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The estimation of all forward model parameters—geometric, geoacoustic, and ocean sound speed—
by the inversion of acoustic field observations is considered. The data was taken at a mildly
range-dependent shallow water site in the Mediterranean Sea. The inversion is based on data from
a vertical array and carried out using information at multiple frequencies. Global optimization using
a directed Monte Carlo search based on genetic algorithms and the Bartlett objective function is
used. All geometric parameters are well determined, a range-dependent geoacoustic model is
determined, and the ocean sound speed is estimated. Comparisons of the observed pressure field as
a function of depth and the predicted field show good agreement. The use of observations at multiple
frequencies provides considerable stability for the estimated parameters. Optimization of only
geometric and geoacoustic parameters in a range-independent environment is found to be
satisfactory at the lower frequencies �165–175 Hz�, but for the higher frequencies �325–335 Hz�
optimization of additional parameters by inclusion of either a range-dependent forward model or the
ocean-sound-speed profile seems essential for successful inversion.

PACS numbers: 43.30.Wi, 43.60.Pt

INTRODUCTION

In October 1993 SACLANTCEN conducted an experi-
ment in the Mediterranean Sea using a moored source and
vertical array in shallow water. An objective of the experi-
ment was to evaluate the performance of field inversion
methods in shallow water under somewhat optimal condi-
tions, i.e., an array that spanned most of the water column,
knowledge of hydrophone positions via active array position-
ing, and a fixed geometry for source and receivers. In an
earlier paper, see Ref. 1, these data were used to establish the
stability with respect to time of environmental parameter es-
timates using a range-independent model at a single fre-
quency �169.9 Hz�. During the experiment two signal bands
were used, a band centered at 170 Hz and a band centered at
335 Hz. The emphasis of this paper is on the use of multi-
frequency data from both bands for the estimation of the
geometric, geoacoustic, and ocean sound-speed parameters
using a global optimization approach. Using the combined
frequency data it was expected that the low-frequency data
would provide estimates for the large scale features, whereas
the higher frequency data would provide finer scale details
about the parameters. The inversion process for determining
environmental parameters is, in principle, straightforward. In
theory it requires determining the forward model parameters
that accurately match the observed data. The methods are
based on global optimization for a selected objective func-
tion. The optimization procedures are now quite efficient and
are based on simulated annealing2–4 genetic algorithms5 or a
combination of these and a local method.6 Herein the SAGA
code7 which uses genetic algorithms for optimization was
used.

Three important issues associated with the inversion of
field data for parameter estimation are the data domain �time
versus frequency and/or narrow band versus broadband�, the

forward model �range dependent or range independent�, and
the inclusion of additional environmental parameters such as
ocean sound speed. Matched-field processing has typically
been carried out in the frequency domain using only one
frequency cell. Recently, there has been increased interest in
multifrequency approaches.8–14 A multifrequency approach
has been adopted herein for the estimation of all environ-
mental parameters. Often for inversion purposes a range-
independent environment is sufficient, but range-dependent
models based on the parabolic equation2 or adiabatic modes4
have been considered. The adiabatic mode approach was
used with modal look-up tables; this makes the approach
quite fast. However, when many parameters of different di-
mension are considered the construction of the tables could
become a considerable task. The SAGA program uses range-
dependent adiabatic modes directly. Most inversion work re-
ported previously has only considered estimation of the
geoacoustic parameters. For matched-field processing it has
been well established that even small fluctuations in ocean
sound-speed can cause a major degradation, see, e.g., Refs.
15–17. Therefore, it seems natural to include sound-speed
estimation as part of the optimization, and this issue is inves-
tigated here.

In this paper, global estimation methods based on ge-
netic algorithms �GA� were applied to experimental data.
With respect to most previous work three issues were ex-
tended: �i� observations from multiple frequencies were
used, �ii� a range-dependent forward model was employed,
and �iii� all important forward model parameters, including
ocean sound-speed, were used in the optimization. In Sec. I
the multifrequency objective function is introduced along
with details about the inversion process. The ocean sound-
speed estimation methods are also presented. In Sec. II a
brief description of the experimental setup is discussed and
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the ‘‘baseline’’ environmental model is presented. In Sec. III
estimation results based on synthetic data for the baseline
environment are presented. In Sec. IV results of multifre-
quency inversion of experimental data using both a range-
independent and a range-dependent model are presented
along with the results obtained for ocean sound-speed esti-
mation. Finally, in Sec. V the conclusions are presented.

Throughout, the following terminology will be used; an
‘‘environmental model’’ will consist of all geometric, geoa-
coustic, and ocean sound-speed parameters required for the
forward propagation model. The following notation is used
throughout; boldface upper case letters denote matrices,
boldface lower case letters denote column vectors, uT de-
notes vector transpose, uc denotes complex conjugate, and
u* denotes complex conjugate transpose.

