor outputs coherently to

enhance the source signal at a specific look direction from

the ubiquitous noise. CBF is robust to noise but suffers from

low resolution and the presence of sidelobes.

Because x is sparse (there are only K�N sources), it is

appropriate to seek for the solution with the minimum ‘0-

norm, which counts the number of non-zero entries in the

vector, to find a sparse solution. However, the ‘0-norm mini-

mization problem is a non-convex combinatorial problem

that becomes computationally intractable even for moderate

dimensions. The breakthrough of CS1,2 came with the proof

that for sufficiently sparse signals, K�N, and sensing matri-

ces with sufficiently incoherent columns, the ‘0-norm mini-

mization problem is equivalent (at least in the noiseless

case) to its convex relaxation, the ‘1-norm minimization

problem.27,28 By replacing the ‘0-norm with the convex
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‘1-norm, the problem can be solved efficiently with convex

optimization even for large dimensions.29–31

For noisy measurements, Eq. (2), the ‘1-norm minimiza-

tion problem is formulated as

x̂‘1
ð�Þ ¼ argmin

x2C
N

kxk1 subject to ky� Axk2 � �; (7)

where � is the noise floor. The estimate x̂‘1
ð�Þ has the mini-

mum ‘1-norm while it fits the data up to the noise level. The

problem in Eq. (7) can be equivalently written in an uncon-

strained form with the use of the regularizer l	 0,

x̂‘1
ðlÞ ¼ argmin

x2C
N

ky� Axk2
2 þ lkxk1: (8)

The sparse source reconstruction problem in Eq. (8) is a least

squares optimization method regularized with the ‘1-norm of

the solution x and provides the best data fit (‘2-norm term) for

the sparsity level determined by the regularization parameter

l. The optimization problem in Eq. (8) is also known as the

least absolute shrinkage and selection operator (LASSO)

because the ‘1 regularizer shrinks the coefficients of x toward

zero as the regularization parameter l increases.12 This is

illustrated in Fig. 1. For every �, there exists a l so that the

estimates in Eqs. (7) and (8) are equal.

Once the active DOAs are recovered, by solving Eq. (7)

or equivalently Eq. (8), the unbiased complex source ampli-

tudes are determined from

x̂CS ¼ AþMy; (9)

where AM 2 C
N�K contains only the “active” steering vec-

tors associated with non-zero components in the solution

x̂‘1
ðlÞ and AþM is its Moore–Penrose pseudoinverse.

For a given sparsity level K and corresponding set of

active indexes M, i.e., jMj ¼ K, Eq. (9) finds the best data

fit. Thus if the active sensing matrix AM has sufficiently

incoherent columns it represents the solution to the ‘0

problem

x̂‘0
ðKÞ ¼ argmin

x2C
N

ky� Axk2 subject to kxk0 ¼ K: (10)

B. MAP estimate via LASSO

We use the LASSO formulation, Eq. (8), to solve the

DOA estimation problem in favor of sparse solutions. The

choice of the (unconstrained) LASSO formulation over the

constrained formulation, Eq. (7), allows the sparse recon-

struction method to be interpreted in a statistical Bayesian

setting, where the unknowns x and the observations y are

both treated as stochastic (random) processes by imposing a

prior distribution on the solution x, which promotes

sparsity.12,23,24

Bayes theorem connects the posterior distribution

pðxjyÞ of the model parameters x conditioned on the data y

with the data likelihood pðyjxÞ, the prior distribution of the

model parameters p(x) and the marginal distribution of the

data p(y),

p xjyð Þ ¼ p yjxð Þp xð Þ
p yð Þ

: (11)

Then the maximum a posteriori (MAP) estimate is

x̂MAP ¼ argmax
x

ln pðxjyÞ

¼ argmax
x

½ln pðyjxÞ þ ln pðxÞ�

¼ argmin
x

½�ln pðyjxÞ � ln pðxÞ�; (12)

where the marginal distribution of the data p(y) is omitted

because it is independent of the model x.

Based on a complex Gaussian noise model with inde-

pendent and identically distributed (iid) real and imaginary

parts, n 
 CN (0, r2
I), the likelihood of the data is also com-

plex Gaussian distributed pðyjxÞ 
 CN ðAx;r2IÞ;

pðyjxÞ ¼ p�Nr�2Ne�ky�Axk2
2=r

2

: (13)

Following Ref. 32, we assume that the coefficients of the

solution x are iid and follow a Laplacian-like distribution

(for complex random variables). Such a prior has been

shown to encourage sparsity in many situations because of

the heavy tails and sharp peak at zero. The corresponding

prior is

pðxÞ /
YN
i¼1

e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRexiÞ2þðImxiÞ2
p

=� ¼ e�kxk1=�: (14)

The LASSO estimate, Eq. (8), can be interpreted as the MAP

estimate,

x̂MAP ¼ argmin
x

½ky� Axk2
2 þ lkxk1� ¼ x̂‘1

ðlÞ; (15)

where l¼ r2/�.
Equation (14) imposes no restriction on the source

phases. Here, the phase is assumed uniformly [0, 2p)

distributed.

