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Inversion methods are applied in ocean acoustics to infer parameters which characterize the
environment. The objective of this paper is to provide such estimates, and means of evaluating the
inherent uncertainty of the parameter estimates. In a Bayesian approach, the result of inversion is the
a posteriori probability density for the estimated parameters, from which all information such as
mean, higher moments, and marginal distributions can be extracted. These are multidimensional
integrals of thea posteriori probability density, which are complicated to evaluate for many
parameters. Various sampling options are examined and it is suggested that “importance sampling”
based on a directed Monte Carlo method, such as genetic algorithms, is the preferred method. The
formulation of likelihood functions and maximume-likelihood objective functions for multifrequency
data on a vertical array is discussédpriori information about the parameters may be used in the
formulation. Shallow-water acoustic data obtained at several frequencies using a vertical array is
used to illustrate the applicability of the techniq(80001-4968)05307-7

PACS numbers: 43.30.Pc, 43.60[PiLB ]

INTRODUCTION timization is carried out to find the optimum model param-

. . . . . eter vectorm=(m*,...,m") that minimizes the selected ob-
From a Bayesian point of view, the solution to an in-

verse problem is fully characterized byposterioriprobabil- jective function. . . L
. e . To understand the inverse problem and its solution, it is
ity distributions of the unknown parameters. Information.

- important to study uncertainties, ambiguities, and resolution

about these parameters is assessed by moments afpibe- .
L . aspects of the unknown parameters. For deterministic local
teriori distributions, such as the mean, covariance, and mar-

i o L : methods, these are limited to a neighborhood surrounding the
ginal distributions. This improves on the usual practice of : : :
) : . . local estimate, e.g., Refs. 3 and 4. A good discussion of these
calculating only a single point-estimate of the parameters; . . .
) ! . L aspects for underwater acoustics is found in Ref. 5. Estima-
Accuracy of the inversion can be estimated in this way.

. . tion of uncertainties from global methods have been dis-
In a real problem, the numerical evaluationaposte-

riori distributions is limited by computational resources. Im—CUSS.ed in Refs. 6-11 for the related g_eophysmal problgm,
portance sampling, as performed by simulated annealinand in Refs. 12 and 13 for ocean acoustic problems. Retriev-

(SA) and genetic algorithm&GA), can considerably reduce 919 parameter; using glgbal optimization rPgthods has fre-
: : : uently been discussed in ocean acousfics:
the number of operations required. The main advantage of

the above concept is that it not only provides the best pos- The superiority of stochastic global methods for uncer-
. bt yp b tainty estimation stems from their ability to sparsely sample
sible parameter estimates, but also calculates moments of tt[ﬁz

w17 H H
a posteriori distributions associated with these parameters e parameter spacer. * For present applications, fast es

The Monte Carlo methddand the simulated annealing t|mat|qn of the moments _of_ tha posterioridistributions is
method were developed as methods to evaluate multidimen™°" Important than precision.
The motivation for the present study is tteaposteriori

sional integrals. distributions as described in Ref. 12 have been used with

Part of the inverse problem is to find an environment in : . .

. . . uccess in a series of previous papers. It has worked well for
which a forward model can produce a replica with a goo . ) : )

X . making comparisons between retrieved parameters and giv-
match to the observed data. A representative environment IS

. . Ing an indication of the convergence of the optimization
chosen empirically and a set of parameterss selected as o . o

. . method. However, it is based on an empirical weighting and
unknown. It is assumed that the true model vector is CONz4ils to give a performance indication fdifferentinversion
tained in the parameter set/. An objective functiong(m) g P

that compares the data and the replica is selected. Then, 0approaches. Only a likelihood basagbosterioridistribution

Pan show the improvement in performance when using more
frequencies, or the differing performance using a near or far
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the a posteriori distribution o(m). These distributions are 1. Numerical integration (grid search)

related through the likelihood functiofy(m), which is a Although the most precise and direct method, numerical
measure for the goodness of fit between the observed dajgeqgration is extremely computationally intensive fdrpa-
and the data generated using a computational acoustic modelmeters each discretized kosalues. It require&™ forward
and the environmenh (Bayes Theorem model evaluations. Fdc= 100 andM = 10, this is a prohibi-
o(m)=Z(m)p(m). (1) tively large number 1%, as for each of these points, a for-
ward model that takes about one CPU-second must be evalu-
When maximizinge(m) the maximuma posteriori(MAP)  ated. This approach is practical only for a very small number
estimate of the parameters is obtained and when maximizingf parameters, e.gM <4.
#(m) the maximum likelihoodML) parameter estimate is
obtained. _ o 2. Monte Carlo integration
To find the best solution, global optimization is carried
out by minimizing an objective functiogh(m). In this paper,

the objective function is chosen proportional to the log- ) ) . .
likelihood function, but often it is selected on a more empiri- €SSa7Y to evaluate the integral at all points as in a grid search.

cal basis. The likelihood function depends on the stochastif? contrast to_ cIassigaI computing methods, the efficiency of
model for the data: differing probabilistic models for signal Monte Carlo integration depends only weakly on the dimen-

and noise result in different likelihood and objective func-S'°" a.nd geometric details of.the problem. Thus even for

tions. high dimensionsM, and complicated boundaries of the pa-
rameter set#, the numerical effort remains moderate. The
integral is evaluated at randomly selected points from a uni-
form distribution. The disadvantage is that many of these

I. EVALUATION OF A POSTERIORI DISTRIBUTIONS points will be located in areas contributing little to the inte-

gral.

In Monte Carlo integration the integration points are se-
lected at random from a uniform distribution. It is not nec-

Due to multidimensionality, oftetM >10, thea poste-
riori distribution is not susceptible to graphic display, and ]
mainly integral properties of the distribution are of interest.3- /mportance sampling

From thea posteriori probability distribution, information In importance sampling, some knowledge about the in-
will be extracted to describe the solution. The following tegrand is exploited such that a nonuniform distribution is
quantities are of interest: the MAP solutiom'A” where used for generating the integration points. Most of the func-
~ MAP_ tion evaluations are concentrated in areas which contribute
mTr=arg mrza/>/< a(m), 2) significantly to the integral instead of distributing the points
evenly. The integrals can be evaluated using fewer forward
the expectatiork [ m] where models at a reduced variance of the estimated integral. The
model space 7 is sampled nonuniformly according to a
Eg[m]Ef mao(m)dm, (3)  9enerating distributioy. The integrand is evaluated only at
M these sample points. Both GA and SA use a generating dis-

tribution to select the next point in the model space.