I. PRELIMINARIES

The components of the acoustic inversion process in-
clude an environmental model, a propagation model for cal-
culating the predicted acoustic field, an objective function, a
model vector m��mi� i�1,2,.. . ,N , and an efficient search
algorithm for searching the model parameter space. The ob-
jective function is a function of a vector of forward model
predictions or replica w�m� fields and a vector of observa-
tions q��qi� i�1,2,.. . ,K , where K is the number of hydro-
phones. For the optimization genetic algorithms �GA� are
used. The environmental model consists of three layers; a
water layer, a fluid sediment layer and a homogeneous half-
space layer. The inverse problem is solved as an optimiza-
tion problem; that is, find the model vector m��mi�
i�1,2,.. . ,N that maximizes the objective function.

A. Objective function

In an earlier paper the Bartlett processor at a single fre-
quency was used.1 In order to improve the robustness of the
estimation, observations at several frequencies were used in
this analysis. Due to the CPU time involved only a few fre-
quencies were used in the optimization. For L independent
observations of the complex pressure across the array at fre-
quencies �l , l�1,.. . ,L an estimator was obtained by inco-
herently summing the values of the Bartlett processor at each
frequency.8 The resulting objective function is given by

��m��
1
L �

l�1

L

w*�m,� l�R̂�� l�w�m,� l�, �1�

where R̂��l� is the cross-spectral matrix formed from the
observation vectors at a single frequency �l and w�m,�l� is
the replica vector calculated by the forward model. The ma-
trix R̂��l� is normalized such that the maximum Bartlett
power is one. If the source spectrum is known then the sum-
mation in Eq. �1� could be weighted by the source spectrum
�see for example, Ref. 18, Eq. �24��. Herein the source spec-
trum was not known, thus a weighting of one was used for
all frequencies. The following advantages resulting from an
optimization over several frequencies are expected: �i� the
variance of the estimates due to noise in the data becomes
lower, �ii� the resulting estimates are valid over a range of
frequencies—at least near the frequencies used in the

inversion—and �iii� the low-frequency data can be used to
focus the high-frequency data toward the optimum solution.

B. Posteriori analysis

For maximizing the objective function, Eq. �1�, genetic
algorithms �GA� were used.5 During the optimization, all
obtained samples of the search space were stored and used to
estimate the a posteriori probabilities. For a system of M
parameters the result is an M -dimensional space. This is dif-
ficult to display and only the marginal probability distribu-
tions are shown. The samples were ordered according to their
energy and the probability distribution is scaled using a Bolt-
zmann distribution.5 Thus the objective function for each
model vector is scaled according to a ‘‘temperature’’ T . The
probability for the kth model vector is given by

��mk��
exp��„1���mk�…/T�

� l�1
Nobs exp��„1���ml�…/T�

, �2�

where Nobs is the number of sampled model vectors. It is
difficult to chose the value of the temperature: selecting it
equal to the fittest sample favors the fittest part of the
samples, whereas selecting it equal to the least fit penalizes
the best fit. A good choice, shown by experience, is to use a
temperature equal to the average of the best 50 samples.

For the ith parameter in the model vector the marginal
probability distribution for obtaining the particular value �
can be found by summing Eq. �2�:

� i�mi����
�k�1
Nobs exp��„1���mk�…/T���mi

k���

�k�1
Nobs exp��„1���mk�…/T�

. �3�

Based on the a posteriori probability distributions two
estimates for the model parameters were used: Those with
the largest fitness �GA-best�, and those based on the mean of
the a posteriori distribution �GA-mean�. In the previous
paper,1 the GA-mean was used for the parameter estimate.
The mean provided a good estimate for some frequencies
and parametrizations, but at the higher frequencies it gave
less reliable estimates. This was probably due to the fact that
there were more peaks in the a posteriori distribution at the
higher frequencies. When there is a few distinct peaks in the
distribution, the mean value may not be a good estimate for
the parameter, but the best value will be a good estimate. For
these cases the GA-best gave more consistent results.

Based on the a posteriori distribution we can estimate
the variance of each parameter. This variance consists of
three separate parts: �1� variance due to noise in the data, �2�
variance due to incorrect forward modeling, and �3� variance
due to a poorly resolved parameter during the inversion.
When using several frequencies the variance due to noise is
expected to decrease, but the other contributions to the vari-
ance could increase.

The approach of hypothesis testing should ideally be
used to judge if a more complex set of environmental param-
eters is better than a simpler set of parameters. Hypothesis
testing has been used for the source localization problem,
see, e.g., Ref. 19. As hypothesis testing is not available for
testing sets of environmental parameters we had to rely on a
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‘‘satisfactory’’ improvement in Bartlett power combined
with the requirement that the environmental parameters were
physically realistic. An indication that the additional param-
eters were important was obtained both from the increase in
Bartlett power between the two inversions or the compact-
ness of the a posteriori probability distribution for the addi-
tional parameters using just one inversion.