III. MULTIPLE-SNAPSHOT DOA ESTIMATION

Even though for moving sources it befits to solve one

optimization problem for each snapshot sequentially,10 for

stationary scenarios, the sensor data statistics can be

FIG. 1. (Color online) Illustration of the LASSO path: Number of active

indices versus the regularization parameter l. Increments in the active set

occur at l*p.
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aggregated across snapshots to provide a more stable esti-

mate. Multiple snapshots are referred to as multiple measure-

ment vectors, and the recovery might have better

performance than single measurement vectors.33 Potentially

the recovery can be made more robust by using a likelihood

function Eq. (13) with colored noise (full covariance matrix)

or based on the Huber norm.34 For the multiple-snapshot

case, all snapshot are collected into one matrix,

Y ¼ AXþ N; (16)

where, for L snapshots, Y¼ [y(1),…, y(L)] and N¼ [n(1),…,

n(L)] are M� L matrices with the measurement and noise

vectors per snapshot as columns, respectively, and X is the

N�L signal with the complex source amplitudes at the N
look directions per snapshot as columns. For stationary sour-

ces, the matrix X¼ [x(1),…, x(L)] exhibits row sparsity, i.e.,

it has a constant sparsity profile for every column because

the few existing sources are associated with the same DOA

for all snapshots. As the sources are stationary, it makes

sense to sum the source energy across all snapshots, giving

the row norm x‘2 ,

x‘2 ¼
�XL

l¼1

jX•lj2
�1=2

: (17)

This quantity is sparse and in analogy with the single snap-

shot case we impose a Laplacian-like prior

pðXÞ ¼ pðx‘2Þ / exp ð�kx‘2k1=�Þ; (18)

with no phase assumption. Similar to Eq. (14), we assume

the phase is uniformly iid distributed on [0, 2p).

We assume an iid complex Gaussian distribution for the

data likelihood

pðYjXÞ / exp ð�kY� AXk2
F=r

2Þ: (19)

Using Bayes theorem, the MAP solution is then

X̂ ¼ argmax pðYjXÞpðXÞ
¼ argmin

X2C
N�L

kY� AXk2
F þ lkx‘2k1:

(20)

In this formulation, we search for a sparse solution via the ‘1

constraint. The source amplitude can, however, vary across

snapshot. This is in contrast to covariance-matrix based

beamforming that just inverts for the average source power.

The processing performance can be improved by doing an

eigenvalue decomposition of X and retaining just the largest

eigenvalues; see Refs. 3 and 4. The smaller eigenvalues con-

tain mostly noise so this improves processing. However, this

eigenvalue decomposition is not done here as this has fea-

tures similar to forming a sample covariance matrix.

Once the active steering vectors have been recovered,

the unbiased source amplitudes are estimated for each snap-

shot, similar to the single snapshot case, Eq. (9),

X̂CS ¼ Aþa Y: (21)

If desired, an average power estimate x
‘2

CS can be obtained

from the ‘2-norm of the rows of X̂CS, with the ith element

squared of x
‘2

CS being the source power estimate at hi.

For reference, the CBF, MVDR, and MUSIC use the

data sample covariance matrix,

C¼ 1

L
YYH: (22)

The beamformer power for CBF and MVDR, respectively, is

then,

PCBFðhÞ ¼ wH
CBFðhÞCwCBFðhÞ; (23)

PMVDRðhÞ ¼ wH
MVDRðhÞCwMVDRðhÞ; (24)

where the corresponding weight vectors are given by

wCBFðhÞ ¼ aðhÞ; (25)

wMVDR hð Þ ¼ C�1a hð Þ
aH hð ÞC�1a hð Þ

: (26)

The CBF can also be based directly on snapshots as the

single snapshot CBF Eq. (6) can be generalized to multiple

snapshots, X̂CBF ¼ AHY. The power estimates PCBF(hi),

PMVDR(hi), and the corresponding ith squared component of

x
‘2

CS are thus comparable. Note that because the MVDR

weights in Eq. (26) involve the inverse of the sample covari-

ance matrix, MVDR requires a full rank C, i.e., L	M
snapshots.

