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It is well known that observations of the spatial sample covariance matrix (SCM, also called the
cross-spectral matrix) reveal that the ordered noise eigenvalues of the SCM decay steadily, but com-
mon models predict equal noise eigenvalues. Random matrix theory (RMT) is used to derive and
discuss properties of the eigenvalue spectrum of the data SCM for linear arrays, with an application
to ocean acoustic data. Noise on the array is considered either incoherent or propagating acoustic
noise that is coherent across the array. Using conventional three-dimensional or two-dimensional iso-
tropic noise models with full or snapshot-deficient observations, realizations of the SCM eigenvalues
are explained using RMT. Deep-water towed-array data are analyzed and it is shown that the eigen-
values of the SCM compare well with theory. It is demonstrated how RMT can be applied to study
eigenvalue spectrum estimation as dependent on array properties (element spacing to wavelength ra-
tio) and data sampling (snapshots). Apart from explaining the observed noise eigenvalue spectrum,
the improved model of the eigenvalue spectrum has important applications in array signal processing.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4746024]
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I. INTRODUCTION

Often the ocean acoustic data sample covariance matrix
(SCM, or cross-spectral matrix) is assumed to consist of a
few large signal-plus-noise eigenvalues followed by a set of
equal-value noise-only eigenvalues representing uncorre-
lated noise. However, it is well known that the SCM from
real data observations is characterized by steadily decaying
noise-only eigenvalues.

In array processing, a common rule of thumb is that the
SCM is “well-estimated” when the number of snapshots is 2
to 3 times the array dimension.1–3 This depends on the type
of noise and application under consideration. Often, the
number of snapshots available for forming the SCM is less
than this, especially for large arrays.4–10

Using random matrix theory (RMT)11,12 to model the
statistical properties of the SCM,13–19 the eigenvalue distri-
butions are more informative than using the expectation
alone. A random matrix is a matrix-valued random variable,
i.e., the elements are stochastic variables. RMT can be used
to study the distribution of eigenvalues under asymptotic
assumptions. Using RMT, it can be shown that the eigenval-
ues have well-defined statistical properties. For acoustics,
RMT has found applications in, e.g., elastodynamics20 and
wave propagation and scattering in random media.21–24

Using tools from RMT, we study the asymptotic behav-
ior of the SCM eigenvalues under the assumption that both
the sample size (snapshots) and number of sensors tends to
infinity while their ratio is constant. This is in contrast to tak-
ing the mean of the SCM where sample size (snapshots)
tends to infinity while the number of sensors is constant. Ini-

tially, RMT was developed assuming uncorrelated observa-
tions, with the distribution of the SCM eigenvalues given
by the Marčenko–Pastur (MP) density.25 More relevant for
ocean acoustic applications, both the coherent and the inco-
herent noise components in the observations can be modeled
in the SCM via a complex Wishart distribution.

This paper discusses the SCM eigenvalue decay struc-
ture focusing on the coherent noise component using simula-
tions and real data and thus motivates further studies using
RMT. Using RMT, it might be possible to model the conver-
gence of the SCM and design improved eigenvalue based
array-processing algorithms.

II. NOISE COVARIANCE MATRIX (CM)

The SCM is defined as

R̂ ¼ 1

M

XM

m¼1

xmxH
m; (1)

where xm;m ¼ f1;…;Mg is the N-element complex-valued
observation vector at a particular frequency f and M the num-
ber of snapshots. We are interested in the eigendecomposition
of the SCM with ordered eigenvalues k1 " ### " kN , the
eigenvalue spectrum.

Using a linear model

x ¼
XK

k¼1

Sksk þ nc þ ni; (2)

where ni % CN ð0; r2
i IÞ represents incoherent noise, i.e., sen-

sor self-noise and nc % CN ð0; r2
cRcÞ represents coherent

propagating noise between sensors with the diagonal ele-
ments of Rc normalized to 1. There are K ( N discrete sour-
ces from direction sk with complex amplitude Sk.
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Assuming sk, nc, and ni are uncorrelated, the CM is

R ¼ EðxxHÞ ¼
XK

k¼1

jSkj2 sksH
k þ r2

c Rc þ r2
i I : (3)

