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Abstract: Sensors are becoming ubiquitous and can be combined in
arrays for source localization purposes. If classical conventional beam-
forming is used, then random arrays have poor beampatterns. By pre-
computing sensor weights, these beampatterns can be improved signifi-
cantly. The problem is formulated in the frequency domain as a desired
look direction, a frequency-independent transition region, and the power
minimized in a rejection-region. Using this formulation, the frequency-
dependent sensor weights can be obtained using convex optimization.
Since the weights are data independent they can be pre-computed, the
beamforming has similar computational complexity as conventional
beamforming. The approach is demonstrated for real 2D arrays.
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1. Introduction
Sensors are becoming ubiquitous and can be combined in arrays for source localization
purposes. Random arrays or ad hoc arrays consist of a group of sensors clustered
together where the locations are non-optimal from a beamforming perspective. The loca-
tion of each senor is accurately known, but each location has been randomly selected, for
example due to logistics, topography, or currents. Examples of such networks include
seismics,1–3 ocean acoustics,5,6 air acoustics,7,8 and speech communication applications.9

The sensors used here are assumed to be fixed, but for frequency domain
beamforming it is possible to adjust the complex-valued weighting of each sensor to
give well-defined beampatterns. While there are several methods for determining the
weights, we focus on one that gives a frequency-independent main beamwidth. This
can be formulated as a linearly constrained optimization problem that can be solved
using convex optimization.10 An introduction to convex optimization with beamform-
ing can be found in Ref. 11 where robustness of adaptive beamforming12–14 is of
primary concern. Here we will apply convex optimization for data-independent
beampattern optimization.

Since the locations of the sensors are known accurately, these sensors can be
combined into an array of stations and used for beamforming. However, these stations
are not located ideally for reducing sidelobes. Rather, the stations are placed randomly15

or in an ad hoc16 fashion. The sidelobes for such a network appear random and the
beampattern has strong contributions outside the main-lobe.15,16 Aliasing and grating
lobes are due to the periodicity in a uniform array. This aliasing phenomenon is not
encountered in random arrays where the sensors have no regular inter element spacing.
Indeed, the average distance between the sensors is often larger than half a wavelength.

The sensor nodes are random in location, and there exists no other tools than
simulation to analyze deterministic aperiodic arrays beyond a statistical characteriza-
tion.15,16 This is shown by the example in Fig. 1 for two 72 elements arrays, a random
array from Cascadia (WA) [Fig. 1(a)] and a regular rectangular array with elements
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spaced at distance k/2 [Fig. 1(b)]. Horizontally propagating plane waves with 3 km/s
phase speed are assumed in the example. For a 270! look direction and uniform ampli-
tude weights, the beampatterns in azimuth are shown for the regular rectangular array
and the Cascadia random array [Fig. 1(c)]. Clearly, the array response from the
random array does not decay with azimuth, but shows random sidelobes. Due to the
larger aperture the random array has a very narrow main-lobe.

For regular arrays the spatial sampling has to be dense (i.e., k/2 for a line
array) but for random arrays there are no such limitations. In practice there is an
upper limit as the coherence between elements is lost and the processing neglects veloc-
ity inhomogenities. Typically, velocity inhomogenities are not incorporated into the
beamforming, but large-scale inhomogenities potentially could be incorporated.

For regularly spaced arrays both in 1D or 2D it is often possible to compute the
weighting analytically17,18 or using numerical procedure for extracting these, using simu-
lated annealing19 or total least squares.9,20 For 2D random arrays, beampatterns can be
improved by adaptive beamforming21,22 parametric methods,8 or data-independent
optimization of the shading vector as demonstrated here.

2. Constant spatial main-lobe
The beamformer is formulated in the frequency domain and broadband results are
then obtained by summing individual frequency components. In the following, a set of
complex-valued weights is obtained for each look direction and frequency.

2.1. Signal model
For the N sensors with all sensor location concatenated in a location vector (x, y), the
steering vector in slowness direction s¼ (sx, sy) is,

aðsÞ ¼ expðixðxsx þ ysyÞÞ: (1)

Fig. 1. (Color online) Beampattern (dB) for the random array consisting of seismic stations in Cascadia and a
regular rectangular array. (a) Random array consisting of 72 stations, (b) regular array with 72 stations, and
(c) beampatterns.
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The beamformer output power in desired slowness direction sd is,

BðsdÞ ¼ wHðsdÞRwðsdÞ; (2)

where w is the weight vector and the cross-spectral density matrix
R ¼ ð1=MÞ

PM
m¼1 dobs;md

H
obs;m for M observations of the data snapshot vector dobs. For

conventional (Bartlett) beamforming the weight vector is given by

wðsdÞ¼ aðsdÞ=N: (3)

2.2. Convex optimization of sensor weights
At each frequency, we determine the weights w(x) by minimize the power in the
rejection-region for a steering vector in desired look direction sd,

min
w

jjðwHArÞjjp subject to wHaðsdÞ ¼ 1 max½wHAt'; < 1 (4)

where Ar is a matrix with each column corresponding to a steering vector for all slow-
nesses in the rejection-region and At is a matrix of steering vectors corresponding to all
slownesses in the transition region. In the present implementation, we have assumed
for simplicity that the transition region in the slowness domain is a square centered at
sd. It is easy to constrain the optimization to follow a prescribed decay in the transition
region.21 However, we have chosen not to implement this constraint but just limit the
power in the transition region.

