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Inversion methods are applied in ocean acoustics to infer parameters which characterize the
environment. The objective of this paper is to provide such estimates, and means of evaluating the
inherent uncertainty of the parameter estimates. In a Bayesian approach, the result of inversion is the
a posteriori probability density for the estimated parameters, from which all information such as
mean, higher moments, and marginal distributions can be extracted. These are multidimensional
integrals of thea posteriori probability density, which are complicated to evaluate for many
parameters. Various sampling options are examined and it is suggested that ‘‘importance sampling’’
based on a directed Monte Carlo method, such as genetic algorithms, is the preferred method. The
formulation of likelihood functions and maximum-likelihood objective functions for multifrequency
data on a vertical array is discussed.A priori information about the parameters may be used in the
formulation. Shallow-water acoustic data obtained at several frequencies using a vertical array is
used to illustrate the applicability of the technique.@S0001-4966~98!05307-7#

PACS numbers: 43.30.Pc, 43.60.Pt@DLB#
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INTRODUCTION

From a Bayesian point of view, the solution to an i
verse problem is fully characterized bya posterioriprobabil-
ity distributions of the unknown parameters. Informati
about these parameters is assessed by moments of thea pos-
teriori distributions, such as the mean, covariance, and m
ginal distributions. This improves on the usual practice
calculating only a single point-estimate of the paramete
Accuracy of the inversion can be estimated in this way.

In a real problem, the numerical evaluation ofa poste-
riori distributions is limited by computational resources. Im
portance sampling, as performed by simulated annea
~SA! and genetic algorithms~GA!, can considerably reduc
the number of operations required. The main advantag
the above concept is that it not only provides the best p
sible parameter estimates, but also calculates moments o
a posteriori distributions associated with these paramete
The Monte Carlo method1 and the simulated annealin
method2 were developed as methods to evaluate multidim
sional integrals.

Part of the inverse problem is to find an environment
which a forward model can produce a replica with a go
match to the observed data. A representative environme
chosen empirically and a set of parametersm is selected as
unknown. It is assumed that the true model vector is c
tained in the parameter setM. An objective functionf~m!
that compares the data and the replica is selected. Then

a!Now at Marine Physical Laboratory, Scripps Institution of Oceanograp
University of California, San Diego, La Jolla, CA 92093-0704; Electron
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timization is carried out to find the optimum model param
eter vectorm̂5(m̂1,...,m̂M) that minimizes the selected ob
jective function.

To understand the inverse problem and its solution, i
important to study uncertainties, ambiguities, and resolut
aspects of the unknown parameters. For deterministic lo
methods, these are limited to a neighborhood surrounding
local estimate, e.g., Refs. 3 and 4. A good discussion of th
aspects for underwater acoustics is found in Ref. 5. Esti
tion of uncertainties from global methods have been d
cussed in Refs. 6–11 for the related geophysical probl
and in Refs. 12 and 13 for ocean acoustic problems. Retr
ing parameters using global optimization methods has
quently been discussed in ocean acoustics.12,14–16

The superiority of stochastic global methods for unc
tainty estimation stems from their ability to sparsely sam
the parameter spaceM.17 For present applications, fast e
timation of the moments of thea posteriori distributions is
more important than precision.

The motivation for the present study is thata posteriori
distributions as described in Ref. 12 have been used w
success in a series of previous papers. It has worked wel
making comparisons between retrieved parameters and
ing an indication of the convergence of the optimizati
method. However, it is based on an empirical weighting a
fails to give a performance indication fordifferent inversion
approaches. Only a likelihood baseda posterioridistribution
can show the improvement in performance when using m
frequencies, or the differing performance using a near or
array.

Before measurement, the information about the mod
is reflected in thea priori distribution r~m! and after the
experiment, the information about the models is reflected

,
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the a posteriori distribution s~m!. These distributions are
related through the likelihood functionL~m!, which is a
measure for the goodness of fit between the observed
and the data generated using a computational acoustic m
and the environmentm ~Bayes Theorem!

s~m!5L~m!r~m!. ~1!

When maximizings~m! the maximuma posteriori ~MAP!
estimate of the parameters is obtained and when maximi
L~m! the maximum likelihood~ML ! parameter estimate i
obtained.

To find the best solution, global optimization is carrie
out by minimizing an objective functionf~m!. In this paper,
the objective function is chosen proportional to the lo
likelihood function, but often it is selected on a more emp
cal basis. The likelihood function depends on the stocha
model for the data: differing probabilistic models for sign
and noise result in different likelihood and objective fun
tions.

I. EVALUATION OF A POSTERIORI DISTRIBUTIONS

Due to multidimensionality, oftenM.10, thea poste-
riori distribution is not susceptible to graphic display, a
mainly integral properties of the distribution are of intere
From thea posteriori probability distribution, information
will be extracted to describe the solution. The followin
quantities are of interest: the MAP solutionm̂MAP where

m̂MAP[arg max
mPM

s~m!, ~2!

the expectationEs@m# where

Es@m#[E
M

ms~m!dm, ~3!

where dm5dm1
¯dmM, the covariance matrixCovs@m#

where

Covs@m#[Es$@m2Es~m!#@m2Es~m!#T%, ~4!

the one-dimensional~1D! marginala posteriori probability
densitiess i(mi) for parametermi

s i~mi ![E s~m!dm1
¯dmi 21dmi 11

¯dmM, ~5!

and higher dimensional marginals are defined similarly
Eq. ~5!. The marginal distributions are the most important
interpreting the inverse result.

A. Integration of a posteriori distributions

For solving the inverse problem, Eq.~2!, global optimi-
zation methods such as simulated annealing and geneti
gorithms have been used. However, in order to characte
the solution by Eqs.~3!–~5! the multidimensional integration
must be carried out. The evaluation of these integrals
been addressed in Refs. 10 and 11 for the similar geophy
inversion problem. They suggested and evaluated the foll
ing three methods for estimation of the integral.
809 J. Acoust. Soc. Am., Vol. 104, No. 2, Pt. 1, August 1998 P.
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1. Numerical integration (grid search)

Although the most precise and direct method, numeri
integration is extremely computationally intensive forM pa-
rameters each discretized tok values. It requireskM forward
model evaluations. Fork5100 andM510, this is a prohibi-
tively large number 1020, as for each of these points, a fo
ward model that takes about one CPU-second must be ev
ated. This approach is practical only for a very small num
of parameters, e.g.,M<4.