Insight into the estimation performance can be gained by
comparing the Bartlett power across the array with the ob-
served pressure �magnitude-squared� across the array. This is
similar to the transmission loss data comparisons with model
predictions that are used to illustrate estimation performance
when the observations are a function of range, see for ex-
ample Ref. 20. In order to obtain the Bartlett power across
the array as described below the observed pressure vector q
is required.

For a single frequency the Bartlett power can be ex-
pressed in terms of the pressures at the K hydrophones:

���w*q��w*q�c� �
k�1

K

wk
cqk�w*q�c� �

k�1

K

Pk�q,w�, �4�

where

Pk�q,w��Real�wk
cqk�w*q�c� . �5�

By taking the real part inside the sum in Eq. �4� a real ex-
pression for the Bartlett power contribution at each hydro-
phone was obtained, Eq. �5�. It is seen that Eq. �5� contains
cross terms with the other hydrophones. This is necessary in
order to obtain a real expression that sums to the Bartlett
power. Equation �5� is referred to as the Bartlett power mea-
sure. The maximum Bartlett power, one, is obtained when
the replica corresponds to the data:

Pk�q,q��Real�qk
cqk�q*q�c��qk

cqk . �6�

The function Pk�q,q� corresponds to the magnitude squared
of the pressure for each hydrophone on the array. This mea-
sure represents the phase difference between the data and
replica at each phone weighted with the corresponding am-
plitudes. Using, for example, the magnitude squared of the
complex residuals as a measure is not very attractive as it
requires knowledge of the absolute phase. By plotting the
Bartlett power measure over the array, Eq. �5�, as well as the
magnitude-squared pressure, Eq. �6�, a visual assessment of
how well the estimated model prediction of the pressure
across the array compares with the observed pressure is ob-
tained.

C. Ocean sound-speed estimation

The estimation of ocean sound-speed profiles via acous-
tic tomography has received considerable attention, see for
example Refs. 21, 22, 23. In general a sound-speed profile
contains a large number of data points, thus optimization of
the sound-speed profile directly could be cumbersome. This
direct estimation of sound-speed points is the simplest ap-
proach as it directly reflects the parameters required for the
forward modeling. The disadvantage is that this approach
gives the optimization too much flexibility relative to the
information available.

A more efficient representation is to describe the sound-
speed via shape functions.6 These can be seen as a coordinate
transformation between the sound-speed vector c and a more
efficient set of parameters �j :

c��
j�1

J

� jvj , �7�

where vj is the j th shape or basis function, �j is the coeffi-
cient associated with this shape function, and J is the number
of shape functions, see the Appendix for additional detail.

For determining the ocean sound-speed via shape func-
tions two methods were used: an ‘‘ad-hoc’’ method and a
method based on empirical orthonormal functions �EOF�,24
see also the Appendix. The ad-hoc method is based on es-
sential physics, i.e., detailed modeling of the thermocline and
less detail for the upper and lower parts of the sound-speed
profile. The sound speed in the sediment has also been mod-
eled using this approach, see Secs. III and IV. The EOF
method is based on actual measured sound-speed profiles.
When sound-speed profile measurements are available it
seems reasonable to use EOFs, but if measurements are not
available then the ad-hoc method could be used.

II. NORTH ELBA ENVIRONMENT

This section contains a brief description of the experi-
mental setup and details about the received signal structure
as a function of frequency and depth. Also, the ‘‘baseline’’
environmental model constructed for the North Elba site is
presented.

A. Experimental setup

The experimental data were collected over a two-day
period on 26 and 27 October 1993 in a shallow water area
north of the island of Elba, off the Italian west coast, where
environmental conditions were known from earlier
SACLANTCEN experiments.25–27 This area is characterized
by a flat bottom covered with clay and sand–clay sediments.
The experiment was conducted in a flat area between the
120- and 140-m depth contours along a track running parallel
to the depth contours. The propagation conditions were typi-
cal downward refracting summer conditions. Acoustic field
data from the vertical array, array positioning data, ocean
sound-speed profile and current versus depth profile data
were acquired over the two-day period. For additional details
on the North Elba site and experimental setup, see Ref. 1.

The bathymetry was measured to be approximately 128
m at the array site. The vertical array contained 48 hydro-
phones at 2-m spacing with a total aperture of 94 m. Based
on the physical configuration of the array system and the
measured bathymetry of 128 m at the array site the bottom
hydrophone was at a depth of 112.7 m and the top hydro-
phone at a depth of 18.7 m. In order to determine the varia-
tion of the array hydrophone positions in the water column
due to current an acoustic array positioning system was de-
ployed with the vertical array. Estimates of array shape were
computed over the two-day period. During the time period
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that this data was collected the top of the array was displaced
about 0.7 m from vertical. A detailed description of the array
positioning system is available in Ref. 28.