The MUSIC (Ref. 7) is based on the eigendecomposi-

tion of the data sample covariance matrix Eq. (22) and the

separation of the signal and the noise subspace,

C ¼ UsKsU
H
s þ UnKnUH

n : (27)

The signal eigenvectors Us corresponding to the largest

eigenvalues, Ks, are at the same subspace as the steering vec-

tors, Eq. (1), while the noise eigenvectors Un are orthogonal

to the subspace of the steering vectors, thus a(h)HUn¼ 0.

MUSIC uses the orthogonality between the signal and the

noise subspace to locate the maxima in the spectrum,

PMUSIC hð Þ ¼ 1

a hð ÞHUnUH
n a hð Þ

: (28)

Both MVDR and MUSIC overcome the resolution limit

of the conventional beamformer by exploiting signal infor-

mation conveyed by the data sample matrix. However, their

performance depends on the eigenvalues of the data sample

matrix thus it degrades with few snapshots, when the data

sample matrix is rank deficient, and in the presence of coher-

ent sources, when the signal subspace is reduced (Chap. 9 in

Ref. 7). CS does not have these limitations as it utilizes

directly the measured pressure Y.

IV. REGULARIZATION PARAMETER SELECTION

The choice of the regularization parameter l in Eq. (8),

also called the LASSO shrinkage parameter, is crucial as it
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controls the balance between the sparsity of the estimated so-

lution and the data fit determining the quality of the

reconstruction.

For large l, the solution is very sparse (with small

‘1-norm), but the data fit is poor as indicated in Fig. 1. As l
decreases toward zero, the data fit is gradually improved

because the corresponding solutions become less sparse.

Note that for l¼ 0, the solution in Eq. (8) becomes the

unconstrained least squares solution. Because the LASSO

path is derived and demonstrated for a single observation,

the statistics of the source signal or noise is irrelevant.

A. The LASSO path

As the regularization parameter l evolves from 1 to 0,

the LASSO solution in Eq. (8) changes continuously follow-

ing a piecewise smooth trajectory referred to as the solution

path or the LASSO path.25,26 In this section, we show that

the singularity points in the LASSO path are associated with

a change in the sparsity of the solution and can be used to

indicate an adequate choice for l.

We obtain the full solution path using convex optimiza-

tion to solve Eq. (8) iteratively for different values of l. We

use the CVX toolbox for disciplined convex optimization

that is available in the MATLAB environment. It uses interior

point solvers to obtain the global solution of a well-defined

optimization problem.29–31

Let L(x, l) denote the objective function in Eq. (8),

Lðx;lÞ ¼ ky� Axk2
2 þ lkxk1: (29)

The value x̂ minimizing Eq. (29) is found from its

subderivative,

@xLðx;lÞ ¼ 2AHðAx� yÞ þ l@xkxk1; (30)

where the subdifferential operator @x is a generalization of

the partial differential operator for functions that are not dif-

ferentiable everywhere (Ref. 31, p. 338). The subgradient for

the ‘1-norm is the set of vectors,

@xkxk1 ¼ fs : ksk1 � 1; sHx ¼ kxk1g; (31)

which implies,

si ¼
xi

jxij
; xi 6¼ 0;

jsij � 1; xi ¼ 0; (32)

i.e., for every active element xi 6¼ 0 of the vector x 2 C
N

, the

corresponding element of the subgradient is a unit vector in

the direction of xi. For every null element xi¼ 0 the corre-

sponding element of the subgradient has magnitude less than

or equal to one. Thus the magnitude of the subgradient is

uniformly bounded by unity, ksk1 � 1.

Denote

r ¼ 2AHðy� Ax̂Þ; (33)

the beamformed residual vector for the estimated solution x̂.

Because Eq. (29) is convex, the global minimum is attained

if 0 2 @xLðx; lÞ, which leads to the necessary and sufficient

condition

l�1r 2 @xkxk1: (34)

Then from Eqs. (32) and (34), the coefficients ri

¼ 2aH
i ðy� Ax̂Þ of the beamformed residual vector r 2 C

N

have amplitude such that

jrij ¼ l; x̂i 6¼ 0;

jrij � l; x̂i ¼ 0; (35)

i.e., whenever a component of x̂ becomes non-zero, the

corresponding element of the beam-formed residual hits

the boundary identified with the regularization parameter,

krk1 � l.

For multiple snapshots, with the X̂ determined from Eq.

(20), the beamformed residuals become

R ¼ 2AHðY� AX̂Þ; ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

j¼1

jRijj2
vuut : (36)

The values of l when changes in sparsity appear are

obtained similarly to the single snapshot case.