—dmt. .. dmM ; ;
where dm=dn--dm", the covariance matrbCov,[m] Consider the evaluation of the multidimensional

where ; 18
integral,
Cov,[m]=E,{[m—E,(m)][m-E,(m]7}, 4)
o . BN o= | tmomam=g,rt(m, ®)
the one-dimensionallD) marginala posteriori probability Vi

i i i i
densitieso”(m) for parametem wheref o represents any of the integrands given in Egs-

o _ _ (5). The integral is estimated by the weighted arithmetic
0'(m')5j o(mydm'--dm ~tdm**--dmM, (5)  mean usingN, independent identical distributed.i.d.)
sampleam;,m,,... My, from the distributiong(m),
and higher dimensional marginals are defined similarly to

Eq. (5). The marginal distributions are the most important in 1@ f(m)a(my)

b= 2 ————. @)

interpreting the inverse result. Nopsi=1  g(m;)

A. Integration of ~ a posteriori distributions It can be shown, Appendix A and Ref. 18, that the variance
For solving the inverse problem, E(®), global optimi-  of # is minimized if the generating distribution is selected

zation methods such as simulated annealing and genetic al- |f(m)|o(m)

gorithms have been used. However, in order to characterize gMV(m)= . (8
the solution by Eqs(3)—(5) the multidimensional integration J At (m)]o(m)dm
must be carried out. The evaluation of these integrals hashus in order to reduce the variance, the generating distribu-
been addressed in Refs. 10 and 11 for the similar geophysictibn should be selected proportional tblo. In practical

inversion problem. They suggested and evaluated the followeases, this optimal solution cannot be select due to compli-

ing three methods for estimation of the integral. cated behavior off|o. Further, if the integrand is knowa
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priori then there is no reason for estimating it. However, it isB. Comparison to previous probability estimates
expected that selections gfwhich are “close” togMV will
give satisfactory performance.

If the integral is evaluated using a generating distribu-

Previously'? the a posteriori distributions were esti-
mated based on a semiempirical approach. Knowing that the
likelihood function is usually related to the objective func-

tion g(m) without correcting foig(m) in the denominator, it tion g(m) throu o A

. ) . . ' gh an exponentiak’=exp(— $(m)/v) (Ref.

IS seen frqm Eg(Al) that the estimate will be blaseq. Since 6, cf. Appendix B, where? is the estimated noise power, the
global estimation methods concentrate most of their numerie

. X ollowing scaling was used:
cal effort around the optimal values, they will tend to over- 7
estimate parts of the integral for these regions unless special “emd M) =exp(—[$(mM)—d(mg) ]/ T), (11)
bias corrections are introduced. This will result in an un-

X : where ¢ is any objective function andh, is the estimated
known error in the estimates.

B . .. parameter vector, corresponding to the optimal value of the
_ Global optimization methods use a generating distribupiective function T is the “temperature.” Experimentally,
tion for selecting the next model vector. This distribution i \\as found that a good value faF was the average of the
will in general change as the optimization evolves. Thus they; pest opjective functions obtained during the optimization,
are carrying out importance sampling, but with an unknowny,in s the best value of the objective function. It should be
generating distribution. For SA at a constant temperatuite noted that this value of is not intended to estimate the
can be shown that after a large number of iterations the samygise byt to produce a reasonable value with which to esti-
pling distribution is proportional to exp(¢(m)/T). FOr 4t the uncertainties of the parameters. The advantage of
more details see Ref. 10 and Sec. | B. _ this scheme is that it works irrespective of the stochastic
When the MAP solution Eq(2) is found using SA or  yoqef for the data o likelihood function used. But for mul-
GA, a large numbem,,s of candidate solutionsm; (i figrequency inversions it is not suitable as different distribu-
=1,...Nobg are drawn at random from the model séf. By  {jons cannot be directly compared. In this case, a likelihood-

using the values of the objective function at these samplgqedq posteriori density, Eqs(1) and (3)(5) give better
points m;, importance sampling can be used in evaluating.qqjts.

the integrals Eqs(3)—(5). When using GA or SA with fast

cooling (as usugl the precise distribution of the samples is _

not known. It should also be made clear that the generating' Computational procedure

distribution is related in a nonlinear fashigrough GA or Depending on the model used for the error or noise dis-
SA) to the objective function and not to the preferred distri-tribution of the data, a specific likelihood function results.

bution |f|o=|f| “p. This is not considered a problem as Prior knowledge about the error distribution is required. Usu-
both |f| andp are much smoother tha# and the objective ally this is not completely available and some simple and

function is related to%. reasonable approximations must be used. Two special cases
For the Ngps Observations, the posteriori probability — are considered for multifrequency vertical array data. The
for the kth model vector is estimated by noise distribution on each hydrophone is assumed complex

Gaussian and zero mean. First, in Sec. IC1 it is assumed
ZLm)p(my) that t_he noise is ind_ependent on eettydrophonean(_j sec-
Nome . 9 ond, in Sec. 1 C 2 it is assumed independent for esaghifi-
Z, 257 (my) p(mj) cant mode
Often, a distinction is made between errors due to noise
For theith parametem’ in the model vector the mar- in the data and errors due to an incomplete forward model,
ginal probability distribution for obtaining the particular because neither the theory nor the environmental model is
value « can be found by summing E¢Q): adequate. If both error types belong to the same distribution,
there is no reason to consider them separdfelyere only
one error term is considered.

o(my)=

Nobs . .
P - S(m.— k). 10 Recently, there has been progress in describing both er-
7 (x) kzl (M) &M= ) (10 rors using Kriging®® Both noise and modeling errors are

assumed zero-mean Gaussian and are independent. The mod-
where 5 is the delta function. In the particular implementa- eling errors are assumed to possess a given correlation struc-

tion, several independent GA searches are carried out in paTrL—JIre dedpelndlpr? on thel d_|stance betV\_/eerLtwo enwro_n_me”n-
allel. It is found for several parallel runs that saving the lasti® Models. This correlation structure Is chosen empirically.

obtained model vectors in a population suffices in each of thglearly, the same values of the model parameters correspond
parallel rung?2 to the same values of the model errors.