It is well known that the estimate Eq. (1) converges to Eq.
(3) for M!1 in a mean square sense. From this model it
often is assumed that the first K eigenvalues contain signal-
plus-noise and the remaining N ) K eigenvalues are just due
to noise. In particular, for incoherent noise only, i.e., r2

c ¼ 0,
all non-signal eigenvalues are equal-valued

kj ¼ r2
i ; j ¼ K þ 1; :::;N: (4)

In the remainder it is assumed K¼ 0.
We have discussed Eq. (2) in terms of propagating coher-

ent noise and non-propagating sensor noise. The incoherent
noise is uncorrelated between the sensors but for certain array
spacings the coherent noise also becomes uncorrelated.

The noise snapshot vector nc þ ni in Eq. (2) is modeled
as a stationary, zero-mean, complex Gaussian stochastic
process with covariance R ¼ r2

cRc þ r2
i I, i.e.,

xm % CN ð0;RÞ. Based on this model, the SCM R̂ in Eq.
(1) is complex Wishart distributed with M degrees of free-
dom and covariance R, i.e., MR̂ % WNðr2

cRc þ r2
i I;MÞ.

A. Statistical description of eigenvalues

The classical equal-valued eigenvalues for the incoher-
ent noise Eq. (4) is derived based on the assumption that the
system parameter (array size) N is constant and the number
of snapshots M !1. A full statistical description is
obtained taking ! ¼ N=M constant and then let M !1
(i.e., N increases with M). This can be analyzed using RMT
for incoherent or coherent19 noise. For ! ¼ 0 the results cor-
respond to the classical ensemble average.

The statistics of the SCM eigenvalues can be character-
ized by several distributions, such as:

(1) The joint distribution of the eigenvalues.26

(2) The distribution of the largest eigenvalue k1. For Wishart
matrices, this is described by the Tracy–Widom density
(when scaled and centered appropriately).27

(3) The distribution of the jth largest eigenvalue.28

(4) The empirical distribution of the eigenvalues, e.g., the
MP distribution in Sec. II B 1.

For characterizing the noise, we are concerned with
item (4).

The empirical cumulative distribution function (CDF)
of the SCM eigenvalues is defined as

FðkÞ ¼
#fkj * kg

N
; (5)

where # represents the cardinality of the set, i.e., the number
of eigenvalues less than k.

To give the empirical CDF a probabilistic interpretation,
we define the random variable K which takes realizations
from the finite set of eigenvalues fk1;…; kNg with uniform

probability. Specifically, we define PfK ¼ kjg ¼ 1=N for all
j ¼ 1;…;N and

PfK * kg ¼
X

j :kj*k

PfK ¼ kjg ¼ FðkÞ: (6)

Thus, the distribution of a uniformly selected eigenvalue is
identical to the CDF.

The eigenvalue density of the SCM is defined as

pðkÞ ¼ 1

N

XN

j¼1

dðk) kjÞ ¼
dFðkÞ

dk
: (7)

In the following, we examine pðkÞ for coherent and incoher-
ent noise.

B. Incoherent noise

Array processing is typically performed under the
assumption of uncorrelated noise between the sensors. Im-
portant early results in RMT are based on uncorrelated
observations.

1. MP density

For noise that appears uncorrelated between the sensors,
the snapshots are distributed as ni % CN ð0; r2

i IÞ. For M!1
and !¼N=M, 0 * ! * 1 constant (i.e., the number of ele-
ments N increases with M), the eigenvalues of the SCM R̂i are
distributed as given by the MP density25

pMPðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ ) kÞðk) l)Þ

p

2p!kr2
i

l) < k < lþ

0 otherwise;

8
<

: (8)

where l) ¼ r2
i ð1)

ffiffiffi
!
p
Þ2 and lþ ¼ r2

i ð1þ
ffiffiffi
!
p
Þ2 are the

upper and lower limits of the “spreading” of the eigenvalues
of the SCM around the true eigenvalue r2

i .
Figure 1(a) shows the MP density, Eq. (8), for r2

i ¼ 1
and ! ¼ 1; 1/4, and 1/25. The largest eigenvalue is about lþ
or 4, 9/4, and 36/25 times r2

i , illustrating how the density
becomes narrower as ! decreases (M increases). For ! ! 0
the MP density approaches a delta function at r2

i , in agree-
ment with Eq. (4) for K ¼ 0. The classical result for the ex-
pectation Eq. (3) corresponds to ! ! 0.