B. Algorithm for the LASSO path

Although many algorithms exist for solving the LASSO

problem, we have good experience with the new algorithm

for compressive beamforming in Table I as it is reasonably

fast and accurate. Section IV A motivates the formulation of

the new algorithm where the values of l for different spar-

sity levels are indicated by the residual vector r, solving the

dual problem.35 For large l, the solution x̂ ¼ 0 is trivial and

r¼ 2AHy in Eq. (33). Decreasing l, a first element of x

becomes active when the corresponding element of r hits the

TABLE I. Fast iterative algorithm to solve the LASSO problem (8) for a

desired sparsity level K and estimating the unbiased complex source ampli-

tudes (9).

Given: A 2 C
N�M , y 2 C

N , K 2N, F 2 � 0; 1½

1: Initialize i¼ 0, x0
‘1
¼ 0, r0¼ 2AHy

2: while jMij < K

i¼ iþ 1

3: li¼ (1 � F) peak (ri�1, K)þF peak(ri�1, Kþ 1)

4a: xi
‘1
¼ solution to Eq. (8) for A, y, l¼li

4b: ri ¼ 2AHðy� Axi
‘1
Þ

5: Mi ¼ fmjjxi
‘1 ;m
j>dig; di ¼ �kxi

‘1
k1

end

6: if jMij > K

7: Mi ¼ fmjjxi
‘1 ;m
j>dig; di ¼ peakðjxi

‘1
j;KÞ

end

M¼Mi

8: x̂‘1
ðliÞ ¼ xi

‘1

9: x̂CS ¼ AþMy

10: Output: li, x̂‘1
ðliÞ, x̂CS,M.
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boundary, l ¼ 2kAHyk1. Assuming perfectly incoherent

columns of A and solving for the second peak of r hitting

the boundary l indicates the value of l for which a second

element of x becomes active. This way we follow the

LASSO path in Fig. 1 towards less sparse solutions by

decreasing l as detailed in Ref. 35.

Starting from Eq. (33) with x‘1
ðliÞ corresponding to reg-

ularization li for the set of active indexes Mi, the residual

for the nth steering vector is now found,

rnðliÞ ¼ 2aH
n ðy� Ax‘1

ðliÞÞ
¼ 2aH

n y�
X

m2Mi

amx‘1;mðliÞ
� �

� 2aH
n y�

X
m2Mi�1

amx‘1;mðli�1Þ
� �

(37)

� 2aH
n y: (38)

The two progressively stronger approximations, in Eqs.

(37)–(38), in the preceding text are valid if the steering vec-

tors corresponding to the final active set is sufficiently inco-

herent jaH
n amj � 0. Equation (38) actually corresponds to the

conventional beamformer AHy for a single snapshot. The

preceding equation is used for the selection of l so it does

not mean that the peaks in the conventional beamformer cor-

responds to the CS solution.

The procedure is given in Table I, where peak(r, k) is

the kth peak of r. We choose F¼ 0.9.

The dual method has been used to estimate the solution

path of the real-valued25 and the complex-valued35 general-

ized LASSO problems. The generalized LASSO uses the

‘1-norm to enforce structural or geometric constraints on

the solution by replacing the sparsity constraint kxk1 with

kDxk1 for a structured matrix D. The generalized formula-

tion performs well in certain applications, e.g., recovery of

continuous sources by promoting block sparsity36 and DOA

tracking for moving sources by an adaptive update of a diag-

onal weighting matrix D which reflects the evolution of the

source probability distribution.10

C. Regularization parameter selection via the LASSO
path

The LASSO performance in DOA estimation is eval-

uated by simulations starting with a large l and subsequently

decreasing its value. We consider an ULA with M¼ 20

sensors and spacing d¼ k/2. Three sources are at DOAs

[�5, 0, 20]� with corresponding magnitudes [1, 0.6, 0.2]

(linear) or [0, �4, �14] dB. The sensing matrix A in Eq. (3)

is defined on a coarse angular grid [�90�:5�:90�] (Figs. 2–4)

and a denser grid [�90�:1�:90�] (Fig. 5). The noise variance

in Eq. (4) is chosen such that SNR¼ 20 dB.

The trade-off between regularization term kx̂k1 and the

data fit ky� Ax̂k2
2 in the LASSO estimate, Eq. (8), for a

range of values of l is depicted in Fig. 2. The relevant values

of l for the LASSO path are found between the two dots in

Fig. 2(b), i.e., 1.54> l> 0.02. For these values of l, the im-

portance shifts from favoring sparser solutions for large l to-

ward diminishing the model residual’s ‘2-norm for smaller

l. From inspecting Fig. 2(b), it is difficult inferring the value

of l which results in the desired sparsity level. The LASSO

path offers a more insightful method to determine the range

of good values of l [contained within the asterisks in Fig.