When displaying the marginal probability distributions, 1. pmutifrequency matched field processing

Eq. (5), they are all scaled so that the areas under each curve .
are one when the search interval is scaled from 0 to 1. This The relation between the observed complex-valued data

dictates they axis and all plots from the same inversion havevectorq(w|) on anN-element hydrophone antenna array and

the samey axis, there is no scale on tlyeaxis as it is mostly the p_red|cted datp(m,w|) at an angular frequency, is
. : . X ) 7 . . described by the model
used for comparisons. With this choice of scaling the distri-

butions depend on the search interval for each parameter. d(w)=p(m,w|)+e&w)), (12
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wheree(w)) is the error term. The predicted data is given by L &i(m)
p(m,w)) =w(m,w;)S(w,), where the complex deterministic smy=p(m|g)ec[] (M)~ exp( — )
source termS(w;) is unknown. The transfer function =1 4]

w(m, ;) is obtained using an acoustic propagation model L _OML
and an environmental modgi.?* ocH exp( —N M%) (18)

The errors are assumed to be additive, they stem from =1 [
many sources: errors in describing the environment, errors in - e problem, as addressed above, is then to integrate
the forward model, instrument and measurements errors, anlis myltidimensional probability distribution. Often this in-
noise in the data. For the predicted acoustic field “reasontegrau can be evaluated with sufficient accuracy using the

ably close” to the true field, this error term is assumed COMyntormation from the global search. In some cases it might be

plex Gaussiar_l distribute(_j, stationary with zero mean and diﬁecessary to increase the sampling of the model space in
agonal covariance matrix(w)l, where the error power ,.qar to obtain convergence.

spectrum is unknown. Thus the datg{w,) on the receiving The likelihood function, Eq(18), has a stronger maxi-
array are also complex Gaussian distributed with meam,m when more hydrophones are used. When inverting ob-
P(w;,m) and the covariance matrix(w|)!. For the deriva-  seryeq data, there is a limit to how much useful information
tion of a maximum-likelihood estimate, it is further assumed.5n pe obtained by adding additional hydrophones, as they

that the data are uncorrelated across frequency and time. Ttﬁ?en become strongly correlated. At high signal-to-noise ra-

source termB(w)) varies across time snapshots whereas thg, (SNR) it is expected that the main error contribution is

error power spectral densityw)) is constant. In the follow- 4,6 19 inadequate forward modeling. Further, the number of

ing, gy =d(w), etc., is abbreviated, whefes|I=1,..L} IS \ncorrelated hydrophones is approximately the same as the
the processed frequencies. Under the above assumptions th&mper of propagating modes, because this limits the de-

. . _ T _ T
covariance matrix Ry =E[q,qj ]=p(m)p;(m)+»l. The  grees of freedom in the random part of the acoustic wave

aoal (22
likelihood functiorf” becomes field. The number of uncorrelated hydrophones is estimated
L as the rank of the covariance matrix.
) 1 ¢ (m)
my=]] —xexpg - , (13)
=1 7 V|

where(the dagger refers to the Hermitian transpose and “tr” 2. Multifrequency matched mode processing

is the trace operation Normal modes provide a complete description of the
i WT(m)Ii wy(m) field at long ranges, and thus one can equivalently process
d(m)=tr Ri— ——————— (14  the data in the phone-space or in the modal-space. The
w; (m)w;(m) matched mode approach is described by Tolé{dyinich2®
and Shang® Modal processing is discussed here as an alter-

Optimization forz, yields the closed form ML solution native noise estimate when there are more hydrophones than

1 propagating modes.
n=y er(m. (19 The observed field oN sensors is assumed approxi-
) mately expressed via a set 8f significantnormal modes,
The NX N Hermitian matrixR, denotes the estimated cross- expressed in a NXxJ matrix V(w,,m)

spectral density matrix of the observed data in “phone-=[Vi(w;,m),...,v;(w;,m)]. The typical vector;(m) con-
space,” see Sec. 1C 3. With these definitions the logtains spatial samples of thj¢h normal mode at the receiver
likelihood function is array locations. The set of normal modes will be determined
based on the environment. The corresponding complex val-

= ued modal amplitude&he breve refers to the mode-space

log| % | “N(m)NN exp(—N) | - . PR
ogl~(m)|log [1 ¢ ™(m)N" exp(=N) | —logl(m)], g y=q gy
(16) J
where the ML-objective functiogs(m) to be minimized is Q(“’l)”;l Vi(@,m)g;=V(w;,m)g(w). (19
- - -~ W,T(m)fe|w|(m) There should be more hydrophones than moblesK. This
d)(m):ll:[l ¢,(m)=|1:[1 rR - W mw(m) |- relationship can be inverted in a least-squares sense and es-

timates the vector of modal amplitudeg=q(w,) in the
17 ; i

mode-space from the observatigr=g(w,) in phone-space.
For details, see Appendix B. Using a global optimization ot 1t
procedure, the minimungM- for the ML solutionmM- is a=[VimVI(m)]Vi(m)g (20)
estimated. The estimate, E@5), is biased. The bias stems Note that the mode¥,(m) and thus modal amplitudes de-
from the degrees of freedom in the estimated parametergend on the environment. When optimizing the environment
source signa$ and nonlinear parametens.”® For simplicity ~ m the modal amplitudes will change with the environment.
this bias is neglected here. The noise power spectral density A simple relationship between the observed modal am-
is estimated, Eq15), 13{\"L=1/N¢,(rﬁ'\’”-), and the likelihood plitudesq, and synthetic generated modal amplitudes is as-
function is given by sumed
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q=p(m)+&(m), (22) In order to obtain a good estimation of the noise, it is re-
quired thatKk P>N, whereN is the number of hydrophones.

In order to “just” estimate the signal and the unknown pa-
rametersn, the number of averagésP can be much smaller

f3r a received signal with sufficient SNR. In this paper, the
evaluation of the inversion accuracy is addressed. Therefore
modeling errors ip(m,w) and additive noise must be distin-
guished. This implies the necessity of a stable noise estimate
(27), and thus a larger number of averages than if only pa-
(22) rameter estimates are needed.

wherep,(m)=Sw,(m) is the complex-valued modal ampli-
tudes of the synthetic data agdrepresents the error term for
each mode. It is assumed that the noise covariance matrix
diagonal for the] significant modes and the noise poweis
identical for allJ modes. Using a similar approach to that in
Sec. 1 C 1, the objective function is

- ¢ W (m)RW(m)

H(m)=tr Ry W)
- D. Including the a priori probability distribution
whereR, is the estimated covariance matrix of the modes.
But using the expression for the modes, ELP), the objec-
tive function in mode-space, ER2), is seen to be equiva-
lent to the objective function in phone-space, i.e., Bdl)
expressed in the phone-space