2. Monte Carlo integration

In Monte Carlo integration the integration points are s
lected at random from a uniform distribution. It is not ne
essary to evaluate the integral at all points as in a grid sea
In contrast to classical computing methods, the efficiency
Monte Carlo integration depends only weakly on the dime
sion and geometric details of the problem. Thus even
high dimensions,M , and complicated boundaries of the p
rameter setM, the numerical effort remains moderate. T
integral is evaluated at randomly selected points from a u
form distribution. The disadvantage is that many of the
points will be located in areas contributing little to the int
gral.

3. Importance sampling

In importance sampling, some knowledge about the
tegrand is exploited such that a nonuniform distribution
used for generating the integration points. Most of the fu
tion evaluations are concentrated in areas which contrib
significantly to the integral instead of distributing the poin
evenly. The integrals can be evaluated using fewer forw
models at a reduced variance of the estimated integral.
model spaceM is sampled nonuniformly according to
generating distributiong. The integrand is evaluated only a
these sample points. Both GA and SA use a generating
tribution to select the next point in the model space.

Consider the evaluation of the multidimension
integral,18

u5E
M

f ~m!s~m!dm[Es@ f ~m!#, ~6!

wheref s represents any of the integrands given in Eqs.~3!–
~5!. The integral is estimated by the weighted arithme
mean usingNobs independent identical distributed~i.i.d.!
samplesm1 ,m2 ,...,mNobs

from the distributiong(m),

û5
1

Nobs
(
i 51

Nobs f ~mi !s~mi !

g~mi !
. ~7!

It can be shown, Appendix A and Ref. 18, that the varian
of û is minimized if the generating distribution is selected

gMV~m!5
u f ~m!us~m!

*Mu f ~m!us~m!dm
. ~8!

Thus in order to reduce the variance, the generating distr
tion should be selected proportional tou f us. In practical
cases, this optimal solution cannot be select due to com
cated behavior ofu f us. Further, if the integrand is knowna
809Gerstoft and C. F. Mecklenbräuker: Ocean acoustic inversion
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priori then there is no reason for estimating it. However, i
expected that selections ofg which are ‘‘close’’ togMV will
give satisfactory performance.

If the integral is evaluated using a generating distrib
tion g(m) without correcting forg(m) in the denominator, it
is seen from Eq.~A1! that the estimate will be biased. Sinc
global estimation methods concentrate most of their num
cal effort around the optimal values, they will tend to ove
estimate parts of the integral for these regions unless sp
bias corrections are introduced. This will result in an u
known error in the estimates.

Global optimization methods use a generating distri
tion for selecting the next model vector. This distributio
will in general change as the optimization evolves. Thus th
are carrying out importance sampling, but with an unkno
generating distribution. For SA at a constant temperatureT it
can be shown that after a large number of iterations the s
pling distribution is proportional to exp(2f(m)/T). For
more details see Ref. 10 and Sec. I B.

When the MAP solution Eq.~2! is found using SA or
GA, a large numberNobs of candidate solutionsmi ( i
51,...,Nobs) are drawn at random from the model setM. By
using the values of the objective function at these sam
points mi , importance sampling can be used in evaluat
the integrals Eqs.~3!–~5!. When using GA or SA with fast
cooling ~as usual!, the precise distribution of the samples
not known. It should also be made clear that the genera
distribution is related in a nonlinear fashion~through GA or
SA! to the objective function and not to the preferred dis
bution u f us5u f uLr. This is not considered a problem a
both u f u andr are much smoother thanL and the objective
function is related toL.

For the Nobs observations, thea posteriori probability
for the kth model vector is estimated by

ŝ~mk!5
L~mk!r~mk!

( j 51
NobsL~mj !r~mj !

. ~9!

For the i th parametermi in the model vector the mar
ginal probability distribution for obtaining the particula
valuek can be found by summing Eq.~9!:

ŝ i~k!5 (
k51

Nobs

ŝ~mk!d~mk
i 2k!, ~10!

whered is the delta function. In the particular implement
tion, several independent GA searches are carried out in
allel. It is found for several parallel runs that saving the l
obtained model vectors in a population suffices in each of
parallel runs.12

When displaying the marginal probability distribution
Eq. ~5!, they are all scaled so that the areas under each c
are one when the search interval is scaled from 0 to 1. T
dictates they axis and all plots from the same inversion ha
the samey axis, there is no scale on they axis as it is mostly
used for comparisons. With this choice of scaling the dis
butions depend on the search interval for each paramete
810 J. Acoust. Soc. Am., Vol. 104, No. 2, Pt. 1, August 1998 P.
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B. Comparison to previous probability estimates

Previously,12 the a posteriori distributions were esti-
mated based on a semiempirical approach. Knowing that
likelihood function is usually related to the objective fun
tion f~m! through an exponentialL5exp(2f(m)/ n̂) ~Ref.
6, cf. Appendix B!, wheren̂ is the estimated noise power, th
following scaling was used:

Lemp~m!5exp~2@f~m!2f~m0!#/T!, ~11!

wheref is any objective function andm0 is the estimated
parameter vector, corresponding to the optimal value of
objective function.T is the ‘‘temperature.’’ Experimentally
it was found that a good value forT was the average of the
50 best objective functions obtained during the optimizati
minus the best value of the objective function. It should
noted that this value ofT is not intended to estimate th
noise, but to produce a reasonable value with which to e
mate the uncertainties of the parameters. The advantag
this scheme is that it works irrespective of the stocha
model for the data or likelihood function used. But for mu
tifrequency inversions it is not suitable as different distrib
tions cannot be directly compared. In this case, a likeliho
baseda posteriori density, Eqs.~1! and ~3!–~5! give better
results.