A stationary source was deployed at a depth of 80 m and
approximately 5600-m due north of the vertical array. At the
source location the bathymetry was measured to be 130 m.
Two signals were transmitted by the stationary source, both
were continuous transmissions of pseudorandom noise
�PRN� produced using a maximal length sequence. The first
signal used a bit length of 52.9-ms modulated onto a carrier
with center frequency of 170 Hz. The repetition length for
this sequence was 3.1 s, and the �3-dB bandwidth was 12
Hz. The second signal used a bit length of 20 ms modulated
to a center frequency of 335 Hz, the repetition length was 1.3
s, and the �3-dB bandwidth of 30 Hz.

Figure 1�a� illustrates an example of the 170-Hz signal
power spectrum as a function of depth across the array ap-
erture. Note the discrete ‘‘pickets’’ in frequency which are
characteristic of the spectrum of PRN signals. Note also the
variability of the received signal as a function of depth and
as a function of frequency. Figure 2�a� illustrates the re-
ceived signal spectrum for the signal centered at 335 Hz as a

function of depth. For this signal, since the repetition length
is shorter, the ‘‘pickets’’ are spaced further apart in fre-
quency. The pressure distribution as a function of depth at
330.1 Hz, see Fig. 2�b�, is considerably more complicated
than that at 169.2 Hz, see Fig. 1�b�. This additional complex-
ity can be explained by the fact that there are approximately
twice as many modes propagating at 330.1 Hz versus 169.2
Hz.

B. The baseline environmental model

A baseline environmental model was established for the
North Elba site from a variety of sources. The primary
sources were the publications of Jensen25 and Akal.26,27 The
results reported by Jensen and Akal were augmented by
physical measurements taken during the experiment and by
the results of Ref. 1. In addition the results of a recent sedi-
ment survey were included.29 Figure 3 illustrates the range-
dependent baseline environmental model. A range-dependent
water layer overlying a constant thickness sediment layer

FIG. 1. The 170-Hz PRN signal as received on the vertical array; �a� power
spectrum versus hydrophone depth and �b� magnitude squared of the pres-
sure versus depth at 169.2 Hz.

FIG. 2. The 335-Hz PRN signal as received on the vertical array; �a� power
spectrum versus hydrophone depth and �b� magnitude squared of the pres-
sure versus depth at 330.1 Hz.

FIG. 3. The ‘‘baseline’’ environmental model based on measured ocean
sound-speed profiles at the source and receiver, source and receiver bathym-
etry and published geoacoustic parameters for the North Elba experiment
site, see also Table V.

TABLE I. The range-dependent ‘‘baseline’’ environmental model.

Model parameter Value

Geometric
Source range �m� 5600
Source depth �m� 80
Receiver depth �m� 112.7
Array tilt �m� 0
Bathymetry-src �m� 130
Bathymetry-rcv �m� 128

Sediment
Comp. speed, c0 �m/s� 1520
Comp. speed, c5 �m/s� 1550
Comp. speed, c20 �m/s� 1600
Comp. speed, c50 �m/s� 1650
Density �g/cm3� 1.5
Attenuation �dB/�� 0.13
Thickness �m� 50

Bottom
Comp. speed, cb �m/s� 1750
Density �g/cm3� 1.8
Attenuation �dB/�� 0.1
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with depth dependent sound-speed, and subbottom half-
space layer. The source and receiver sound-speed profiles
were based on a CTD taken near the vertical array and the
source buoy, respectively. The important differences be-
tween this baseline model and that used previously in Ref. 1
are sediment thickness, the use of two sound-speed profiles,
two bathymetry measurements and the addition of array tilt.
The baseline value of bathymetry at the receiver was
changed from 127 to 128 m in order to correspond better
with the estimate of Ref. 1. The change in the sediment

thickness was based on subbottom profiling measurements
conducted near the vertical array location.29 A range-
independent baseline environmental model was constructed
using only the receiver bathymetry and sound-speed profile.
Table I summarizes the parameter values selected for the
baseline environmental model. In Table I the receiver depth
is the depth of the hydrophone closest to the ocean bottom;
this parameter controls the depth of all of the hydrophones.
The following notation is used for the sound-speed profile in
the sediment, c0 , c5 , c20 , and c50 , where the subscript de-
notes the depth of the profile point below the ocean sediment
interface and cb denotes the sound speed in the bottom.