Usually, when solving inverse problems, the question is,
“What is the environmental model for this given data set?”
This is normally an ill-posed question. A better question is,
“What can be inferred from the data about the environmen-
tal model given some environmental information?” Thus

:ﬁ|(m)*¢|(m)- (23)  somea priori information should be included in the inverse

) . ) ) ) .. _problem.A priori information is always used in global inver-
The noise estimate is obtained using the approximation idj5 schemes. The model structure is selected based on
Eq. (19), priori knowledge and uniforna priori distributions are used
¢ Loy 1. between the minimum and maximum bounds for the param-
n=3é ~y3or. (24 eters.
One possibility is to include tha priori model in the

The likelihood function becomes objective function, e.g., Refs. 6 and 29. This has the disad-
:ih(m) vantage that the distribution must be known explicitly. For
Gaussiara priori distribution the objective function consists

) of two terms, one measuring the match between observed

R and synthetic data and the second penalizing the deviation
- d(m)— M- from thea priori model. This approach is used in linearized

—J——=u——|- (29 inversions in order to regularize the solution.

¢ Here a simple approach is used: the obtained likelihood

The advantage of this formulation is that it does notfunction is multiplied with thea priori distribution, accord-
depend directly on the number of hydrophones, but only oring to Eq.(1). This distribution can be arbitrary, for example,
the number of propagating modes. For many hydrophone8 smoothed distribution obtained from inversion of other
(N>J) this likelihood function seems more realistic. A for- data. For illustration in Sec. Il A 3 a simple triangular distri-
mal definition forJ is not yet clear. In either casgjs less or  bution is used:
equal to the number of propagating modes. For simplidity,
is assumed to be independent of frequency. Only the objec-
tive function is affected by the choice df All the propa-

L
L%’<m>=p<mlq>oclljl (o)~ exp( -

(mf—mfu)/(mim—rniu), for m‘m<rni<rn‘u
p(mhecq (M'=m)/(my—myp), for m<m'<m,

gating modes are incorporated in the forward model. 0, otherwise, 28
wherem/<m| <m, are the abscissa of lower bound, maxi-
3. Estimation of the covariance maitrix mum, and upper bound of thee priori distribution, respec-
tively.
In order to estimate the covariance matRx, the re- A priori information is also used in the parametrization

ceived time Signal is divided intl time frames. Each frame of the forward model. The choices made when doing this

was short-time Fourier transformed using the multiple-have a significant influence on the inverse solution, probably
windows technique described in Refs. 27 and 28, more than including priori information for each parameter.

T-1 A K=0,.K—1 In discreti.zing the environment, th_e_physics should be care-

Qep(@)= >, vPa(t+kT)e 1!, for 0 p_1 fully considered and described efficiently. Shape functidns

t=0 p=0..p=1, are a useful method to obtain an efficient description which
(26) provides a mapping between the environmental model and

where 1P is a special set oP orthonormal data tapefé?®  the numerical forward model. This could, for example, be

The correlation matriR was estimated at each selected fre-used to limit the search to only positive gradients in the

guencyw, as the ensemble average sediment, or to obtain a more efficient description of the
Ke1l p—1 environment(see the example in Sec. Il A.3
Rlw)= — oNd (o). 2 It is assumed for simplicity that there is a vanishing
(@) KP kgo [320 G @) G p( @) @9 correlation between tha priori distributions of the indi-
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Om l c(0) = 1500 + 25 m/s - r a) Exhaustive search

J cD)=1480+25 mis A
D=100m : & s . . s
D) - 1600 mis 5 6 7 8 9 10
Source range (km)
200 m \ 001 =1750m/s T . . . : : . . -
a=.2dBiA ‘

10 20 40 60 80 100
Source depth (m)

: _ . A .

FIG. 1. The environment for the sspmis case. The source coordinates are 1498 14.?_2 water SL‘E?\%S ced (;32)1
(9.3 km, 78 m for SNR=40 dB and(9.6 km, 82 m for SNR=10 dB. p waer sound s

___A

1481 1482

vidual parameters. Thugp(m)=pi(ml)p3(m?)---. Al- 1478 1479 1280

though for correlated parameters, the model search can be Bottom water sound speed (m/s)
limited using a correlated priori distribution, this approach
appears unpractical and, instead, shape functions are used fc b) GA- Importance sampling
mapping correlated model vectors to a new representation : . . ,
with lower correlation. A
5 6 7 8 9 10
Source range (km)

Il. EXAMPLES . . ; ; . . : :

The examples illustrate the integration of theposte- s ) : : : : : A :
riori distributions and how phone-space and mode-space'® 20 Souffe depth (m)60 80 100
based likelihood functions affect the estimates. Only in Sec. ; . ; ; ; . .
Il A 3, a nonuniforma priori distribution is used. A

The objective function Eq(17) was optimized and the 1498 1499 1500 1501 1502
SNAP normal mode code was used as a forward model. For Top water sound speed (m/s)
likelihood functions, either the empirical, the multifrequency ' ' ' ' ' ' ' '
matched field, or the multifrequency matched mode models . . ‘

1479 1480 1481 1482

are used. The GA parameters were as in Refs. 12 and 31: the 1478
Bottom water sound speed (m/s)

reproduction rate was 0.5, the permutation probability was

0.05, and the crossover rate was 0.8. FIG. 2. The estimated posterioridistribution for a SNR of 40 dB for the
sspmis casda) using numerical integratiorib) using importance sampling.