2. Simulation of incoherent noise eigenvalues

The MP density Eq. (8) is only valid asymptotically, but
this density works well for finite array size N and snapshots M
as demonstrated in Figs. 1(b) and 1(c); see also Sec. II C 5 for
the snapshot-deficient case. For finite N and M, realizations of
the SCM can be generated from its distribution MR̂
% WNðr2

i I; MÞ. The simulations use a constant array size
N ¼ 64 and computes the SCM eigenvalues for M ¼ N;
4N; 25N (or !¼ 1, 1/4, 1/25). Figure 1(b) shows how the
observed eigenvalues of the SCM are related to the MP den-
sity and Fig. 1(c) shows the conventional ordered display illus-
trating the decay of eigenvalues with eigenvalue index.
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Clearly, as M increases, the eigenvalues approach the
constant value given in Eq. (4). For real arrays the observa-
tion time is finite and often M + N as the number of snap-
shots is limited by requiring a stationary environment.

C. Coherent noise

Environmental noise sources are coherent between pairs
of sensors due to propagation effects in the ocean. This is in
contrast to sensor noise which is incoherent and typically
much lower in power than the environmental noise. Note
that environmental noise may appear uncorrelated at specific
element spacings (Sec. II B). For the three-dimensional (3D)
isotropic noise model this occurs at half-wavelength spacing.

1. 3D isotropic noise eigenvalues

For a linear array of N equidistant sensors and assuming
a 3D isotropic noise field, the elements of the coherent noise
CM r2

cR
3D
c of the noise field are proportional to19,29 (omit-

ting r2
c)

½R3D
c -ij ¼ sincð2b j i) j jÞ; (9)

where sincðxÞ ¼ sinðpxÞ=ðpxÞ and b is the ratio of the spac-
ing between the sensors to the wavelength under considera-
tion (b ¼ f Dx=c, where f is the frequency, Dx is the spacing
between the sensors, and c is the phase speed of wave propa-
gation in the medium). Equation (9) is a symmetric Toeplitz
matrix. Thus, the spatial correlations are only dependent on
b and the separation ji) jj.

Asymptotically, the eigenvalues of a symmetric Toeplitz
matrix are sampled from the Fourier transform of the
sequence of elements that form the rows of the matrix.30

Thus, asymptotically (N !1), the eigenvalues of R3D
c in

Eq. (9) are proportional to the Fourier transform of the sinc
function /ðjÞ, which is the rectangle function:

/ðjÞ ¼ 1

2b
rect

j
2b

" #
; (10)

where j 2 ½) 1=2; 1=2Þ is the spatial frequency. Hence, the
eigenvalues have at most two distinct values and for b
* 1=2 just one non-zero value19,31 with multiplicity ratio
2b (the multiplicity ratio is the identical number of
eigenvalues relative to the array dimension).

For large but finite N, an approximate formula for the
eigenvalues of R3D

c can be obtained by sampling Eq. (10) at
N points as in Eq. (11) and the 1/2 is introduced to obtain
symmetry of the sampled eigenvalues.

k3D
j ¼

1

2b
for

j) 1=2

N
* 2b

0 otherwise;

8
<

: (11)

where j 2 1;…;N.
For b < 1=2, R3D

c is rank deficient due to the zero eigen-
values of multiplicity ratio ð1) 2bÞ. For b ¼ 1=2 (half-
wavelength element spacing), R3D

c ¼ I and thus k3D
j ¼ 1; j

¼ 1;…;N and R3D
c is full rank.