The range-dependent and range-independent baseline
models were used to provide an acoustic description of the
environment. The SACLANTCEN normal mode propagation
model, �SNAP�,30 was used to compute transmission loss as
a function of depth and range for both baseline models at 170
and 330 Hz, see Fig. 4. By taking a cut at a range of 5.6 km
the magnitude squared of the normalized pressure as a func-
tion of depth over the array aperture for both baseline models
at 170 and 330 Hz was obtained, see Fig. 5. For the 170-Hz
signal, Fig. 5�a�, it is seen that the predicted pressures for the
two models are fairly similar. For the 330-Hz signal, Fig.
5�b�, it is seen that the impact of the range dependence is
substantial. The two predicted pressures are not similar at
any depth. The influence of the range dependence of bathym-
etry and ocean sound speed is significant at the higher fre-
quency.

By comparing the transmission loss contour plots for the
range-independent and the range-dependent environments,
see Fig. 4, for each frequency the impact of the range depen-
dence can be understood. It is seen that the range dependence
causes a stretching of the field in range, at 5.6 km this
stretching is about 100 m. A major part of the stretching is
due to the larger average bathymetry for the range-dependent
model. The amount of stretching depends on each mode and
its interaction with the seabottom. The 330-Hz field is vary-
ing so fast with range that a 100-m offset causes the field to

FIG. 4. Contour plots of the transmission loss for range-independent �RI�
and range-dependent �RD� environment at 170 and 330 Hz; �a� RI at 170
Hz, �b� RD at 170 Hz, �c� RI at 330 Hz, and �d� RD at 330 Hz. The vertical
line is at 5.6 km, the dynamic range of the contours is 10 dB.

FIG. 5. Magnitude squared of the predicted pressure, at 5.6 km, using the
baseline models, range-independent model �solid line�, range-dependent
model �dashed line�; �a� 170 Hz and �b� 330 Hz.

TABLE II. GA inversion model with parameter search bounds. Each pa-
rameter was discretized into 128 values.

Model parameter Lower bound Upper bound

Geometric
Source range �m� 5300 5900
Source depth �m� 72 82
Array tilt �m� �3 3
Receiver depth �m� 110 115
Bathymetry-src �m� 127 134
Bathymetry-rcv �m� 127 134

Sediment
Sound speed, c0 �m/s� 1510 1560
Sound speed, �1 �m/s� 0 100
Sound speed, �2 �m/s� 0 100
Sound speed, �3 �m/s� 0 100
Attenuation �dB/�� 0 0.4

Bottom
Sound speed, �4 �m/s� 0 200
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appear significantly different on the array, Fig. 5�b�, whereas
at 170 Hz the influence is less significant.

III. SYNTHETIC DATA INVERSIONS

In this section it will be shown that the inversion results
based on the synthetic data in the 170-Hz band are not sen-
sitive to the mildly range-dependent environment, whereas
the inversion results based on 330-Hz band data are sensi-
tive. The analysis is concentrated on one frequency for each
band. The range-dependent baseline environmental model,
see Table I, was used to generate a synthetic data vector for
the 48-sensor array at 170 and 330 Hz. These data were used
as input to the GA to determine the estimation performance
as a function of frequency and range dependence. The GA
search parameters were: population size 64, reproduction
size 0.5, cross-over probability 0.8, mutation probability
0.05, number of iterations 2000 and number of independent
populations 10. The inversion model and the parameter
search bounds used are summarized by Table II. For those
parameters which were not optimized the baseline values of

Table I were used. The sediment and bottom sound speeds
were linked together using shape functions, see Eq. �7�. For
this case the shape functions were

c5�c0��1 , c20�c5��2 ,
�8�

c50�c20��3 , cb�c50��4 .

The GA optimization was carried out over the four shape
coefficients �j , j�1,...,4, between the bounds indicated in
Table II.

The inversion model, see Table II, was used by the GA
for both a range-independent and range-dependent inversion.
The results for both inversions �range-independent and
range-dependent� are provided in Table III. Examining the
results summarized in Table III the first issue to notice is the
Bartlett power. For the range-independent inversion the Bar-

FIG. 6. Magnitude squared of the synthetic pressure using the range-
dependent baseline environmental model �solid line�, the Bartlett power ver-
sus depth measure resulting from the estimated parameters GA-RD �dashed
line� and GA-RI �dotted line�; �a� 170 Hz and �b� 330 Hz.

TABLE IV. The models used for inversion. The notation �n� denotes that
there are n values used for that parameter. For bathymetry this refers to the
source and receiver bathymetry. sr denotes source range, sd denotes source
depth, rd denotes receiver depth, cp denotes sound-speed points in the water.
NRI and NRD is the number of parameters over which optimization was
performed for range-independent and range-dependent environments, re-
spectively.