A. SSP-mismatch case

f this integration is shown in Figs(& and 3a). In gener-

ing these plots, the noise was assumed to be unknown.
When carrying out the optimization ksaca,®! 20 par-
runs, each sampling 2000 models with a population size

This case corresponds to the sound-speed mismatc
from the 1993 Matched field workshdpFig. 1. It is based
on a synthetic data set from a normal-mode code using Allel

250-Hz source in shallovy water. Th? data are received on thf 64 were used. One result is the ML estimate of parameters
20 hydrophones spanning the entire water column. Wh't?/vhich corresponds to the best obtained fit
Gaussian noise was added to the data vectors to obtain a During this optimization the last popl.JIatioﬁM indi-

SNR of either 40 or 10 d&” This corresponds precisely to vidualg in each of the 20 runs is saved in order to estimate

the Ig(elllh(f)od function fleveloped 'T( Sec. I_C 1h _— the integrals. Thus the estimation of the integral is based on
nly four parameters aré unknown in this case; e, g, 1580 model vectors. It is seen in Figgbpand 3b)

source range and depth and the ocean sound speed at the 1Bt the evaluation of the integral resembles the distributions

and the bottom. Each of the parameters can assume 51 dI(§E)tained when evaluating the integrals based on an exhaus-
crete values. For an exhaustive search this requires evalu

. five search. The use of all the GA-evaluated forward models
t!on of 51'=7x10° forward models. It took 5 days of CPU (20X 2000=4x 10%) in the evaluation of the integral did not
time on a DEC-AIpha 500/266 to evaluate all models. I:Orhave any effect. For practical reasons, it is preferred to base
Fhe genetic algorithm 4 1.04 forward models were evaluated the evaluated integral on the last population in each run.
in half an hour of CPU time. Note that for both SNR 40 and 10 dB the source range
and depth are estimated quite accurately, whereas for more
noise, the ability to resolve the sound-speed parameters is
A uniform a priori distribution is assumed. To display lost when the SNR is relaxed to 10 dB. The reason for this
the marginal distribution, the integral, E), is evaluated. poor resolution of the parameters is due to a strong correla-
When using an exhaustive search, i.e., evaluating each poitibn between the ocean sound speed at the bottom with that
in the integration corresponding to Sec. | A1, the resultat the top; see Fig. 4, where the two-dimensional marginal

1. Without a priori information
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b) GA- Ixmponancle Samphrllg FIG. 4. The estimated marginal 2-® posteriori distribution between the
. upper and lower ocean sound speed using a full search for a SNR of 10 dB.
) ) ) ) It is based on the same data as Fig)3The marginal 1-D distribution for
5 6 7 8 9 10 each parameter is displayed on the top and to the right. By reparametrizing
Source range (km) the sound speed as slope and mean a better resolution is obtained.
. . . . . . A . differences for computing, the gradient methods tend to be

10 20 30 40 50 60 70 80 90 100 unstable due to a too small or large step size. Fortunately, it
Source depth (m)

: ; : . , , , : is possible to compute the gradient analytically for a wave-
number integration approath and for a normal-mode

1498 1499 500 1501 1502 approach®®’
Top water sound speed (m/s) Some global search methods additionally exploit gradi-
' ’ ' ' ' ' ' ' ' ent information. In ocean acoustics this has been proven suc-
s . . . . . cessful in Refs. 30 and 34. In Ref. 30, the optimization is a
1478 1479 1480 1481 1482 hybrid method combining the global genetic algorith@A)

Bottom water sound speed (m/s) with the local Gauss—Newton method. This is implemented

FIG. 3. The estimated posteriori distribution for a SNR-10dB for the Dy taking several gradient steps between each update of the
sspmis case(a) Using numerical integrationb) using importance sam-  object function for each individual in the GA population.
pling. This approach is quite general but requires a careful analysis
of the gradient computation, which was done analyticéhy
distribution is shown. From this figure it is clear that a betterorder to avoid huge numerical errprén Ref. 34, a param-
parametrization would be the mean sound speed and the greter rotation approach was suggested. The eigenvectors of
dient of the sound speed, as indicated in the figure and als@ie a priori second moment of the objective function gradi-
discussed in Ref. 12. The difference in ambiguity for theent define the transformation for rotating the parameter
sound speeds estimated at SNR of 40(&&y. 2) and 10 dB  space. The second moment is defined by implicitly assigning
(Fig. 3 is due to the fact that at 40 dB, slope and meana uniforma priori density to the parameters. The computed
sound speed are well resolved, whereas at 10 dB SNR onbjigenvectors provide some insight into the geometry of pa-

the slope is well resolved. rameter space. After reparametrization, the search proceeds
using SA. This approach is efficient if the parameter space is
2. Optimizing coupled parameters characterized by a few local minima with prominent features

r{'n one direction. In cases where the gradient information

Coupled parameters usually render an optimizatio ¢ this will not i ? t Such
problem slightly more difficult. Parameter coupling has beerf.vorages out, nis will not provide an Improvement. Suc

observed by several research&&-3Coupling can be de- cases include circular shaped valleys, landscapes with sev-
tected by plotting either the ambiguity function or alterna-eral valleys, or landscapes with several valleys, or landscapes

tively, the 2-D marginab posterioridistribution of the pa- that are hilly without trend.
rameters. The advantage of the second approach is that it ] S
provides an integrate@globa) value across the remaining 3 /ncluding the a priori distribution
parameters. However, both approaches have limitations A priori knowledge is incorporated using E@®8) and
when several parameters are strongly coupled. based on the former example. In this caseahmiori knowl-

For a gradient method coupled parameters do not poseedge has a maximum at the true value. Initially only prior
major problem. A difficulty with gradient methods is the information of the top sound speed is used, Figh)5It is
numerical computation of the gradient. When using finiteseen that this increases the peak of both the upper and lower
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1478 14|§9tt . t1f80un is ee1d4(8rr1|/s) 1482 vertical array consisted of 32 hydrophones. The SNR was
otlom water so P estimated to about 30 dB. The environment is shown in
C) Fig. 6. The covariance matrix estimate was basedKon

=17 time frames and®=4 orthogonal windows, as de-
scribed in Sec. 1 C 3.

’1498 1499 1500 1501 1502
Top water sound speed (m/s)

1. Single frequency

. First it will be discussed how tha posterioridistribu-
1478 1479 1480 1481 1482 tion is constructed. This was done from a theoretical point of
Bottom water sound speed (m/s) view in Sec. |, but here a more practical approach is taken by
FIG. 5. The estimated posterioridistribution using GA for SNR-10 dB. (@ dISCUSSII’]g of the ponyergence O,f the objective fF‘”CF'O”’
Only the two sound-speed parameters are displag@mno a priori infor- (b)) constructing the likelihood function from the objective
mation is usedsimilar to Fig. 3b)] in (b) a priori knowledge(grey arex  function and,(c) construction ofa posteriori distribution
about the top sound speed is included andcina priori knowledge(grey from the likelihood function.
area about both top and bottom sound speeds are included. The wse of To i tigate th b inale f . .
priori knowledge has sharpened the peaks marginally. 0 investigate the above, a single frequency inversion
for the model in Fig. 6 is performed as it is much faster than
. . . . the more accurate broadband inversion. The unknown part of
sound-speed point. This is becausepriori knowledge is . . . i
the environment is represented by either 5, 7, or 10 param

multiplied on the fulla posterioridistribution. When using _— . :
o . eters, as indicated in Table I. Clearly, which parameter sets
prior information for the lower and upper sound speed, the