Using the CM eigenvalues, the density for the eigenval-
ues of the SCM can be derived.19 Since the CM has just one
distinct non-zero eigenvalue, Eq. (11), the density is inferred
from the MP density as follows. (1) The zero CM eigenvalues
remain zero in the SCM. (2) As the multiplicity ratio of the
non-zero eigenvalue is 2b as opposed to 1 for the MP density,
the equivalent array element to snapshot ratio becomes
~! ¼ 2b!. (3) Since the probability of obtaining a non-zero
eigenvalue is 2b, the density of the non-zero eigenvalues is
scaled by 2b. (4) Further, we need to scale the spread of the
eigenvalues with r2

c1=2b. This gives the coherent MP density

pcMPðkÞ ¼
2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ ) kÞðk) k)Þ

p

2p!kr2
c

k) < k < kþ

ð1) 2bÞdðkÞ otherwise;

8
><

>:

(12)

with

k6 ¼
r2

c

2b
ð1 6

ffiffiffi
~!
p
Þ2 ¼ r2

c

ffiffiffiffiffiffi
1

2b

s

6
ffiffiffi
!
p

 !2

: (13)

FIG. 1. (Color online) (a) Eigenvalue probability density of the incoherent
noise SCM corresponding to a MP density Eq. (8) for r2

i ¼ 1 and
! ¼ N=M ¼ 1, 1/4, 1/25. (b) and (c) Eigenvalues of the SCM for an array
with N ¼ 64 and number of snapshots M, ! ¼ N=M ¼ 1, 1/4, 1/25. In (c)
the axes are changed relative to (b) and the eigenvalue is in dB.
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The first term in Eq. (12) accounts for the density due to the
spreading of the non-zero eigenvalues and the second term
in Eq. (12) is the density due to the zero eigenvalues.

2. 2D isotropic noise eigenvalues

For a two-dimensional (2D) isotropic noise field,32 the
coherent noise CM is proportional to

½R2D
c -ij ¼ J0 ð2pb j i) j jÞ; (14)

where J0 is the zeroth order Bessel function. Since R2D
c also

is Toeplitz symmetric, its eigenvalues are samples from the
Fourier transform of J0ð2pbxÞ:

/ðjÞ ¼ F ½J0ð2pbxÞ- ¼
rect

j
4pb

" #

pb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1) ðj=2pbÞ2

q ; (15)

where j 2 ½)p; pÞ is the spatial frequency. Thus, similar to
the 3D case, for finite N an approximate formula for the
eigenvalues is obtained by sampling Eq. (15) and for
b * 1=2, the (unsorted) eigenvalues are given by

k2D
j ¼

1

pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1)

$$$$$
j) ðN þ 1Þ=2

Nb

$$$$$

2
vuut

for
j) ðN þ 1Þ=2

N

$$$$

$$$$ * b

0 otherwise;

8
>>>><

>>>>:

(16)

where j 2 1;…;N. These eigenvalues come in pairs due to
the symmetry around N/2.

Similar to the 3D case for b < 1=2, R2D
c is rank deficient

due to the zero eigenvalues of multiplicity ratio ð1) 2bÞ
(asymptotically, N !1) as shown in Eq. (16). The first
zero of the Bessel function, J0ð2pbxÞ, for x ¼ 1 occurs at
b ¼ 0:38, but successive zeros do not occur at multiples of
0:38 and hence their spacing is not periodic [although the as-
ymptotic expansion J0ð2pbxÞ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=p2bx

p
cosð2pbx) p=4Þ

suggests that the zeros occur periodically for large argu-
ments]. Hence for a 2-sensor array,32 the noise on the array
is uncorrelated at b ¼ 0:38, but for larger uniformly spaced
arrays, the 2D isotropic noise SCM will never be uncorre-
lated, even at b ¼ 0:5.

The CM eigenvalue spectrum for 3D and 2D isotropic
noise is shown in Fig. 2 for N ¼ 64 and b ¼ 1=4. The CM
eigenvalues are computed using eigenvalue decompostions
on Rc [!, Eqs. (9) and (14)] and the asymptotic formulas
[•, Eqs. (11) and (16)], see Fig. 2. For the 2D case [Fig.
2(b)], the large eigenvalues come in pairs and eigenvalues 1
to 2 are beyond the limits of the plot. For finite N, there are a
number of eigenvalues near the normalized eigenvalue index
2b (these are not in pairs), defining the edge of the visible
region. The visible region of the array is where the eigenvec-
tors correspond to element-to-element phase shifts of physi-
cally propagating waves in the medium.