C. Computational procedure

Depending on the model used for the error or noise d
tribution of the data, a specific likelihood function resul
Prior knowledge about the error distribution is required. Us
ally this is not completely available and some simple a
reasonable approximations must be used. Two special c
are considered for multifrequency vertical array data. T
noise distribution on each hydrophone is assumed com
Gaussian and zero mean. First, in Sec. I C 1 it is assum
that the noise is independent on eachhydrophoneand sec-
ond, in Sec. 1 C 2 it is assumed independent for eachsignifi-
cant mode.

Often, a distinction is made between errors due to no
in the data and errors due to an incomplete forward mo
because neither the theory nor the environmental mode
adequate. If both error types belong to the same distribut
there is no reason to consider them separately.19 Here only
one error term is considered.

Recently, there has been progress in describing both
rors using Kriging.20 Both noise and modeling errors ar
assumed zero-mean Gaussian and are independent. The
eling errors are assumed to possess a given correlation s
ture depending on the ‘‘distance’’ between two environme
tal models. This correlation structure is chosen empirica
Clearly, the same values of the model parameters corresp
to the same values of the model errors.

1. Multifrequency matched field processing

The relation between the observed complex-valued d
vectorq(v l) on anN-element hydrophone antenna array a
the predicted datap(m,v l) at an angular frequencyv l is
described by the model

q~v l !5p~m,v l !1e~v l !, ~12!
810Gerstoft and C. F. Mecklenbräuker: Ocean acoustic inversion
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wheree(v l) is the error term. The predicted data is given
p(m,v l)5w(m,v l)S(v l), where the complex deterministi
source term S(v l) is unknown. The transfer function
w(m,v l) is obtained using an acoustic propagation mo
and an environmental modelm.21

The errors are assumed to be additive, they stem f
many sources: errors in describing the environment, error
the forward model, instrument and measurements errors,
noise in the data. For the predicted acoustic field ‘‘reas
ably close’’ to the true field, this error term is assumed co
plex Gaussian distributed, stationary with zero mean and
agonal covariance matrixn(v l)I , where the error powe
spectrumn is unknown. Thus the dataq(v l) on the receiving
array are also complex Gaussian distributed with m
p(v l ,m) and the covariance matrixn(v l)I . For the deriva-
tion of a maximum-likelihood estimate, it is further assum
that the data are uncorrelated across frequency and time.
source termS(v l) varies across time snapshots whereas
error power spectral densityn(v l) is constant. In the follow-
ing, ql5q(v l), etc., is abbreviated, where$v l u l 51,...,L% is
the processed frequencies. Under the above assumption
covariance matrix Rl5E@qlql

†#5pl(m)pl
†(m)1n l I . The

likelihood function22 becomes

L~m!})
l 51

L
1

n l
N expS 2

f l~m!

n l
D , ~13!

where~the dagger refers to the Hermitian transpose and ‘‘
is the trace operation!

f l~m!5tr R̂l2
wl

†~m!R̂lwl~m!

wl
†~m!wl~m!

. ~14!

Optimization forn l yields the closed form ML solution

n̂ l5
1

N
f l~m!. ~15!

The N3N Hermitian matrixR̂l denotes the estimated cros
spectral density matrix of the observed data in ‘‘phon
space,’’ see Sec. 1 C 3. With these definitions the l
likelihood function is

loguL~m!u} logF)
l 51

L

f l
2N~m!NN exp~2N!G}2 log@f~m!# ,

~16!

where the ML-objective functionf~m! to be minimized is

f~m!5)
l 51

L

f l~m!5)
l 51

L S tr R̂l2
wl

†~m!R̂lwl~m!

wl
†~m!wl~m!

D .

~17!

For details, see Appendix B. Using a global optimizati
procedure, the minimumf̂ML for the ML solution m̂ML is
estimated. The estimate, Eq.~15!, is biased. The bias stem
from the degrees of freedom in the estimated parame
source signalS and nonlinear parametersm.23 For simplicity
this bias is neglected here. The noise power spectral den
is estimated, Eq.~15!, n̂ l

ML51/Nf l(m̂
ML), and the likelihood

function is given by
811 J. Acoust. Soc. Am., Vol. 104, No. 2, Pt. 1, August 1998 P.
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L~m!5p~muq!})
l 51

L

~ n̂ l
ML !2N expS 2

f l~m!

n̂ l
ML D

})
l 51

L

expS 2N
f l~m!2f̂ l

ML

f̂ l
ML D . ~18!

The problem, as addressed above, is then to integ
this multidimensional probability distribution. Often this in
tegral can be evaluated with sufficient accuracy using
information from the global search. In some cases it might
necessary to increase the sampling of the model spac
order to obtain convergence.

The likelihood function, Eq.~18!, has a stronger maxi
mum when more hydrophones are used. When inverting
served data, there is a limit to how much useful informati
can be obtained by adding additional hydrophones, as t
then become strongly correlated. At high signal-to-noise
tio ~SNR! it is expected that the main error contribution
due to inadequate forward modeling. Further, the numbe
uncorrelated hydrophones is approximately the same as
number of propagating modes, because this limits the
grees of freedom in the random part of the acoustic w
field. The number of uncorrelated hydrophones is estima
as the rank of the covariance matrix.

2. Multifrequency matched mode processing

Normal modes provide a complete description of t
field at long ranges, and thus one can equivalently proc
the data in the phone-space or in the modal-space.
matched mode approach is described by Tolstoy,24 Hinich,25

and Shang.26 Modal processing is discussed here as an al
native noise estimate when there are more hydrophones
propagating modes.

The observed field ofN sensors is assumed approx
mately expressed via a set ofJ significantnormal modes,
expressed in a N3J matrix V(v l ,m)
5@v1(v l ,m),...,vJ(v l ,m)#. The typical vectorvj (m) con-
tains spatial samples of thej th normal mode at the receive
array locations. The set of normal modes will be determin
based on the environment. The corresponding complex
ued modal amplitudes~the breve refers to the mode-spac!
q̆(v)5(q̆1 ,...,q̆J)8.

q~v l !'(
j 51

J

vj~v l ,m!q̆ j5V~v l ,m!q̆~v!. ~19!