. S are found depends on the number of iterations in a search.
peak in the distribution becomes more pronounced, Klg. 5 : L .
. o : ; . The search is performed with either 5000 forward modeling
It is clear that wrong prior information must bias the esti-

mate runs (split into ten independent populations each with 500

Prior information about the environment, i.e., measured
fABLE |. Parameter search bound for the YS-94 case. Each parameter was

sound speeds, and the main parameters in terms of theglscretized into 64 values. The 5, 7, and 10 parameters refers to the number

search interval i_s important for o_btqini_ng _goc_)d iNVersion re-of parameters used in the inversion. The bottom sound-speed profile was
sults. Incorporation of smoota priori distributions such as modeled using the increase from the previous sound-speed point, as is com-

Eq. (28) does not seem significant, as thg@osterioridistri- mon insAGA. The receiver depth is the depth of the deepest hydrophone, this
bution does not change much controls the vertical position of the entire vertical array in the water column.
Parameter Lower Upper

B. Yellow Shark data
5, 7, and 10 parameters:

This example is based on th®CLANTCEN Yellow Source rangém) 7 1
Shark 94(YS-94) experiment. YS-94 was a carefully de- Source deptiim) 65 7
. . . . Tilt (m) -3 3
signed major experiment in shallow watd00 m) south of Water depth(m) 110 118
Elba in the Mediterranian Sea. A fixed source—receiver ge-  Receiver deptiim) %6 104

ometry was used and a comprehensive environmental data
set was available: Sea surface temperature, sea surface mo-
tion, currents, 2D temperature/salinity structure along
transect, cores, and high resolution seismics. For a detailed
description see Ref. 38. In the data used here the source was 10 parameters: _

located at a 9-km range from a vertical array extending the ggggm igt:gjzgggg e :: ;gzg 18 28
complete depth of the water column, it transmitted energy at  ottom attenuatioridB/) 0 0.4
7 frequencies: 200, 250, 315, 400, 500, 630, and 800 Hz. The

7 and 10 parameters:
Bottom sound speed at interfag®a/s) 1460 1500
Bottom sound-speed increase at 5mm's) 10 50
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FIG. 8. Sorted values of likelihood functions using either an empirical, Eq.
1), a phone-based, E¢L8), or a mode-based, Eq5) with J=5, likeli-
0od function. Solid lines: Based on<4l0° forward model evaluations and

FIG. 7. Sorted values of the objective function, E&j7), for the best esti-
mated models for each optimization. The best models are the ones that ga
the lowest value of the objective function. Solid lines: The best values of th

objective function based on eitherd (P, 4x 10%, or 5x 10° evaluations of estimation of ten parameters with either empirical, phone-based, or mode-

the forward model with ten unknown parameters. Dashed line: based oHaSEd likelihood function. The dashed line is based on1@" forward

400 000 evaluations with seven unknown parameters. Dotted line: based d‘ﬂodel evaluations and estimation of ten parameters and mode-based likeli-
400 000 evaluations with five unknown parameters. ' hood function. The dotted line is based ox 40° forward model evalua-

tions, estimation of five parameters and mode-based likelihood function.

forward modeling rung10x500]), 40 000 forward model- noise, because the data on each hydrophone is correlated. For
ing runs [20X 2000, or 400 000 forward modeling runs long-range propagation, the pressure field can be described
[200% 2000]. as a sum of modes. Thus it is expected that the denominator
In Fig. 7 the sorted values of the objective function arein Eq. (15) should express the number of propagating modes,
displayed for the best models. The best models are the orsze Eq.(24).
that gave the lowest value of the objective function. It is seen  Both the semiempirical weighting and the ML weighting
that for ten parameters we obtain a lower value of the objectsing five modes in the noise estimate and estimating five
tive function than when using seven or five parametersparameters when 400 000 forward models is used, are shown
Clearly, if more free parameters are available it is possible tan Fig. 9a) and (b) when 400 000 forward models are used
obtain a better fit. The curve with ten parameters gives thén the optimization. It should be noted that the objective
best fit. Whether this improved fit is significant or whether function as well as the samples used in the estimation of the
the extra parameters are just fitting additive noise can bebjective function are identical for both methods. Thus the
tested® When using more forward modeling runs, more difference in the plot is entirely due to different weighting of
samples with a high degree of fit are obtained, as can be seéme objective function when constructing thgosterioridis-
by comparing the curves for 5000, 40 000, and 400 000 fortributions. Intuitively, the empirical estimates appear to over-
ward modeling runs in Fig. 7. estimate the resolution, whereas the ML gives a more realis-
Based on these values, the likelihood functiareighted tic estimate of the peak. The empirical estimates of the
fitness is computed for each of these models, see Fig. 8. It iwariance depend on the number of forward modeling runs.
seen from Eqs(15) and(18) that the noise estimate depends The variance will not be as small if a smaller number of
on the best estimated value of the objective function andforward modeling runs was used during the optimization.
therefore, the value of the likelihood function depends on the  For the results of the optimization with 5 parameters, it
search. If this best value is much better that the other values seen that the parameter estimate of the source depth
found during the optimization, the likelihood function, Eq. reaches the upper bound. This indicates that the optimization
(18), will decrease quite rapidlfcompare the curve for five has not performed well, probably because the environment
parameters with those for ten parametetdow fast the has not been well described. When using nine parameters it
curve decreases also depends on the number of modes udedeen that the source depth becomes more stable. Again it is
in the objective function. Note that even though the objectiveseen that the empirical weighting gives a more optimistic
function assumes only a few modes the forward model alestimate of the uncertainties.
ways includes all propagating modes. Comparing the likelihood based results with five or nine
Based on the weighted fitness, as displayed in Fig. 8, thparameter§Fig. 9b) and(d)], it is seen that the spread of the
integrals for the marginal distributions, E¢b), are esti- distributions is about the same. The estimated parameters
mated. It was found that when using the noise estimate, Edre, however, not the same; due to additional parameters for
(15), with the likelihood function, Eq(18), to estimate th@a  the nine parameter problem. As only one frequency is used
posteriori distribution that the distributions became singlein the optimization, more stability is probably obtained by
peaked. This is probably due to an underestimation of théncreasing the number of frequencies.
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FIG. 9. The estimated posterioridistribution for a search of five or nine FIG. 10. The estimated posteriori distribution for the YS-94 data. The
parameters(a) Five parameters, empirical posterioth) five parameters, noise has been estimated using five modes.