The SCM eigenvalue density for 2D isotropic noise is
not available analytically and is obtained from simulation as
demonstrated in Sec. II C 3.

3. Simulation of coherent noise eigenvalues

The SCM eigenvalue densities are estimated numeri-
cally using Monte Carlo simulation and shown here for 3D
and 2D isotropic noise for N ¼ 64 and b ¼ 1=4.

The SCMs are generated as MR̂c %WNðRc;MÞ and
their ordered eigenvalues are shown in Figs. 3(a) and 3(c)
for a single realization. The difference in structure between
the SCM eigenvalues for 3D [Fig. 3(a)] and 2D [Fig. 3(c)]
isotropic noise is pronounced for ! ¼ 1=25, mirroring the
shapes of their respective asymptotic formulas for the CM
eigenvalues [Eqs. (11) and (16)] as shown in Fig. 2. How-
ever, for ! ¼ 1 (dotted-dashed line) the spreading of the
eigenvalues looks similar and it is difficult to distinguish
between the two noise fields.

The empirical eigenvalue densities are obtained
from 1000 Monte Carlo samples [Figs. 3(b) and 3(d)]. The
3D asymptotic distributions [Eq. (12)] for both ! ¼ 1 and
! ¼ 1=25 match well the finite dimension simulated distri-
butions [Fig. 3(b)].

For ! ¼ 1=25, the main density is quite sharply cen-
tered around 1=2b ¼ 2 for the 3D case as the underlying

FIG. 2. (Color online) CM eigenvalues based on (a) 3D and (b) 2D isotropic
noise for b ¼ 1=4 and N ¼ 64. The approximate eigenvalues [•, (a) Eq. (11)
and (b) Eq. (16)] as well as the eigenvalues for a finite array (!) are shown.
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CM only has equal-valued eigenvalues of value 1=2b for
b * 1=2, whereas the 2D density is more distributed. The
localized peaks in the densities for both 3D (3 peaks) and
2D (2 peaks) observed for k < 1:5 correspond to the
“transition eigenvalues” which occur due to the finite
dimension of Rc, the density for k < 0:05 is suppressed.
The transition eigenvalues of a single realization R̂c (•) in
Figs. 3(a) and 3(c) agree well with the peaks in the densities
in Figs. 3(b) and 3(d).

For 2D isotropic noise and ! ¼ 1=25, there are several
localized modes at larger eigenvalues (k > 2). These corre-
sponds to the eigenvalue pairs 3 to 4 (k + 3:3), 5-6
(k + 2:5), and 7 to 8 (k + 2:2) of R3D

c in Fig. 2(c) (eigen-
values 1 to 2 have k > 5).

4. Simulation of coherent plus incoherent noise
eigenvalues

To demonstrate the decay of the eigenvalues, we are
interested in realizations of the noise SCM and their
eigenvalues. Since the noise SCM is complex Wishart
distributed MR̂ % WNðr2

cRc þ r2
i I;MÞ we can generate

realizations of the SCM from which the eigenvalues are
determined.

This is illustrated with simulations for an array with
64 elements with noise-only data. The coherent noise is
chosen by a factor 200 larger than the incoherent noise,
r2

c=r
2
i ¼ 200. The simulations in Fig. 4 show the decay of the

eigenvalues for all SCMs. As the number of snapshots is
increased (with array size fixed, ! decreasing), the smaller
eigenvalues become larger and eventually for an infinite num-
ber of snapshots the eigenvalues will approach a step func-

tion. The larger eigenvalues are dominated by the coherent
noise and the smaller eigenvalues by the incoherent noise.

The location of the jump depends on b, the ratio of array
spacing to wavelength. For b < 1=2 there is a sharp drop in
the vicinity of the eigenvalues corresponding to the edge of
the visible region. For fewer snapshots this jump is smeared
out. A smaller ratio r2

c=r
2
i reduces the jump. At b ¼ 1=2 the

coherent noise CM also is diagonal and thus identical to the
classical case of only incoherent noise discussed in Sec. II B.