Model NRI NRD Inversion parameters

1 2 2 sr, sd
2 3 4 sr, sd, bathy.�2�
3 4 5 sr, sd, bathy.�2�, tilt
4 8 9 sr, sd, bathy.�2�, tilt, c0,5,20,50
5 11 12 sr, sd, bathy.�2�, tilt, c0,5,20,50, rd, cb , sed.att.
6 ••• 18 sr, sd, bathy.�2�, tilt, rd, c0,5,20,50 �2�, sed.att. �2�, cb �2�
7 16 ••• sr, sd, bathy., tilt, c0,5,20,50, rd, cb , sed.att. EOF�5�
8 32 ••• sr, sd, bathy., tilt, c0,5,20,50, rd, cb , sed.att. cp�21�

TABLE III. The GA parameter estimates using a range-independent �RI� and a range-dependent �RD� inversion
model, estimates are GA-best. The synthetic data have been generated by the RD baseline environment.

Model parameter Baseline
GA-RI
170 Hz

GA-RI
330 Hz

GA-RD
170 Hz

GA-RD
330 Hz

Bartlett power �dB� �0.06 �0.64 �0.02 �0.05

Geometric
Source range �m� 5600 5550 5512 5602 5611
Source depth �m� 80.0 80.5 79.3 80.0 80.2
Receiver depth �m� 112.7 114.0 112.5 113.3 111.2
Array tilt �m� 0 �0.07 0.6 �0.07 0.26
Bathymetry-src �m� 130 129.5 128.7 130.5 130.7
Bathymetry-rcv �m� 128 ••• ••• 128.5 127.6

Sediment
Sound speed, c0 �m/s� 1520 1516 1511 1518 1521
Sound speed, c5 �m/s� 1550 1556 1566 1562 1551
Sound speed, c20 �m/s� 1600 1656 1566 1587 1583
Sound speed, c50 �m/s� 1650 1716 1624 1653 1599
Attenuation �dB/�� 0.13 0.19 0.18 0.20 0.12

Bottom
Sound speed, cb �m/s� 1750 1889 1777 1669 1690
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tlett power is significantly degraded at 330 Hz, whereas for
the range-dependent inversion, at both frequencies, the Bar-
tlett power is close to the maximum, i.e., 0 dB. Thus as
previously noticed in Fig. 5�a� and �b�, the impact of the
range dependence is more significant at the higher frequency.
The source range estimates improved considerably with the
range-dependent inversion. Of course the bathymetry esti-
mates are improved with the range-dependent inversion. The
estimates of compressional speed for the sediment were also
improved by use of the range-dependent inversion.

Figure 6 illustrates the magnitude squared of the syn-
thetic data vector �solid line� as a function of depth over the
array aperture, the Bartlett power versus depth measure
�dashed line� based on the GA-RD estimated parameters and
the Bartlett power versus depth measure �dotted line� based
on the GA-RI estimated parameters. It is seen that, at both
frequencies, the fit between the magnitude squared of the
data vector and the Bartlett power measure is quite good for
the GA-RD estimated parameters, whereas for the GA-RI
parameters the fit is good at 170 Hz but not at 330 Hz. This
figure, together with the parameter estimates in Table IV
discussed above, illustrates the advantages of using the
range-dependent inversion at the higher frequency.

These simulations indicate that if the actual environment
at the North Elba site is fairly close to the baseline environ-
mental model the range-dependent inversion model should
work quite well for estimating the geometric and geoacoustic
parameters at both frequencies. In addition, these simulation
results support the previous results of Ref. 1 that a range-
independent model performs well at 170 Hz for this environ-
ment.

IV. INVERSION OF MULTIFREQUENCY DATA

A baseline environmental model for the North Elba site
was presented in Fig. 3 and Table I. The objective of the
analysis in this section is to refine this baseline environmen-
tal model by inversion of the acoustic field data using GA.
An issue addressed is the determination of the ‘‘best’’ inver-
sion model, that is, which of the entire set of environmental
parameters were important to the GA optimization. This is-

sue is dealt with by performing the inversion using a number
of inversion models. The estimation performance as a func-
tion of frequency is also addressed.

Since the two PRN signals were not transmitted simul-
taneously two time segments were used in the analysis. The
first segment �170-Hz signal� was collected at 15:13, the sec-
ond segment �335-Hz signal� was collected at 15:54. Since
all parameters, except for array tilt �which was known to be
small�, could be considered stationary, the fact that different
time periods were used was not considered an issue. The
frequency domain data vector q��� for the 48 hydrophones
was formed using 4096 time samples sampled at a sample
rate of 1 kHz. For each frequency a cross-spectral matrix was
computed as the outer product of the observation vectors,
q���q*���, normalized by the norm of the observation vector
squared. An average over two time epochs was computed,
thus each matrix represented a total time sample of approxi-
mately 8 s. The bands from 165 to 175 Hz and 325 to 335 Hz
were processed and for each band 3 frequencies with a large
power were selected �at approximately 0.25, 0.5, and 0.75
times the 10-Hz frequency band�. The selected frequencies
were 167.7, 169.2, 172.6, 327.6, 330.1, and 332.5 Hz.