2(b)] as explained in the following text.

Figure 3 shows (a) the sparsity level kx̂k0 of the LASSO

solution, (b) the properties of the LASSO path and (c) the

corresponding residual vector versus the regularization pa-

rameter l. Because the interest is on sparse solutions x̂, it is

natural inspecting the LASSO path for decreasing values of

l, i.e., interpreting Fig. 3 from right to left.

For large values of l (e.g., l¼ 2), the problem in Eq. (8)

is over-regularized, forcing the trivial solution x̂ ¼ 0 [Fig.

3(b)], thus kx̂k0 ¼ 0 [Fig. 3(a)]. In this case, the slopes for all

components jrij are zero [Fig. 3(c)] because jrij ¼ j2aH
i yj < l

for all i 2 ½0;…;N�, which is independent of l.

The first non-zero component of x̂ appears at l
¼ 2kAHyk1 ¼ 1:76 and remains active for l� 1.76 [Fig.

3(b)], increasing the sparsity level to kx̂k0 ¼ 1 [Fig. 3(a)].

The corresponding component jrij ¼ j2aH
i ðy� aix̂iÞj [Fig.

3(c)] is equal to l for l� 1.76. The other components rj

change slope at the singular point l¼ 1.76 because now jrjj

FIG. 2. (Color online) The data error ky� Ax̂k2
2 describing the goodness of

fit, versus the ‘1-norm in (a) linear scale and (b) log-log scale for the esti-

mated solution x̂ for different values of the regularization parameter l in the

LASSO problem Eq. (8) for sparse DOA estimation.

FIG. 3. (Color online) The LASSO path versus l for three sources and

SNR¼ 20 dB. (a) Sparsity level of the estimate x̂. (b) Paths for each compo-

nent of the solution x̂. (c) Paths for each component of the beamformed re-

sidual jrj ¼ 2jAHðy� Ax̂Þj. The vertical dashed lines indicates values of l
used in Figs. 4 and 5.
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¼ j2aH
j ðy� aix̂iÞj < l for all j 2 ½0;…;N�; j 6¼ i. For

l� 1.14, kx̂k0 ¼ 2 [Fig. 3(a)] as x̂ acquires a second non-

zero component [Fig. 3(b)] and the corresponding compo-

nent jrij becomes equal to l [(Fig. 3(c)]. Similarly, the esti-

mated solution has a third non-zero component for l� 0.38.

For l� 0.18, x̂ has many non-zero components [Figs.

3(b) and 3(c)], and its sparsity level increases abruptly [Fig.

3(a)]. For such low values of l, the importance shifts to the

data fitting term (‘2-norm term) in the regularized problem,

Eq. (8), and x̂ includes many non-zero noisy components

gradually reducing the data error.

The specific values of l at which an element of x̂

becomes active are denoted as the singular points in the

piecewise smooth LASSO path. At a singular point, some

component of r hits the boundary l, i.e., jrnj ¼ l for some

index n. Thus the properties of the LASSO path indicate the

selection of the regularization parameter l. For example, for

a predefined sparsity level K a good choice of l is found by

decreasing l until the Kth singular point at the LASSO path.

Owing to the piecewise smooth nature of the LASSO

path, there is a range of l that gives the same sparsity level

(i.e., between two singular points). In principle, the lowest l
in this range is desired as it gives the best data fit. Although

any value of l that achieves the desired sparsity suffices as

once the active DOAs are recovered, the unbiased ampli-

tudes are determined from Eq. (9).

Figure 4 shows the unbiased solution, Eq. (9), along

with the corresponding beamformed residual for four spar-

sity levels of l. Notice how the residuals decrease in value

as l is reduced. For l¼ 0.1, Fig. 4 shows that five potential

source locations exists as they have hit the boundary, so that

components of jrj becomes equal to l. Solving Eq. (9) shows

that two sources are weak and are not shown.

To increase precision in the LASSO reconstruction, a finer

angular grid is required. However, angular grid refinement

also causes higher coherence among steering vectors, Eq. (1),

and the problem in Eq. (2) becomes increasingly underdeter-

mined. Then when solving the LASSO minimization, Eq. (8)

might not exhibit the desired sparsity. Due to basis coherence

and as l decreases, components in the estimate x̂ can be either

activated (become non-zero) or annihilated. Similarly the re-

sidual components can hit or leave the boundary25 [where

components of jrj is equal to l, see Eq. (35)].