It is interesting to compare the largest eigenvalues of the
SCM for 2D and 3D isotropic noise, see Fig. 5. For the same
number of snapshots (! ¼ 1=4), the largest eigenvalues for
the 2D case are 4 dB larger than for the 3D case. At
b ¼ 1=2, the 2D noise CM is not diagonal (the Bessel

FIG. 4. (Color online) Eigenvalues of the SCM for the N ¼ 64 element
array with r2

c=r
2
i ¼ 200 for: (a) b ¼ 1=8, (b) b ¼ 1=4, (c) b ¼ 3=8, and (d)

b ¼ 1=2. The eigenvalues are shown for an increasing number of snapshots
M, where ! ¼ N=M ¼ 1 (dashed-dotted), ! ¼ 1=4 (dashed), and ! ¼ 1=16
(solid). The eigenvalues are normalized with r2

i and the vertical dotted line
indicates the edge of the visible region.

FIG. 5. (Color online) Eigenvalues of the 3D (solid) and 2D (dashed)
noise SCM for an N ¼ 64 element array with r2

c=r
2
i ¼ 200; ! ¼ 1=4 for:

(a) b ¼ 1=4 and (b) b ¼ 1=2. The eigenvalues are normalized with r2
i and

the vertical dotted line indicates the edge of the visible region.

FIG. 3. (Color online) (a) and (c) SCM eigenvalues, and (b) and (d) SCM
eigenvalue densities based on (a) and (b) 3D and (c) and (d) 2D isotropic
noise for ! ¼ N=M ¼ 1, 1/25. The simulation is performed with N ¼ 64,
b ¼ 1=4, the SCM eigenvalues are based on one realization and the den-
sities are obtained from 1000 Monte Carlo samples. In (b) the asymptotic
densities [solid, Eq. (12)] are shown. In (b) and (d) the probability mass of
1) 2b ¼ 0:5 at k ¼ 0 is not shown.
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function is not zero at b ¼ 1=2) and eigenvalues are not sim-
ilar to the incoherent case, see Fig. 1.

5. Snapshot-deficient case

If there are fewer snapshot samples than sensors (M < N,
i.e., ! ¼ N=M > 1) the SCM has at most M eigenvalues and
is said to be snapshot-deficient. This often is the case for large
towed arrays or arrays in dynamic environments where the
number of snapshots is limited.

For the snapshot-deficient incoherent-noise SCM, i.e.,
M < N, we can apply the MP density Eq. (8) with ! ¼ N=M
and adding a point mass of 1)1=! at k ¼ 0 corresponding to
the N)M zero eigenvalues. This can be derived as follows.
All snapshots are collected into an N .M observation ma-
trix X ¼ ½x1 ### xM-. This gives the sample covariance
matrices

R̂ ¼ 1

M
XXH and R̂

0 ¼ 1

N
XHX; (17)

where M .M matrix R̂
0

is only used in the derivation of the
density, it is not a physical quantity. Since X is complex
Gaussian CNMð0; r2

i INÞ then XH also is complex Gaussian
CN Nð0; r2

i IMÞ. Both R̂ and R̂
0

will be complex Wishart dis-
tributed, as MR̂ %WNðr2

i IN;MÞ and NR̂
0 %WMðr2

i IM;NÞ,
respectively. Thus, the snapshot-deficient incoherent-noise
SCM is given by the MP density R̂

0
matrix as if there were

N “snapshots” and M “elements,” provided a mass point of
1)1=! at k ¼ 0 is included to account for the zero
eigenvalues.

For the snapshot-deficient 3D coherent-noise SCM, a
simulation is used to obtain the eigenvalues. The snapshot-
deficient SCM is simulated as in Sec. II C 4, but with just
M ¼ 32 snapshots, i.e., 32 non-zero eigenvalues, see Fig. 6.
The eigenvalues decay faster for the snapshot-deficient
SCM than when using more snapshots (solid versus dashed
in Fig. 6). The snapshot-deficient case is further discussed
in Sec. III.

III. EXPERIMENT

The data is from a towed horizontal array during the
long range acoustic communications experiment33 from

10:00 to 11:00 UTC on 16 September 2010 in the NE Pacific
in 5-km water depth. Other data periods yield similar results
to those shown here. The array was towed at 3.5 knots at a
depth of 200 m. The data were sampled at 2000 Hz using a
nested array with each configuration having 64 channels.34

The high frequency (HF) array had hydrophone spacing
0.375 m (design frequency fd ¼ 2000 Hz), the medium fre-
quency (MF) array had channel spacing 0.75 m (fd ¼ 1000
Hz), the low frequency (LF) array 1.5 m (fd ¼ 500 Hz), and
the ultralow frequency (ULF) array 3 m (fd ¼ 250 Hz).