likelihood based posterioric) nine parameters, empirical posterio(d)
nine parameters, likelihood based posteriori. Only four parameters ar
shown in the plot as the fifth parameter was not that well determined.

fil. CONCLUSIONS

A precise formulation has been given for estimating the
a posteriori distribution of environmental parameters re-
2. Multifrequency trieved from an ocean acoustic experiment. From these dis-

] ) ] ] tributions, all information about the parameters can be ex-
By using observations at more frequencies, more inforygcted  as  mean higher moments, and marginal

mation is used and thus a more robust estimation of thgistibutions. Numerical evaluation of multidimensional in-
underlying parameters is usually obtained. In order to appreggrals overa posteriori distributions is required. These in-
ciate the value of more frequency observations it is essenti%grab can be numerically estimated using samples from glo-
to use the ML approach rather than the empirical approacfg| optimization methods. The method is based on
(Sec. 1B. The additional information that is gained from jmportance sampling and requires no additional evaluation of
using more data is not reflected in the empirically baseghe objective function at the expense(akgligible bias.
probablllty distributions, and thus it cannot be used to Study The maximume-likelihood solution to an inversion prob-
convergence of solutions. The inversion is carried out USingbm does not provide an estimate of final parameter uncer-

the four data models with increasing information: tainty. The likelihood based posterioridistribution shows,
(1) one frequency at 400 Hz: however, the improvement in performance when using more
(2) three frequencies at 200 ’ 400. and 800 Hz: frequencies, or differences when using a near or far array. As

(3) five frequencies at 400, 315, 400, 500, and 800 Hz; an(;j)recise knowledge about the likelihood function is often un-
(4) seven frequencies at 4’00 2’50 ?;15 AiOO 500 636 anvailable for practical problems, the empirical formulation

800 Hz. might be preferable, although uncertainty estimates are less

accurate.

The corresponding distributions are shown in Fig. 10. In It is well known that SA and GA have superior perfor-
general, as more frequencies are used, the solution seemsrtance for ocean geo-acoustic parameter estimations over lo-
converge and the spread of the distributions decreases. Ogal deterministic solution strategies due to the large number
exception is the estimation of receiver depth for one fre-of secondary local optima of the objective function. Now,
guency. However, it is clustered at one bound indicating thatincertainty studies can also be enhanced by a global ap-
a solution outside the search bound is preferable. Incohereptroach.
averaging over frequency is especially effective if one ortwo  The examples illustrate the use of this approach for
octaves of signal bandwidth are available. simulated and real data on a vertical array. Array geometry is
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arbitrary to the approach and both frequency and time do©ptimizing w.r.t. v, yields
main data can be used.

R 1
0=y - (B5)
APPENDIX A: OPTIMAL IMPORTANCE SAMPLING This gives
Consider the evaluation of the multidimensional integral ) KA\NL/ 9 \N
Eq. (6). First, the integral is rewritten as an expectation L%é(m)=(ﬁ (W : (B6)
gzj f(m)a(m) g(m)dm=E f(M)a(M) (A1)  The ML solution mML is obtained by maximizingZ; over
7 g(m) 9 a(M) all me .. Finally, an estimate for the noise power spectral

density (which is assumed independent wof) is obtained
from Eq. (B5) and the ML solutionz} at MM into the
likelihood function, Eq(B3). From now on, we consider the

noise spectral density as known and only keep the free argu-

where the random parameter vecMris selected from the
generating distributiorg. This expectation is estimated by
the arithmetic meam from Eq.(7). The variance is given by

- f2(M)a?(M) ) mentm of the objective functionp,. This approach leads to
Varg0= Eg W - Nobs- (A2) L (1)
oy ~MLy—N im
Notice that the variance decreasesCH#N,,L) with increas- =%(m)_|1;[l (mv™) ex;{ B (B7)
ing number of samplebl,,s. Using a variational procedure _ . o
(with the constraint thag be a probability densityit can be ~ Which results in the definition of Eq18).
shown that this variance is minimized for
|f(m)|0-(m) IN. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat.
g"™WV(m)= : (A3) Assoc.44, 335-341(1948.
S /f(m)|o(m)dm 2N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E.
Teller, “Equation of states done by fast computing machines,” J. Chem.
APPENDIX B: MATCHED FIELD LIKELIHOOD Phys.1, 1087-10921953.

3Y. Bard, Nonlinear Parameter EstimatiofAcademic, San Diego, 1974
Starting from Eq.(12) and using the Gaussianity of AW, l\_/Ienke,Ge_zophysical Data Analysis: Discrete Inverse The(Aga-
. . demic, San Diego, 1989
&(w)) as stated in Sec. I C 1, the probability densityr a 5S. D. Rajan, J. F. Lynch, and G. V. Frisk, “Perturbative inversion meth-
single time frameK=1) given the signal5 and the noise  ods for obtaining bottom geoacoustic parameters in shallow water,” J.

power spectral density, is given by Acoust. Soc. Am82, 998—1017(1987).
SA. Tarantola, Inverse Problem Theory: Methods for Data Fitting and
L |q| —w,(m)S |2 Model Parameter EstimatiotElsevier, Amsterdam, 1987
Zi(m,S,v)= H (Trv|)7N ex;{ — —} "P. W. Cary and C. H. Chapman, “Automatic 1-D waveform inversion of
=1 4 marine seismic reflection data,” Geophys93, 527-546(1988.

(B1) 8M. K. Sen and P. L. Stoffa, “Nonlinear one-dimensional seismic wave-

. . . form inversion using simulated annealing,” Geophysi& 1624—-1638
Errorse;, e, at differing frequenciesv; # w, are assumed (1993

uncorrelated. For large observation times it is a good ap-"K. Mosegaard and A. Tarantola, “Monte Carlo sampling of solutions to

proximation for the noise in the dataut might be violated | inverse problems,” J. Geophys. Re)Q, 12431-124471995.

for deterministic modeling errors, cf. Sec. ).@leasurement M. K. Sen and P. L. Stoffa, “Bayesian inference, Gibbs’ sampler and
. . 9 T o uncertainty estimation in geophysical inversion,” Geophysical Prospect-

datagq  from multiple time frame&«=1,...K is incorporated ing 44, 313-350(1996.

by multiplying the corresponding probability densiti€s1) M. K. Sen and P. L. StoffaGlobal Optimization in Geophysical Inversion

for each single time frame. This gives ,\Eisevier, Amsterdam, 1995 . . . .
P. Gerstoft, “Inversion of seismoacoustic data using genetic algorithms

KoL 2 anda posterioriprobability distributions,” J. Acoust. Soc. An@5, 770—
_ A k= wi(M)S o P y
- N _ 782 (1994.
1 (7))~ " ex . " , o , _
K=1i=1 V| P. Gerstoft and D. F. Gingras, “Parameter estimation using multi-
(B2) frequency range-dependent acoustic data in shallow water,” J. Acoust.