There should be more hydrophones than modes,N.K. This
relationship can be inverted in a least-squares sense an
timates the vector of modal amplitudesq̆l5q̆(v l) in the
mode-space from the observationql5q(v l) in phone-space.

q̆l5@V l
†~m!V l~m!#21V l

†~m!ql . ~20!

Note that the modesV l(m) and thus modal amplitudes de
pend on the environment. When optimizing the environm
m the modal amplitudes will change with the environmen

A simple relationship between the observed modal a
plitudes q̆l and synthetic generated modal amplitudes is
sumed
811Gerstoft and C. F. Mecklenbräuker: Ocean acoustic inversion
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q̆l5p̆l~m!1ĕl~m!, ~21!

wherep̆l(m)5Slw̆l(m) is the complex-valued modal ampl
tudes of the synthetic data andĕl represents the error term fo
each mode. It is assumed that the noise covariance matr
diagonal for theJ significant modes and the noise powern̆ is
identical for allJ modes. Using a similar approach to that
Sec. 1 C 1, the objective function is

f̆ l~m!5tr R
ˆ̆

l2
w̆l

†~m!R
ˆ̆

lw̆l~m!

w̆l
†~m!w̆l~m!

, ~22!

whereR
ˆ̆

l is the estimated covariance matrix of the mod
But using the expression for the modes, Eq.~19!, the objec-
tive function in mode-space, Eq.~22!, is seen to be equiva
lent to the objective function in phone-space, i.e., Eq.~14!
expressed in the phone-space

f̆ l~m!'f l~m!. ~23!

The noise estimate is obtained using the approximation
Eq. ~19!,

n̆̂ l5
1

J
f
ˆ̆

l
ML'

1

J
f̂ l

ML . ~24!

The likelihood function becomes

L~m!5p~muq!})
l 51

L

~ n̆̂ l
ML !2J expS 2

f̆ l~m!

n̆̂ l
MD D

})
l 51

L

expS 2J
f l~m!2f̂ l

ML

f̂ l
ML D . ~25!

The advantage of this formulation is that it does n
depend directly on the number of hydrophones, but only
the number of propagating modes. For many hydropho
(N@J) this likelihood function seems more realistic. A fo
mal definition forJ is not yet clear. In either case,J is less or
equal to the number of propagating modes. For simplicityJ
is assumed to be independent of frequency. Only the ob
tive function is affected by the choice ofJ. All the propa-
gating modes are incorporated in the forward model.

3. Estimation of the covariance matrix

In order to estimate the covariance matrixRl , the re-
ceived time signal is divided intoK time frames. Each frame
was short-time Fourier transformed using the multip
windows technique described in Refs. 27 and 28,

qk,p~v!5 (
t50

T21

n t
pq~ t1kT!e2 j vt, for H k50,...,K21

p50,...,P21 ,
~26!

wherenp is a special set ofP orthonormal data tapers.27,28

The correlation matrixR was estimated at each selected f
quencyv l as the ensemble average

R̂~v l !5
1

KP (
k50

K21

(
p50

P21

qk,p~v l !qk,p
† ~v l !. ~27!
812 J. Acoust. Soc. Am., Vol. 104, No. 2, Pt. 1, August 1998 P.
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In order to obtain a good estimation of the noise, it is
quired thatKP@N, whereN is the number of hydrophones
In order to ‘‘just’’ estimate the signal and the unknown p
rametersm, the number of averagesKP can be much smalle
for a received signal with sufficient SNR. In this paper, t
evaluation of the inversion accuracy is addressed. There
modeling errors inp~m,v! and additive noise must be distin
guished. This implies the necessity of a stable noise estim
~27!, and thus a larger number of averages than if only
rameter estimatesm& are needed.

D. Including the a priori probability distribution

Usually, when solving inverse problems, the question
‘‘What is the environmental model for this given data set
This is normally an ill-posed question. A better question
‘‘What can be inferred from the data about the environme
tal model given some environmental information?’’ Th
somea priori information should be included in the invers
problem.A priori information is always used in global inver
sion schemes. The model structure is selected baseda
priori knowledge and uniforma priori distributions are used
between the minimum and maximum bounds for the para
eters.

One possibility is to include thea priori model in the
objective function, e.g., Refs. 6 and 29. This has the dis
vantage that the distribution must be known explicitly. F
Gaussiana priori distribution the objective function consist
of two terms, one measuring the match between obser
and synthetic data and the second penalizing the devia
from thea priori model. This approach is used in linearize
inversions in order to regularize the solution.

Here a simple approach is used: the obtained likeliho
function is multiplied with thea priori distribution, accord-
ing to Eq.~1!. This distribution can be arbitrary, for exampl
a smoothed distribution obtained from inversion of oth
data. For illustration in Sec. II A 3 a simple triangular dist
bution is used:

r~mi !}H ~mi2mu
i !/~mm

i 2mu
i !,

~mi2ml
i !/~mm

i 2ml
i !,

0, otherwise,

for mm
i ,mi,mu

i

for ml
i,mi,mm

i

~28!

whereml
i,mm

i ,mu
i are the abscissa of lower bound, max

mum, and upper bound of thea priori distribution, respec-
tively.

A priori information is also used in the parametrizatio
of the forward model. The choices made when doing t
have a significant influence on the inverse solution, proba
more than includinga priori information for each parameter
In discretizing the environment, the physics should be ca
fully considered and described efficiently. Shape function30

are a useful method to obtain an efficient description wh
provides a mapping between the environmental model
the numerical forward model. This could, for example,
used to limit the search to only positive gradients in t
sediment, or to obtain a more efficient description of t
environment~see the example in Sec. II A 3!.

It is assumed for simplicity that there is a vanishin
correlation between thea priori distributions of the indi-
812Gerstoft and C. F. Mecklenbräuker: Ocean acoustic inversion
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vidual parameters. Thusr(m)5r1(m1)r2(m2)¯ . Al-
though for correlated parameters, the model search ca
limited using a correlateda priori distribution, this approach
appears unpractical and, instead, shape functions are use
mapping correlated model vectors to a new representa
with lower correlation.