The SCMs were constructed using 4 s, 213 long Fourier
transforms without overlap and M ¼ 64 (! ¼ 1) or 864
(! ¼ 1=13) snapshots, with 864 snapshots corresponding to
the whole hour. The beamformed time series, Fig. 7, is based
on single snapshots and performed at one quarter wavelength
element spacing. The broad arrival at 60/ to 75/ is from the
towship (R/V Melville). Apparently, the two arrivals at
)45/ and )30/ come from distant transiting ships, although
a log of ships in the area was not kept. Overall, the beam
time series shows little change with time.

Figure 8 shows the eigenvalues of the SCM at selected
values of b for the four arrays. Due to the low sampling
frequency (2000 Hz), the HF array only can be used up to
b ¼ 1=4 (1000 Hz). All eigenvalues are based on 1 h observa-
tions, meaning that for M ¼ 64 the eigenvalues are averaged
over 13 SCM eigenvalues. The first few eigenvalues for each
SCM are likely due to the distant transiting ships and noise
from the towship, as seen in the beam time series (Fig. 7).
The eigenvalues drop sharply above 2bðN ) 1Þ þ 1 (vertical
dotted line) as predicted by theory, and indicates that the
coherent noise is stronger than the incoherent noise. The
eigenvalues of the SCM of the LF and ULF arrays show a
similar behavior as the MF and HF arrays though with less
strong transition between the two eigenvalue regimes.

FIG. 6. (Color online) Eigenvalues of the snapshot-deficient SCM for a
64-element array for M ¼ 32 (solid), i.e., ! ¼ 2 and r2

c=r
2
i ¼ 200 for (a)

b ¼ 1=8 and (b) b ¼ 1=4. For comparison, M ¼ 64 (dashed, ! ¼ 1) also is
shown. The eigenvalues are normalized with r2

i and the vertical dotted
line indicates the edge of the visible region.

FIG. 7. (Color online) Towed array beam time series (dB) at one quarter
wavelength element spacing: (a) ULF at 125 Hz, (b) LF at 250 Hz, (c) MF at
500 Hz, and (d) HF at 1000 Hz.
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FIG. 8. (Color online) Eigenvalues of the towed array SCM for HF array (1st row, b ¼ 1=8; 1=4), MF array (2nd row, b ¼ 1=8; 1=4; 1=2), LF array (3rd row,
b ¼ 1=8; 1=4; 1=2), and ULF array (4th row, b ¼ 1=8; 1=4; 1=2). The eigenvalues are based on 64 (! ¼ 1, dashed) and 864 (! ¼ 13, solid) snapshots. The
eigenvalues are normalized with the largest eigenvalue and the vertical dotted line indicates the edge of the visible region, b is the element spacing to wave-
length ratio.

FIG. 9. (Color online) Comparison of observed and modeled eigenvalues. Eigenvalues of the towed array SCM (solid) and modeled eigenvalues 3D (dashed)
and 2D (dashed-dotted) for HF array (1st row, b ¼ 1=8; 1=4) and LF array (2nd row, b ¼ 1=8; 1=4; 1=2). The observed eigenvalues are based on 864 (! ¼ 13,
solid) snapshots, the modeled eigenvalues use a ratio r2

c=r
2
i ¼ 700 for the HF array and r2

c=r
2
i ¼ 100 for the LF array. The eigenvalues are normalized with

the largest eigenvalue and the vertical dotted line indicates the edge of the visible region, b is element spacing to wavelength ratio.
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Figure 8 shows that the eigenvalues depend on b. As b
increases, all the eigenvalue spectra become more extended
and at b ¼ 0:5 (half-wavelength spacing) the SCM ideally
should become diagonal with eigenvalues that approximately
are all equal.