. ~ _ _ o o Soc. Am.99, 2839-28501996.
The ML estimaten™" for m is obtained by jointly maximiz- M. D. Collins, W. A. Kuperman, and H. Schmidt, “Nonlinear inversion

ing over the Signa' and noise paramete&k(' V|V| ’k) and for ocean-bottom properties,” J. Acoust. Soc. A9, 2770—-27831992.

N 15C. E. Lindsay and N. R. Chapman, “Matched field inversion for geophys-
the model parameter vectar. The maximization W.r.t§|,k ical parameters using adaptive simulated annealing,” IEEE J. Ocean Eng.

is obtained by requiring.”; /39S, =0 in closed form:S 18, 224-231(1993.

=w/(m)q, «/|w,(m)|2. Itis seen thas, , depends omn but '°S. E. Dosso, M. L. Yeremy, J. M. Ozard, and N. R. Chapman, “Estima-
not on ». Iﬁserting this inta(B1) yields' tion of ocean bottom properties by matched-field inversion of acoustic

field data,” IEEE J. Ocean End.8, 232—239(1993.

L &(m) 17p. Gerstoft and A. Caiti, “Acoustic estimation of bottom parameters: error
& _ —NK _ 7 bounds by local and global methods,” 8econd European Conference on
Lo(m,v)= |1:[1 (7)) ex[{ V| } (B3) Underwatyer Acoustic%edited by L. Bfono (Europeaanommission, Lux-

embourg, 1994 pp. 887-892.
with 183. M. Hammersley and D. C. Handscomiionte Carlo MethodgWiley,
" New York, 1964.
N WlT(m)R|W|(m) 19A. J. W. Duijndam, “Bayesian estimation in seismic inversion. Part I:

G=trR——————. (B4) Principles,” Geophysical Prospectir&p, 878—898(1988.

W (m)w;(m) 203, Lefebvre, H. Roussel, E. Walter, D. Lecointe, and W. Tabbara, “Pre-

818  J. Acoust. Soc. Am., Vol. 104, No. 2, Pt. 1, August 1998 P. Gerstoft and C. F. Mecklenbrauker: Ocean acoustic inversion 818



diction from wrong models: The Kriging approach,” IEEE Antennas SACLANT Undersea Research Centre, SM-333, La Spezia, Italy, 1997.

Propag. Mag38, 35—45(1996. 32M. Porter and A. Tolstoy, “The matched field processing benchmark
2lF, B. Jensen and M. C. Ferla, “SNAP-The SACLANTCEN normal mode problems,” J. Comput. Acous, 161—-185(1994.

acoustic propagation model,” SACLANT Undersea Research Centre®*H. Schmidt and A. B. Baggeroer, “Physics imposed resolution and ro-

SM-121, La Spezia, Italy, 1979. bustness issues in seismo-acoustic parameter inversionfFuihField
22D, H. Johnson and D. E. DudgeoArray Signal ProcessingPrentice- Inversion Methods in Ocean and Seismic Acousédited by O. Diachok,

Hall, Englewood Cliffs, NJ, 1993 A. Caiti, P. Gerstoft, and H. SchmidKluwer, Dordrecht, 1995 pp.
2D, Maiwald and J. F. Bome, “Multiple testing for seismic data using  85-90.

bootstrap,” IEEE Proc. IEEE ICASSP-%} 89-92(1994). 34M. D. Collins and L. Fishman, “Efficient navigation of parameter land-
24A. Tolstoy, Matched Field Processing for Underwater Acoustiggorld scapes,” J. Acoust. Soc. An98, 1637-16441995.

Scientific, Singapore, 1993 357.-H. Michalopoulou, M. B. Porter, and J. lanniello, “Broadband source
M. L. Hinich, “Maximum likelihood estimation of a radiating source ina  localization in the Gulf of Mexico,” J. Comput. Acoust,, 361-370

waveguide,” J. Acoust. Soc. An&6, 480—483(1977). (1996.
%E, C. Shang, “Source depth estimation in wave guides,” J. Acoust. Soc¥R. T. Kessel, “The variation of modal wavenumbers with geoacoustic

Am. 86, 1960-19641985. parameters in a layered media,” J. Acoust. Soc. AIi2, 2690-2696
27D, J. Thompson, “Jacknifing multiple-window spectra,” IEEE Proc.  (1997.

ICASSP-946, 73—76(1994). 370. A. Godin, “Acoustic mode reciprocity in fluid/solid systems: implica-

2C. F. Mecklenbraker, D. Maiwald, and J. F. Bone, “F-Test in matched tions on environmental sensitivity and horizontal refraction,” Interna-
field processing: identifying multimode propagation,” IEEE Proc. tional Conference on Theoretical and Computational Acoustics, New Jer-

ICASSP-95, Vol. 5, 3123-312@.995. sey, 1997.
293, Rajan, “Waveform inversion for the geoacoustic parameters of the’®®J-P. Hermand and P. Gerstoft, “Inversion of broadband multitone acoustic
ocean bottom,” J. Acoust. Soc. Ar81, 3228—3241(1992. data from the Yellow shark summer experiments,” |IEEE J. Ocean Eng.

30p, Gerstoft, “Inversion of acoustic data using a combination of genetic 21, 324—346(1996.
algorithms and the Gauss-Newton approach,” J. Acoust. Soc. %dn.  3°C. F. Mecklenbraker, P. Gerstoft, J. F. Bune, and Pei-Jung Chung,
2181-2191(1995. “Hypothesis testing for acoustic environmental models using likelihood
3lp, Gerstoft, “SAGA Users guide 2.0, an inversion software package,” ratio,” J. Acoust. Soc. Am(submitted.

819  J. Acoust. Soc. Am., Vol. 104, No. 2, Pt. 1, August 1998 P. Gerstoft and C. F. Mecklenbrauker: Ocean acoustic inversion 819