II. EXAMPLES

The examples illustrate the integration of thea poste-
riori distributions and how phone-space and mode-sp
based likelihood functions affect the estimates. Only in S
II A 3, a nonuniforma priori distribution is used.

The objective function Eq.~17! was optimized and the
SNAP normal mode code21 was used as a forward model. F
likelihood functions, either the empirical, the multifrequen
matched field, or the multifrequency matched mode mod
are used. The GA parameters were as in Refs. 12 and 31
reproduction rate was 0.5, the permutation probability w
0.05, and the crossover rate was 0.8.

A. SSP-mismatch case

This case corresponds to the sound-speed mism
from the 1993 Matched field workshop,32 Fig. 1. It is based
on a synthetic data set from a normal-mode code usin
250-Hz source in shallow water. The data are received on
20 hydrophones spanning the entire water column. W
Gaussian noise was added to the data vectors to obta
SNR of either 40 or 10 dB.32 This corresponds precisely t
the likelihood function developed in Sec. I C 1.

Only four parameters are unknown in this case;
source range and depth and the ocean sound speed at th
and the bottom. Each of the parameters can assume 51
crete values. For an exhaustive search this requires eva
tion of 514573106 forward models. It took 5 days of CPU
time on a DEC-Alpha 500/266 to evaluate all models. F
the genetic algorithm 43104 forward models were evaluate
in half an hour of CPU time.

1. Without a priori information

A uniform a priori distribution is assumed. To displa
the marginal distribution, the integral, Eq.~5!, is evaluated.
When using an exhaustive search, i.e., evaluating each p
in the integration corresponding to Sec. I A 1, the res

FIG. 1. The environment for the sspmis case. The source coordinate
~9.3 km, 78 m! for SNR540 dB and~9.6 km, 82 m! for SNR510 dB.
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of this integration is shown in Figs. 2~a! and 3~a!. In gener-
ating these plots, the noise was assumed to be unknown

When carrying out the optimization bySAGA,31 20 par-
allel runs, each sampling 2000 models with a population s
of 64 were used. One result is the ML estimate of parame
which corresponds to the best obtained fit.

During this optimization the last population~64 indi-
viduals! in each of the 20 runs is saved in order to estim
the integrals. Thus the estimation of the integral is based
2036451280 model vectors. It is seen in Figs. 2~b! and 3~b!
that the evaluation of the integral resembles the distributi
obtained when evaluating the integrals based on an exh
tive search. The use of all the GA-evaluated forward mod
(2032000543104) in the evaluation of the integral did no
have any effect. For practical reasons, it is preferred to b
the evaluated integral on the last population in each run.

Note that for both SNR540 and 10 dB the source rang
and depth are estimated quite accurately, whereas for m
noise, the ability to resolve the sound-speed parameter
lost when the SNR is relaxed to 10 dB. The reason for t
poor resolution of the parameters is due to a strong corr
tion between the ocean sound speed at the bottom with
at the top; see Fig. 4, where the two-dimensional marg

are

FIG. 2. The estimateda posterioridistribution for a SNR of 40 dB for the
sspmis case.~a! using numerical integration,~b! using importance sampling
813Gerstoft and C. F. Mecklenbräuker: Ocean acoustic inversion
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izing
distribution is shown. From this figure it is clear that a bet
parametrization would be the mean sound speed and the
dient of the sound speed, as indicated in the figure and
discussed in Ref. 12. The difference in ambiguity for t
sound speeds estimated at SNR of 40 dB~Fig. 2! and 10 dB
~Fig. 3! is due to the fact that at 40 dB, slope and me
sound speed are well resolved, whereas at 10 dB SNR
the slope is well resolved.

2. Optimizing coupled parameters

Coupled parameters usually render an optimizat
problem slightly more difficult. Parameter coupling has be
observed by several researchers.12,33–35Coupling can be de-
tected by plotting either the ambiguity function or, altern
tively, the 2-D marginala posteriori distribution of the pa-
rameters. The advantage of the second approach is th
provides an integrated~global! value across the remainin
parameters. However, both approaches have limitat
when several parameters are strongly coupled.

For a gradient method coupled parameters do not po
major problem. A difficulty with gradient methods is th
numerical computation of the gradient. When using fin

FIG. 3. The estimateda posteriori distribution for a SNR510 dB for the
sspmis case.~a! Using numerical integration,~b! using importance sam-
pling.
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differences for computing, the gradient methods tend to
unstable due to a too small or large step size. Fortunatel
is possible to compute the gradient analytically for a wa
number integration approach30 and for a normal-mode
approach.36,37

Some global search methods additionally exploit gra
ent information. In ocean acoustics this has been proven
cessful in Refs. 30 and 34. In Ref. 30, the optimization i
hybrid method combining the global genetic algorithm~GA!
with the local Gauss–Newton method. This is implemen
by taking several gradient steps between each update o
object function for each individual in the GA population
This approach is quite general but requires a careful anal
of the gradient computation, which was done analytically~in
order to avoid huge numerical errors!. In Ref. 34, a param-
eter rotation approach was suggested. The eigenvector
the a priori second moment of the objective function grad
ent define the transformation for rotating the parame
space. The second moment is defined by implicitly assign
a uniforma priori density to the parameters. The comput
eigenvectors provide some insight into the geometry of
rameter space. After reparametrization, the search proc
using SA. This approach is efficient if the parameter spac
characterized by a few local minima with prominent featu
in one direction. In cases where the gradient informat
averages out, this will not provide an improvement. Su
cases include circular shaped valleys, landscapes with
eral valleys, or landscapes with several valleys, or landsca
that are hilly without trend.