Comparing the four arrays at b ¼ 1=8, the first column
in Fig. 8 shows that the higher eigenvalue numbers (contain-
ing mostly incoherent noise) are relatively larger at low fre-
quencies. At half-wavelength spacing (b ¼ 1=2, last column
in Fig. 8), all eigenvalues remain large for the three arrays,
except when using a relatively small number of snapshots
(M ¼ N).

The observed and modeled noise eigenvalues are com-
pared in Fig. 9. It is important to realize that there is towship
radiated noise as well as broadband signatures from several
distant ships arriving at the array, especially at low frequen-
cies, see Fig. 7. These “signals” are among the largest eigen-
values extracted from the data, see Eq. (2). Therefore, we
arbitrarily select to only match the noise from eigenvalue 10
and vary the ratio of coherent to incoherent noise r2

c=r
2
i , see

Fig. 9. For the HF array, the match is quite good and the
transition region is also well-determined. For the LF array,
the match is less good, likely because not all dominant noise
sources are modeled. Before these noise sources are under-
stood, whether the noise field is 2D or 3D cannot be
determined.

For large arrays, the SCM often is snapshot-deficient.
The snapshot-deficient eigenvalues for the towed array data
(Fig. 10) compare well with the simulations in Fig. 6. How
well the coherent noise eigenvalues are estimated depends
on b relative to the number of snapshots M. For small values
of b, there might be sufficient snapshots so the coherent
noise eigenvalues are relatively well estimated. An important
question is how eigenvalue based beamforming performs for
this case, but this is beyond the scope of this paper.

From all of the SCM eigenvalue spectra [Figs. 11(a) and
11(c)] we obtain histograms of the eigenvalues [Figs. 11(b)
and 11(d)] corresponding to the empirical eigenvalue den-
sity, Eq. (7). Each SCM is normalized by the largest eigen-

value so that in the histograms the largest eigenvalues
correspond to “signal” eigenvalues. The histograms are
multi-modal corresponding to coherent and incoherent noise,
as can also be seen from the second row in Fig. 8.

IV. CONCLUSION

Eigenvalue spectra of the SCM) have been examined
for both synthetic and real data. The ordered eigenvalues
decay steadily as predicted using RMT. Using tools from
RMT, we study the asymptotic behavior of the SCM eigen-
values under the assumption that both the sample size and
number of sensors tend to infinity while their ratio is con-
stant. This is in contrast to taking the mean of the SCM
where the sample size tends to infinity while the number of
sensors is constant.

The noise observed by an equally-spaced line array has
been modeled as the sum of an incoherent component and a
stronger coherent component corresponding to propagating
noise. The coherent component is modeled as 3D or 2D iso-
tropic noise corresponding to a sinc or a zeroth-order Bessel
CM. Eigenvalues of these were examined and both matrices
were singular for element spacing to wavelength ratios less
than 1/2, causing a sharp drop in the eigenvalues which is
related to the edge of the visible region. Realizations of syn-
thetic SCMs were drawn from the complex Wishart distribu-
tion in numerical simulations from which both eigenvalue
spectra and densities were estimated.

Simulated and deep-water towed-array noise data SCMs
clearly show the strong jump in power level at the edge of
the visible region. Apart from this jump, the SCM eigenval-
ues decay steadily as predicted by theory. Snapshot deficient
and well-estimated SCMs were considered.

FIG. 10. (Color online) Eigenvalues of the MF towed array snapshot-
deficient SCM with M ¼ 32 ð! ¼ 2Þ for several realizations (thin lines)
for (a) b ¼ 1=8 and (b) b ¼ 1=4 (i.e., frequencies 500 and 1000 Hz). Aver-
age of these eigenvalues (solid) and eigenvalues of the SCM (dashed) with
M ¼ N ¼ 64 ð! ¼ 1Þ also are shown. The eigenvalues are normalized with
the largest eigenvalue and the vertical dotted line indicates the edge of the
visible region.

FIG. 11. (Color online) (a) and (c): Eigenvalues of the MF towed array
SCM with M ¼ 64 ð! ¼ 1Þ for 13 realizations for (a) and (b) b ¼ 1=8
(250 Hz) and (c) and (d) b ¼ 1=4 (500 Hz). (b) and (d): The normalized his-
tograms of all of the eigenvalues.
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