In Fig. 5, a denser angular grid with spacing 1� and

setup as Fig. 4 is used. For l¼ 1.4, there is just one active

component [Fig. 5(a)] at �6� which is 1� away from the

strongest DOA. This offset is mainly due to basis coherence,

the correct location is not yet recovered. As l is decreased,

the correct bin is eventually obtained [Fig. 5(e)]. Thus when

searching for a K sparse solution, it is often advantageous to

search initially for more than K peaks and then limit the final

solution to the K most powerful elements.

The residual r is systematically decreased as l is reduced.

All the active component can be seen as where components of

jrj becomes equal to l in the right panel of Fig. 5.

V. DOA ESTIMATION ERROR EVALUATION

If the source DOAs are well separated with not too differ-

ent magnitude, the DOA estimation for multiple sources using

CBF and CS turns out to behave similarly. They differ, how-

ever, in their behavior whenever two sources are closely

spaced. The same applies for MVDR under the additional

assumptions of incoherent arrivals and sufficient number of

snapshots, L	M. The details are of course scenario dependent.

For the purpose of a quantitative performance evaluation

with synthetic data, the estimated, ĥk, and the true, htrue
k , DOAs

are paired with each other such that the root mean squared

DOA error is minimized in each single realization. After this

pairing, the ensemble root-mean-squared error is computed,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

1

K

XK

k¼1

ĥk � htrue
k

� �2
" #vuut : (39)

FIG. 4. (Color online) The unbiased estimate x̂CS ð�Þ for the true source x

(?) and the corresponding beamformed residual vector for a coarse angular

grid [�90:5:90]�. (a)–(b) l¼ 1.4, (c)–(d) l¼ 0.5, (e)–(f) l¼ 0.2, and

(g)–(h) l¼ 0.1 (corresponding to dashed lines in Fig. 3). The horizontal line

in the residual plot (right) indicates the value of l.

FIG. 5. (Color online) As in Fig. 4 but for the denser angular grid

[�90:1:90]�.
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The data are generated to have a fixed SNR Eq. (4). The

source phases of each x component is uniformly distributed

on [0, 2p) to generate a sample covariance matrix from

which MVDR/MUSIC can resolve incoherent sources.

CBF suffers from low-resolution and the effect of side-

lobes for both single and multiple data snapshots, thus the

simple peak search used here is too simple. These problems

are reduced in MVDR and MUSIC for multiple snapshots

and they do not arise with CS.

The optimal performance for K sources is found by search-

ing over all combinations of steering vectors for the maximum

likelihood solution, Eq. (13), i.e., the best fitting source vector

using Eq. (9). This is a NP-hard combinatorial problem that for

N look directions requires evaluation of N!/K!(N–K)! solutions.

For N¼ 361 and either K¼ 2 or K¼ 3, this gives 77 000 or

7 700 000 combinations to be evaluated. This makes the ex-

haustive search approach impractical for larger K.
In the following simulation, we consider an array with

M¼ 20 elements with spacing d¼ k/2. The DOAs are

assumed to be on a fine angular grid [�90�:0:5�:90�], i.e.,

A 2 C
20�361

. The regularization parameter l is chosen to

correspond to the Kþ 2 largest peak of the residual in Eq.

(33) using the procedure in Table I and retaining only the K

largest source powers. We require the peaks of the CS to be

at least 4 bins apart. Thus the exhaustive and the CS do not

solve the identical problem, as the CS solves a smaller

problem. Note that panel (c) in Figs. 6–9 shows the simula-

tion results versus array SNR defined in Eq. (4).

A. Single snapshot

In the first scenario, we consider a single snapshot case

with additive noise with K¼ 2 well-separated DOAs at

[2,75]� with magnitudes [22,20] dB, see Fig. 6. In the second

scenario, a third weak source is included very close to the

first source: thus K¼ 3 and the source DOAs are [�3, 2,

75]� with magnitudes [12,22,20] dB, see Fig. 7. The syn-

thetic data are generated according to Eq. (2).

For the first scenario, the CS diagrams in Fig. 6(a) show

DOA estimation with small variance but indicate a bias to-

ward endfire, as for the true DOA 75�, the CS estimate is

76�. Toward endfire, the main beam becomes broader and

absorbs more noise power, The CBF spectra Fig. 6(a) are

characterized by a high sidelobe level but for the two well-

separated similar-magnitude sources this is a minor problem.

Using Monte Carlo simulations, we repeat the CS inver-

sion for 1000 realizations of the noise in Fig. 6(b). The

RMSE increases toward the endfire directions. This is to be

expected as the main beam becomes wider and this results in

a lower DOA resolution.4 Because the sources are well-

separated in this scenario, CS, CBF, and exhaustive search

perform similarly with respect to RMSE.