3. Including the a priori distribution

A priori knowledge is incorporated using Eq.~28! and
based on the former example. In this case thea priori knowl-
edge has a maximum at the true value. Initially only pr
information of the top sound speed is used, Fig. 5~b!. It is
seen that this increases the peak of both the upper and lo

FIG. 4. The estimated marginal 2-Da posteriori distribution between the
upper and lower ocean sound speed using a full search for a SNR of 10
It is based on the same data as Fig. 3~a!. The marginal 1-D distribution for
each parameter is displayed on the top and to the right. By reparametr
the sound speed as slope and mean a better resolution is obtained.
814Gerstoft and C. F. Mecklenbräuker: Ocean acoustic inversion
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sound-speed point. This is becausea priori knowledge is
multiplied on the fulla posteriori distribution. When using
prior information for the lower and upper sound speed,
peak in the distribution becomes more pronounced, Fig. 5~b!.
It is clear that wrong prior information must bias the es
mate.

Prior information about the environment, i.e., measu
sound speeds, and the main parameters in terms of
search interval is important for obtaining good inversion
sults. Incorporation of smootha priori distributions such as
Eq. ~28! does not seem significant, as thea posterioridistri-
bution does not change much.

B. Yellow Shark data

This example is based on theSACLANTCEN Yellow
Shark 94~YS-94! experiment. YS-94 was a carefully de
signed major experiment in shallow water~100 m! south of
Elba in the Mediterranian Sea. A fixed source–receiver
ometry was used and a comprehensive environmental
set was available: Sea surface temperature, sea surface
tion, currents, 2D temperature/salinity structure alo
transect, cores, and high resolution seismics. For a deta
description see Ref. 38. In the data used here the source
located at a 9-km range from a vertical array extending
complete depth of the water column, it transmitted energ
7 frequencies: 200, 250, 315, 400, 500, 630, and 800 Hz.

FIG. 5. The estimateda posterioridistribution using GA for SNR510 dB.
Only the two sound-speed parameters are displayed.~a!: no a priori infor-
mation is used@similar to Fig. 3~b!# in ~b! a priori knowledge~grey area!
about the top sound speed is included and in~c! a priori knowledge~grey
area! about both top and bottom sound speeds are included. The usea
priori knowledge has sharpened the peaks marginally.
815 J. Acoust. Soc. Am., Vol. 104, No. 2, Pt. 1, August 1998 P.
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vertical array consisted of 32 hydrophones. The SNR w
estimated to about 30 dB.38 The environment is shown in
Fig. 6. The covariance matrix estimate was based onK
517 time frames andP54 orthogonal windows, as de
scribed in Sec. 1 C 3.

1. Single frequency

First it will be discussed how thea posteriori distribu-
tion is constructed. This was done from a theoretical poin
view in Sec. I, but here a more practical approach is taken
~a! discussing of the convergence of the objective functi
~b! constructing the likelihood function from the objectiv
function and,~c! construction ofa posteriori distribution
from the likelihood function.

To investigate the above, a single frequency invers
for the model in Fig. 6 is performed as it is much faster th
the more accurate broadband inversion. The unknown pa
the environment is represented by either 5, 7, or 10 par
eters, as indicated in Table I. Clearly, which parameter s
are found depends on the number of iterations in a sea
The search is performed with either 5000 forward model
runs ~split into ten independent populations each with 5

f

FIG. 6. ysmodels. The baseline environmental model used in the invers
of the YS-94 data Ref. 38.

TABLE I. Parameter search bound for the YS-94 case. Each parameter
discretized into 64 values. The 5, 7, and 10 parameters refers to the nu
of parameters used in the inversion. The bottom sound-speed profile
modeled using the increase from the previous sound-speed point, as is
mon inSAGA. The receiver depth is the depth of the deepest hydrophone,
controls the vertical position of the entire vertical array in the water colum

Parameter Lower Upper

5, 7, and 10 parameters:
Source range~m! 7 11
Source depth~m! 65 75
Tilt ~m! 23 3
Water depth~m! 110 118
Receiver depth~m! 96 104

7 and 10 parameters:
Bottom sound speed at interface~m/s! 1460 1500
Bottom sound-speed increase at 5 m~m/s! 10 50

10 parameters:
Bottom sound-speed increase at 10 m~m/s! 10 50
Bottom sound-speed increase at 20 m~m/s! 10 50
Bottom attenuation~dB/l! 0 0.4
815Gerstoft and C. F. Mecklenbräuker: Ocean acoustic inversion
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forward modeling runs@103500#), 40 000 forward model-
ing runs @2032000#, or 400 000 forward modeling runs
@20032000#.

In Fig. 7 the sorted values of the objective function ar
displayed for the best models. The best models are the o
that gave the lowest value of the objective function. It is see
that for ten parameters we obtain a lower value of the obje
tive function than when using seven or five parameter
Clearly, if more free parameters are available it is possible
obtain a better fit. The curve with ten parameters gives th
best fit. Whether this improved fit is significant or whethe
the extra parameters are just fitting additive noise can b
tested.39 When using more forward modeling runs, more
samples with a high degree of fit are obtained, as can be se
by comparing the curves for 5000, 40 000, and 400 000 fo
ward modeling runs in Fig. 7.

Based on these values, the likelihood function~weighted
fitness! is computed for each of these models, see Fig. 8. It
seen from Eqs.~15! and~18! that the noise estimate depends
on the best estimated value of the objective function an
therefore, the value of the likelihood function depends on th
search. If this best value is much better that the other val
found during the optimization, the likelihood function, Eq.
~18!, will decrease quite rapidly~compare the curve for five
parameters with those for ten parameters!. How fast the
curve decreases also depends on the number of modes u
in the objective function. Note that even though the objectiv
function assumes only a few modes the forward model a
ways includes all propagating modes.

Based on the weighted fitness, as displayed in Fig. 8, t
integrals for the marginal distributions, Eq.~5!, are esti-
mated. It was found that when using the noise estimate, E
~15!, with the likelihood function, Eq.~18!, to estimate thea
posteriori distribution that the distributions became single
peaked. This is probably due to an underestimation of th

FIG. 7. Sorted values of the objective function, Eq.~17!, for the best esti-
mated models for each optimization. The best models are the ones that g
the lowest value of the objective function. Solid lines: The best values of th
objective function based on either 43105, 43104, or 53103 evaluations of
the forward model with ten unknown parameters. Dashed line: based
400 000 evaluations with seven unknown parameters. Dotted line: based
400 000 evaluations with five unknown parameters.
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noise, because the data on each hydrophone is correlated
long-range propagation, the pressure field can be descr
as a sum of modes. Thus it is expected that the denomin
in Eq. ~15! should express the number of propagating mod
see Eq.~24!.