The selection of these frequencies was somewhat arbi-
trary, and other schemes could have been used. Ideally, to
obtain more robust estimates the inversion should be based
on data from frequencies spaced further apart. However, as is
evident from Figs. 1 and 2 there is different information
available at each of the selected frequencies and during pre-
liminary inversion runs it was found that data from two or

TABLE V. GA-best Bartlett power and source location estimates for each inversion model of Table IV, both
range independent �RI� and range dependent �RD�.

Model

170-Hz band 335-Hz band Both bands

Power
�dB�

Range
�m�

Depth
�m�

Power
�dB�

Range
�m�

Depth
�m�

Power
�dB�

Range
�m�

Depth
�m�

RI-1 �0.40 5450 75 �4.70 5300 74 �2.93 5470 75
RI-2 �0.31 5500 76 �1.81 5610 78 �1.21 5590 78
RI-3 �0.29 5490 76 �1.65 5580 78 �1.16 5570 77
RI-4 �0.24 5490 76 �1.50 5620 77 �1.09 5560 77
RI-5 �0.24 5500 75 �1.04 5640 78 �0.92 5590 77

RD-1 �0.41 5560 76 �2.59 5320 76 �2.12 5580 77
RD-2 �0.28 5610 75 �1.04 5670 80 �0.76 5660 80
RD-3 �0.25 5590 75 �0.96 5650 80 �0.71 5650 79
RD-4 �0.22 5600 75 �0.95 5670 79 �0.68 5630 79
RD-5 �0.22 5600 76 �0.98 5630 78 �0.65 5660 80
RD-6 �0.23 5560 77 �0.75 5650 80 �0.60 5630 79

TABLE VI. Standard deviations �normalized by the search interval� calcu-
lated using the a posteriori distributions for the geometric parameter esti-
mates for model RD-6.

Parameter 170-Hz band 335-Hz band Both bands

Source range 0.03 0.03 0.03
Source depth 0.08 0.08 0.05
Receiver depth 0.27 0.28 0.22
Array tilt 0.04 0.04 0.02
Bathymetry-src 0.13 0.09 0.07
Bathymetry-rcv 0.13 0.17 0.13
Mean 0.11 0.11 0.09
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more frequencies should be used in each band. However, the
environmental information that can be extracted does not
vary within a band as the wavelength is nearly constant in
each band. Basing the estimate of the covariance matrix on
longer observation times was not found important.

A major concern for a global approach is the CPU time.
Nearly all CPU time is used generating the forward model
results �here 20 000 times�. These CPU times are reported
for a DEC 3000/800 workstation. At one end of the scale the
inversion for the three frequencies in the 170 Hz band for the
range-independent model took 40 min and at the other end of
the scale it took 5 h for the range-dependent inversion using
all six frequencies for the combined band.

Throughout this section the estimation results are based
on use of the incoherent frequency averaged Bartlett proces-
sor, see Eq. �1�, as the objective function. The GA search
parameters, e.g., population size, reproduction size, etc.,
were the same as those used in Sec. III, see Table III for the
optimization search bounds.

A. The inversion models

In order to investigate the issue of parameter importance
a number of inversion models of increasing complexity were
constructed, see Table V. Model 1 provided optimization
over only the source location parameters, whereas model 2
added optimization over the bathymetry. Model 5 is the same
as that used in the simulations of Sec. III. Model 6 was the
most complex with optimization over geometric parameters
as well as sediment and bottom parameters for a range-
dependent environment. Models 7 and 8 are used with the
range-independent model to optimize over ocean sound
speed. Model 7 uses EOFs while model 8 uses individual
sound-speed points. The results of models 7 and 8 are dis-
cussed in Sec. IV D.

An inversion was computed using the incoherently av-
eraged Bartlett processor for all models of Table V. The data
were processed using three different bands; �a� incoherent
average over the three frequencies from the 170-Hz band, �b�
incoherent average over the three frequencies from the
335-Hz band, and �c� incoherent average over the six fre-
quencies from both bands. A summary of the inversion re-
sults in terms of Bartlett power and source location param-
eters is given in Table VI.

In commenting on this table it should be made clear that
Monte-Carlo global optimization methods are good at find-
ing a solution close to the global optimum, but not the best
value. How close it gets to the global optimum depends on
the actual problem and the GA-tuning parameters, especially
the number of forward modeling runs. When using only
20 000 forward runs for each inversion the search has not yet
been exhausted and the error is estimated to about 5% of the
Bartlett power. Some of this uncertainty could be reduced by
combining the global search with a deterministic search
algorithm.6 The number of forward runs and this uncertainty
will also influence the a posteriori distributions. By increas-
ing the number of forward modeling runs the peaks in the a
posteriori distributions become sharper.