Repeating the Monte Carlo simulations at several SNRs

gives the RMSE performance of CS and CBF in Fig. 6(c).

Their performance is about the same because the DOAs are

well-separated.

FIG. 6. (Color online) Single snapshot example for two sources at DOAs

[2,75]� and magnitudes [22,20] dB. At SNR¼ 5 dB (a) spectra for CBF, CS

(o) and unbiased CS (o, higher levels), and (b) CS, CBF and exhaustive-

search histogram based on 1000 Monte Carlo simulations, and (c) CS, CBF

and exhaustive- search performance versus SNR. The true source positions

(*) are indicated in (a) and (b).

FIG. 7. (Color online) As Fig. 6 but for three sources at DOAs [�3, 2, 75]�

and magnitudes [12,22,20] dB.
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In the second scenario, the CBF cannot resolve the two

closely spaced sources with DOAs [�3, 2]�. They are less

than a beamwidth apart as indicated in Fig. 7(a). Sidelobes

cause a few DOA estimation errors at �65� in the CBF his-

togram, Fig. 7(b). Because CS obtains high-resolution even

for a single snapshot, it performs much better than CBF, Fig.

7(c).

B. Multiple snapshot

In the multiple-snapshot scenario, MVDR and MUSIC

use the data sample covariance matrix Eq. (22), whereas

CBF and CS works directly on the observations X Eq. (20).

The sample covariance matrix is formed by averaging L syn-

thetic data snapshots. The source magnitude is considered

invariant across snapshots. The source phase is for each

snapshot sampled from a uniform distribution on [0, 2p).

Due to the weak performance of MVDR in scenarios

with coherent arrivals,7 we assume incoherent arrivals in the

simulations although not needed for CS. For CS, we use Eq.

(20) with a similar choice of regularization parameter l as

for the single snapshot case.

Using the same setup as in Fig. 7, but estimating the

source DOAs based on L¼ 50 snapshots gives the results in

Fig. 8. At SNR¼ 0 dB, the diagrams in Fig. 8(a) show that

CS localizes the sources well in contrast to the CBF and

MVDR that is also indicated in the histograms in Fig. 8(b).

The RMSE in Fig. 8(c) shows that CBF does not give the

required resolution even for high SNR. MVDR performs

well for SNR> 10 dB, whereas CS performs well for SNRs

down to 2.5 dB.

In a third scenario, the weak broadside sources are

moved closer with DOAs defined as [�2, 1, 75]�. Figure 9

gives about the same DOA estimates for CBF as it is already

at its maximum performance even for high array SNR, con-

firming its low resolution. MVDR fails for SNR< 20 dB,

which is 10 dB higher than the corresponding value in Fig.

8(c) (MUSIC fails also at a level 10 dB higher). Contrarily,

CS fails only for SNR< 5 dB which is 2.5 dB higher [Figs.

8(c) and 9(c)]. Note how MVDR completely misses the

weak source at �2� in Fig. 9(c), but CS localizes it with a

larger spread. Thus as the weak source moves closer to the

strong source, CS degrades slower than MVDR in terms of

RMSE. This is a good indication of its high-resolution

capabilities.

Figure 10 shows the estimated power at the one realiza-

tion in Fig. 8(a) of L¼ 50 snapshots inverted simultaneously.

We emphasize the scale of the problem. Equation (16) has

20� 50¼ 1000 equations to determine 361� 50¼ 18 050

complex-valued variables at 361 azimuths and 50 snapshots

observed on 20 sensors. The sparsity constraint is crucial

here.

The CS (and especially the exhaustive-search) requires

several orders of magnitude more CPU-time than the beam-

forming methods.

Many other simulations could be performed, for exam-

ple, colored noise, no assumptions on number of sources,

FIG. 8. (Color online) Multiple L¼ 50 snapshot example for three sources

at DOAs [�3, 2, 75]� with magnitudes [12,22,20] dB. At SNR¼ 0 dB (a)

spectra for CBF, MVDR, and CS (o) and unbiased CS (�, higher levels), and

(b) CS, CBF and MVDR histogram based on 100 Monte Carlo simulations,

and (c) CS, exhaustive-search, CBF, MVDR, and MUSIC performance ver-

sus SNR. The true source positions (*) are indicated in (a) and (b). FIG. 9. (Color online) As Fig. 8 but with closer spaced sources [�2, 1, 75]�.
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and random source locations. From initial exploration of

these, it is our impression that CS will perform well, though

more simulations are required.

VI. EXPERIMENTAL RESULTS

The high-resolution performance of CS both in single-

and multiple-snapshot cases is validated with experimental

data in a complex multi-path shallow-water environment,

and it is compared with conventional methods, namely, CBF

and MVDR.