Both the semiempirical weighting and the ML weightin
using five modes in the noise estimate and estimating
parameters when 400 000 forward models is used, are sh
in Fig. 9~a! and ~b! when 400 000 forward models are use
in the optimization. It should be noted that the objecti
function as well as the samples used in the estimation of
objective function are identical for both methods. Thus t
difference in the plot is entirely due to different weighting
the objective function when constructing thea posterioridis-
tributions. Intuitively, the empirical estimates appear to ov
estimate the resolution, whereas the ML gives a more rea
tic estimate of the peak. The empirical estimates of
variance depend on the number of forward modeling ru
The variance will not be as small if a smaller number
forward modeling runs was used during the optimization.

For the results of the optimization with 5 parameters
is seen that the parameter estimate of the source d
reaches the upper bound. This indicates that the optimiza
has not performed well, probably because the environm
has not been well described. When using nine paramete
is seen that the source depth becomes more stable. Again
seen that the empirical weighting gives a more optimis
estimate of the uncertainties.

Comparing the likelihood based results with five or ni
parameters@Fig. 9~b! and~d!#, it is seen that the spread of th
distributions is about the same. The estimated parame
are, however, not the same; due to additional parameters
the nine parameter problem. As only one frequency is u
in the optimization, more stability is probably obtained b
increasing the number of frequencies.

ave
e

on
on

FIG. 8. Sorted values of likelihood functions using either an empirical,
~11!, a phone-based, Eq.~18!, or a mode-based, Eq.~25! with J55, likeli-
hood function. Solid lines: Based on 43105 forward model evaluations and
estimation of ten parameters with either empirical, phone-based, or m
based likelihood function. The dashed line is based on 43104 forward
model evaluations and estimation of ten parameters and mode-based
hood function. The dotted line is based on 43105 forward model evalua-
tions, estimation of five parameters and mode-based likelihood function
816Gerstoft and C. F. Mecklenbräuker: Ocean acoustic inversion
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2. Multifrequency

By using observations at more frequencies, more inf
mation is used and thus a more robust estimation of
underlying parameters is usually obtained. In order to app
ciate the value of more frequency observations it is esse
to use the ML approach rather than the empirical appro
~Sec. I B!. The additional information that is gained from
using more data is not reflected in the empirically bas
probability distributions, and thus it cannot be used to stu
convergence of solutions. The inversion is carried out us
the four data models with increasing information:

~1! one frequency at 400 Hz;
~2! three frequencies at 200, 400, and 800 Hz;
~3! five frequencies at 400, 315, 400, 500, and 800 Hz;
~4! seven frequencies at 400, 250, 315, 400, 500, 630,

800 Hz.

The corresponding distributions are shown in Fig. 10.
general, as more frequencies are used, the solution seem
converge and the spread of the distributions decreases.
exception is the estimation of receiver depth for one f
quency. However, it is clustered at one bound indicating t
a solution outside the search bound is preferable. Incohe
averaging over frequency is especially effective if one or t
octaves of signal bandwidth are available.

FIG. 9. The estimateda posterioridistribution for a search of five or nine
parameters.~a! Five parameters, empirical posteriori;~b! five parameters,
likelihood based posteriori;~c! nine parameters, empirical posteriori;~d!
nine parameters, likelihood based posteriori. Only four parameters
shown in the plot as the fifth parameter was not that well determined.
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III. CONCLUSIONS

A precise formulation has been given for estimating t
a posteriori distribution of environmental parameters r
trieved from an ocean acoustic experiment. From these
tributions, all information about the parameters can be
tracted, as mean, higher moments, and marg
distributions. Numerical evaluation of multidimensional i
tegrals overa posteriori distributions is required. These in
tegrals can be numerically estimated using samples from
bal optimization methods. The method is based
importance sampling and requires no additional evaluation
the objective function at the expense of~negligible! bias.

The maximum-likelihood solution to an inversion pro
lem does not provide an estimate of final parameter un
tainty. The likelihood baseda posterioridistribution shows,
however, the improvement in performance when using m
frequencies, or differences when using a near or far array
precise knowledge about the likelihood function is often u
available for practical problems, the empirical formulatio
might be preferable, although uncertainty estimates are
accurate.

It is well known that SA and GA have superior perfo
mance for ocean geo-acoustic parameter estimations ove
cal deterministic solution strategies due to the large num
of secondary local optima of the objective function. No
uncertainty studies can also be enhanced by a global
proach.

The examples illustrate the use of this approach
simulated and real data on a vertical array. Array geometr

re

FIG. 10. The estimateda posteriori distribution for the YS-94 data. The
noise has been estimated using five modes.
817Gerstoft and C. F. Mecklenbräuker: Ocean acoustic inversion
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arbitrary to the approach and both frequency and time
main data can be used.

APPENDIX A: OPTIMAL IMPORTANCE SAMPLING

Consider the evaluation of the multidimensional integ
Eq. ~6!. First, the integral is rewritten as an expectation

u5E
M

f ~m!s~m!

g~m!
g~m!dm[EgF f ~M !s~M !

g~M ! G , ~A1!

where the random parameter vectorM is selected from the
generating distributiong. This expectation is estimated b
the arithmetic meanû from Eq.~7!. The variance is given by

Vargû5FEgS f 2~M !s2~M !

g2~M ! D2u2G Y Nobs. ~A2!

Notice that the variance decreases asO(Nobs
21) with increas-

ing number of samplesNobs. Using a variational procedur
~with the constraint thatg be a probability density! it can be
shown that this variance is minimized for

gMV~m!5
u f ~m!us~m!

*Mu f ~m!us~m!dm
. ~A3!