Fig. 2. (Color online) Beampattern for Cascadia array in Fig. 1 with a transition region of 0.05 s/km (square)
around the look direction at (sx, sy)¼ ((0.1, 0) s/km. The 2D beampattern are (a) conventional, (b) L1
rejection-region, (c) L2 rejection-region, and (d) L1 rejection-region. (e) Beampatterns across sy slowness with
sx¼(0.1 s/km for conventional, L1, L2, and L1 rejection-regions.
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Any norm jj jjp can be used for solving the optimization problem in Eq. (4)
and the L1, L2, or L1 norms are used here. The L1 norm sums the absolute values
ðjjyjj1 ¼

Pm
i¼1 jyijÞ for all points in the rejection-region, whereas the L1 norm gives

the largest value (jjyjj1¼maxi¼1,…,mjyij) in the rejection-region. The L2 norm

ðjjyjj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1 jyij
2

q
Þ gives results in between these two norms.

The constrained optimization problem in Eq. (4) is a convex optimization
problem since any norm minimization is convex and the constraints limit the search
space, see Chapter 6 in Boyd and Vandenberghe.10 This can be solved efficiently with
CVX.23,24 Note, that Eq. (4) is data-independent and can be pre-computed before any
data is used in the beamforming in Eq. (2).

3. Example
We illustrate the 2D beamforming with an array installed to detect seismic tremor.3,4

Seismic tremor is a continuous noise appearing with regular intervals (about 14 months
in Cascadia, WA). It is believed that the noise originates from the plate boundary
some 30 km below the Cascadia array and tremor typically impinges on the array with

Fig. 3. (Color online) Broadband beampattern across sy slowness (sx¼(0. 1 s/km) for the (a) conventional, (b)
L1 rejection-region, (c) L2 rejection-region, and (d) L1 rejection-region. Horizontal lines indicate the transition
region.
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phase velocities of 10 km/s (slowness 0.1 s/km). The array [Fig. 1(a)] is quite dense
with 72 sensors placed within a 1.2-km square and of interest is the broadband
response from 2 to 40 Hz. We initially use a frequency of 20 Hz which gives good
resolution of the conventional beamformer power, Fig. 2(a).

Since the array is not regular, we apply the rejection-region algorithm to the
beam response in the slowness domain, minimizing the response in the region outside
the square shown in Fig. 2. The slowness domain from (0.2 to 0.2 s/km is gridded
into 81) 81 cells. The beam response is minimized in a square with sides 0.05 s/km
from the look direction. For each frequency and look direction we are minimizing
812–112¼ 6480 equations for the 72 complex-valued sensor weights. We solve it with
CVX

23,24 in about 0.5 min CPU time on a MacBook Pro.
The rejection-region formulation can be implemented using different norms as

illustrated in Fig. 2. The L1 norm (minimizing the maximum power) tends to give a
relative flat rejection-region level, how flat it tends to depend on the number of ele-
ments, more elements tend to average out the fluctuations. The L1 norm (minimizing
the average power) does not give a flat response, but focuses on minimizing the total
power in the rejection-region. Since it uses relatively more effort to reduce the sidelobes
close to the look direction, the beampattern using the L1 norm decays with distance
from the look direction. The L2 norm is a compromise between the L1 and L1 norms
and it has here nearly an identical main-lobe as the conventional beamformer, but
lower sidelobes. For the same size of the transition region, the L1 norm gives lower
rejection-region levels, but a larger main-lobe than when using the L1 norm.

The L1 norm does not have a requirement that the main-lobe should stop
outside the transition region, but it can extend past the transition region. For distrib-
uted sources over a wide slowness region such as ambient noise, the L1 norm might
give a better representation of the source power in the look direction. For localizing a
point source, the narrow constant beampattern (L1 norm) is preferable.

We apply the rejection-region derived weights at 100 frequencies from 2 to 40
Hz as shown in Fig. 3. At 3 Hz, the array has an aperture of about k/2. Thus, unless
near field modeling is used the array does not have useful resolution below 3 Hz. The
weights are not well-determined either since the individual steering vectors are too
similar. As observed previously, the L1 norm gives the lowest sidelobes. It is not too
concerned with the width of the main-lobe and the effective width decreases as
frequency increases. The L1 norm gives a constant main-lobe.

4. Conclusion
A data-independent criterion for minimizing the sidelobes of 2D random arrays has
been developed and demonstrated using convex optimization. Overall, the L1 norm is
preferred for minimizing the sidelobes in the rejection-region.
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