The data set is from the shallow water evaluation cell

experiment 1996 (SWellEx-96) Event S5 (Refs. 37 and 38)

collected on a 64-element vertical linear array. The array has

uniform inter-sensor spacing 1.875 m and was deployed at

waterdepth 16.5 m spanning 94.125–212.25 m. During Event

S5, from 23:15–00:30 on 10–11 May 1996 west of Point

Loma, CA, two sources, a shallow and a deep, were towed

simultaneously from 9 km southwest to 3 km northeast of the

array at a speed of 5 kn (2.5 m/s). Each source was transmit-

ting a unique set of tones.

Here we are interested in the deep source towed at 54 m

depth while at the vicinity of the closest point of approach

(CPA) which was 900 m from the array and occurred around

00:15, 60 min into the event. The deep-towed source signal

submitted a set of nine frequencies [112,130,148,166,201,

235,283,338,388] Hz at approximately 158 dB re 1lPa. The

processed recording has duration of 1.5 min (covering

0.5 min before and 1 min after the CPA) sampled at 1500 Hz.

It was split into 87 snapshots of 212 samples (2.7 s) duration,

i.e., with 63% overlap.

Figure 11 shows the multiple-snapshot CBF spatial

spectrum, Eq. (24), over the 50–400 Hz frequency range.

Arrivals are detected not only at the transmitted tonal fre-

quencies of the deep towed source but also at several other

frequencies corresponding to the shallow-towed source tonal

frequencies, weaker deep source frequencies, and the acous-

tic signature of the tow-ship.

Single-snapshot processing with CBF and CS at the deep

source tonal set, contour plots in Fig. 12, indicates the pres-

ence of several multipath arrivals, which are adequately sta-

tionary along the snapshots at the CPA. Due to the significant

sound speed variation, it is not straightforward to associate the

reconstructed DOAs with specific reflections. The CBF map

FIG. 10. (Color online) Power (linear) for the multiple snapshot case across

azimuths and snapshots for one noise realization at SNR¼ 0 dB for the sce-

nario with DOAs at [�3, 2, 75]�.

FIG. 11. (Color online) Spatial CBF spectrum across frequency at the sour-

ce’s closest point of approach to the array.

FIG. 12. (Color online) Single (contour plots) and multiple (line plots) snapshot reconstruction at the transmitted frequencies with CS (?), CBF (background

color, solid) and MVDR (dashed). For the single snapshot, we have assumed K¼ 10 sources while for the multiple snapshot K¼ 6.
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comprises six significant peaks but suffers from low resolution

and artifacts due to sidelobes and noise. To choose the regula-

rization parameter in the LASSO formulation for CS recon-

struction, we solve iteratively Eq. (8) as described in Table I

with initial value l ¼ 2kAHyk1, until the obtained estimate

has a sparsity level of 10. The CS reconstruction results in

improved resolution due to the sparsity constraint and signifi-

cant reduction of artifacts in the map.

Combining the data from all the snapshots and process-

ing with CBF, MVDR, and CS, as in Sec. V B, reveals that

MVDR fails to detect the coherent multipath arrivals; see

line plots in Fig. 12. Again the peaks of CBF and CS are

consistent, but CS offers improved resolution.

We have here used higher sparsity for the single-

snapshot processing to allow for identifying non-stationary

paths. The non-stationary path can be seen in several of the

contour plots, most prominently at 112, 130, and 201 Hz.

When performing multiple-snapshot processing where the

solution is constrained to remain active at one azimuth (but

with varying power), the stationary paths are most likely to

contribute to the CS solution.

VII. CONCLUSION

The estimation of multiple DOA is formulated as a

sparse source reconstruction problem. This is efficiently

solvable using CS as a least squares problem regularized

with a sparsity promoting constraint. The resulting solution

is the MAP estimate for both the single- and multiple-

snapshot formulations. The regularization parameter balan-

ces the data fit and the solution’s sparsity. It is selected so

that the solution is sufficiently sparse providing high-

resolution DOA estimates. A procedure to find an adequate

choice for the regularization parameter is described whereby

the DOAs are obtained.

CS provides high-resolution acoustic imaging both with

single and multiple snapshot. The performance evaluation

shows that for single snapshot data, CS gives higher resolu-

tion than CBF. For multiple snapshots, CS provides higher

resolution than MVDR/MUSIC, and the relative perform-

ance improves as the source DOAs move closer together.

The real data example indicates that CS is capable of

resolving multiple coherent wave arrivals, e.g., stemming

from multipath propagation.
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