APPENDIX B: MATCHED FIELD LIKELIHOOD

Starting from Eq.~12! and using the Gaussianity o
e(v l) as stated in Sec. I C 1, the probability density~for a
single time frameK51) given the signalSl and the noise
power spectral densityn l is given by

L1~m,S,n!5)
l 51

L

~pn l !
2N expF2

uql2wl~m!Sl u2

n l
G .
~B1!

Errors e1 , e2 at differing frequenciesv1Þv2 are assumed
uncorrelated. For large observation times it is a good
proximation for the noise in the data~but might be violated
for deterministic modeling errors, cf. Sec. I C!. Measurement
dataql ,k from multiple time framesk51,...,K is incorporated
by multiplying the corresponding probability densities~B1!
for each single time frame. This gives

L15)
k51

K

)
l 51

L

~pn l !
2N expF2

uql ,k2wl~m!Sl ,ku2

n l
G .

~B2!

The ML estimatem̂ML for m is obtained by jointly maximiz-
ing over the signal and noise parameters (Sl ,k ,n l; l ,k) and
the model parameter vectorm. The maximization w.r.t.Sl ,k

is obtained by requiring]L1 /]Sl ,k50 in closed form:Ŝl ,k

5wl
†(m)ql ,k /uwl(m)u2. It is seen thatŜl ,k depends onm but

not onn. Inserting this into~B1! yields

L2~m,n!5)
l 51

L

~pn l !
2NK expF2

f l~m!

n l
G ~B3!

with

f l5tr R̂l2
wl

†~m!R̂lwl~m!

wl
†~m!wl~m!

. ~B4!
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Optimizing w.r.t.n l yields

n̂ l
ML5

1

N
f l . ~B5!

This gives

L3~m!5S NK

epKD NLS 1

f~m! D
N

. ~B6!

The ML solutionm̂ML is obtained by maximizingL3 over
all mPM. Finally, an estimate for the noise power spect
density ~which is assumed independent ofm! is obtained
from Eq. ~B5! and the ML solutionn̂ l

ML at m̂ML into the
likelihood function, Eq.~B3!. From now on, we consider th
noise spectral density as known and only keep the free a
mentm of the objective functionf l . This approach leads to

L~m!5)
l 51

L

~pn̂ l
ML !2N expF2

f l~m!

n̂ l
MD G , ~B7!

which results in the definition of Eq.~18!.

1N. Metropolis and S. Ulam, ‘‘The Monte Carlo method,’’ J. Am. Sta
Assoc.44, 335–341~1948!.

2N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
Teller, ‘‘Equation of states done by fast computing machines,’’ J. Che
Phys.1, 1087–1092~1953!.

3Y. Bard, Nonlinear Parameter Estimation~Academic, San Diego, 1974!.
4W. Menke, Geophysical Data Analysis: Discrete Inverse Theory~Aca-
demic, San Diego, 1989!.

5S. D. Rajan, J. F. Lynch, and G. V. Frisk, ‘‘Perturbative inversion me
ods for obtaining bottom geoacoustic parameters in shallow water,
Acoust. Soc. Am.82, 998–1017~1987!.

6A. Tarantola, Inverse Problem Theory: Methods for Data Fitting an
Model Parameter Estimation~Elsevier, Amsterdam, 1987!.

7P. W. Cary and C. H. Chapman, ‘‘Automatic 1-D waveform inversion
marine seismic reflection data,’’ Geophys. J.93, 527–546~1988!.

8M. K. Sen and P. L. Stoffa, ‘‘Nonlinear one-dimensional seismic wav
form inversion using simulated annealing,’’ Geophysics56, 1624–1638
~1991!.

9K. Mosegaard and A. Tarantola, ‘‘Monte Carlo sampling of solutions
inverse problems,’’ J. Geophys. Res.100, 12431–12447~1995!.

10M. K. Sen and P. L. Stoffa, ‘‘Bayesian inference, Gibbs’ sampler a
uncertainty estimation in geophysical inversion,’’ Geophysical Prosp
ing 44, 313–350~1996!.

11M. K. Sen and P. L. Stoffa,Global Optimization in Geophysical Inversion
~Elsevier, Amsterdam, 1995!.

12P. Gerstoft, ‘‘Inversion of seismoacoustic data using genetic algorith
anda posterioriprobability distributions,’’ J. Acoust. Soc. Am.95, 770–
782 ~1994!.

13P. Gerstoft and D. F. Gingras, ‘‘Parameter estimation using mu
frequency range-dependent acoustic data in shallow water,’’ J. Aco
Soc. Am.99, 2839–2850~1996!.

14M. D. Collins, W. A. Kuperman, and H. Schmidt, ‘‘Nonlinear inversio
for ocean-bottom properties,’’ J. Acoust. Soc. Am.92, 2770–2783~1992!.

15C. E. Lindsay and N. R. Chapman, ‘‘Matched field inversion for geoph
ical parameters using adaptive simulated annealing,’’ IEEE J. Ocean
18, 224–231~1993!.

16S. E. Dosso, M. L. Yeremy, J. M. Ozard, and N. R. Chapman, ‘‘Estim
tion of ocean bottom properties by matched-field inversion of acou
field data,’’ IEEE J. Ocean Eng.18, 232–239~1993!.

17P. Gerstoft and A. Caiti, ‘‘Acoustic estimation of bottom parameters: er
bounds by local and global methods,’’ inSecond European Conference o
Underwater Acoustics, edited by L. Bjo”rno” ~European Commission, Lux-
embourg, 1994!, pp. 887–892.

18J. M. Hammersley and D. C. Handscomb,Monte Carlo Methods~Wiley,
New York, 1964!.

19A. J. W. Duijndam, ‘‘Bayesian estimation in seismic inversion. Part
Principles,’’ Geophysical Prospecting36, 878–898~1988!.

20J. Lefebvre, H. Roussel, E. Walter, D. Lecointe, and W. Tabbara, ‘‘P
818Gerstoft and C. F. Mecklenbräuker: Ocean acoustic inversion
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