Examining the results of Table VI it is seen that many of
the issues observed in the synthetic data results, presented in

Table III of Sec. III, are the same. That is, the Bartlett power
is larger for the 170-Hz band than for the 335-Hz band and
that the Bartlett power for the 335-Hz band increased with a
range-dependent model. Using the results of Table VI, which
contains 5 range-independent models, 6 range-dependent
models each for the three frequency bands the assessment of
global estimation performance as a function of frequency, as
a function of range dependence and as a function of model
complexity is addressed. The two range-independent models
containing optimization over ocean sound speed are dis-
cussed in Sec. IV D.

B. Inversion performance

For the 170-Hz band the Bartlett power is essentially flat
as a function of model complexity beyond models RI-4 and
RD-3, indicating that at 170 Hz the estimation was not sen-
sitive to additional environmental complexity. If only the
170-Hz band data were available the simplest model to use,
based on Bartlett power, would be the range-independent
model RI-4. Examining the results for the other bands it is
seen that the higher frequency data, 335-Hz band and com-
bined band, appear to support a larger number of model pa-
rameters since the Bartlett power continues to improve as the
models become more complex. Due to the fact that there are
more modes propagating at 335 Hz there is more information
at the higher frequencies. Therefore, there may be a gain by
using a more complicated model at the higher frequency.

Since the baseline values for source range and depth
were not known exactly it was not possible to determine
which band provided the most accurate source location esti-
mates. �Based on measurements, the source range and depth
were estimated to 5600�200 and 80�2 m �Ref. 1�.� The a
posteriori distributions provided some insight. Figure 7 illus-
trates the a posteriori distributions for source range and
depth for each of the three bands using model RD-6 for
comparison. Examining Fig. 7 it is seen that the source range
and depth distribution becomes more compact when the
combined band is used instead of the individual bands. It can
also be seen that the 170-Hz band gives lower estimates for
range and depth than the 335-Hz band. The source range and
depth estimates of the combined band are mainly influenced
by the higher frequency data. These results indicate that the
objective function is less ambiguous for the combined band,
and thus more reliable source location parameter estimates
are obtained using the combined band.

Further insight was gained by examining the empirical
standard deviations �normalized by the search interval� cal-
culated from the a posteriori distributions. Table VII pro-
vides the normalized standard deviations for each of the geo-
metric parameter estimates obtained using model RD-6. The
estimates obtained using the combined band are more stable
than those obtained using either of the two other bands and
the mean standard deviation is smaller. For all of the param-
eters, geometric, and geoacoustic �not shown�, the combined
band provided the most stable, or was equal to the most
stable, estimate. In summary, the stability of the parameter
estimates for the combined band would indicate that it
should be used.
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Returning to Table VI it is seen that, as for the synthetic
results �Table III�, the use of a range-dependent model was
advantageous. That is, the Bartlett power for all models in-
creased with the range-dependent model. It should also be
noted that the range and depth estimates for the range-
dependent models were quite stable and close to the baseline
values.

C. Performance of the RD-6 model

Using the Bartlett power as a performance measure it is
seen from Table VI that the model with the largest Bartlett
power is the range-dependent model RD-6 when the com-
bined band is used. Even though the largest Bartlett power
was obtained using the RD-6 model it may be over interpre-
tation to use all the parameters of that model; for example
RD-4 might be sufficient, as the improvement in Bartlett
power is not large between the two models. This implies that
the most uncertain parameters for model RD-6 should be
interpreted with care.

For the RD-6 model the a posteriori distributions for the
more important parameters are illustrated in Fig. 8. It is seen
that except for the receiver depth the geometric parameters
were well determined. That is, all distributions were compact
over the search interval and had well defined single peaks. In
general, it would be expected that the source and receiver
depths are about equally important. The source depth is
much more important here because it is placed in the ther-
mocline. Further, the search interval for the receiver depth is
half of the search interval for the source depth. For the sedi-
ment sound-speed estimates a plot of the GA-best value of

FIG. 7. The a posteriori distributions for source range and depth for model
RD-6; �a� 170-Hz band, �b� 335-Hz band, and �c� the combined bands.

FIG. 8. The a posteriori distribution for the most important parameters for
model RD-6 using the combined band. 1 and 2 refers to the source and
receiver environment, respectively.

TABLE VII. GA-best and GA-mean Bartlett power and source location estimates for the inversion model of
RI-7 and RI-8 in Table IV.

Model

170-Hz band 335-Hz band Both bands

Power
�dB�

Range
�m�

Depth
�m�

Power
�dB�

Range
�m�

Depth
�m�

Power
�dB�

Range
�m�

Depth
�m�

GA-best RI-7 �0.27 5780 77 �0.68 5310 78 �0.71 5450 76
GA-best RI-8 �0.22 5700 77 �0.41 5540 76 �0.63 5660 78

GA-mean RI-7 �0.26 5720 77 �0.79 5400 75 �0.71 5560 77
GA-mean RI-8 �0.23 5670 77 �0.51 5470 76 �0.51 5720 77
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the a posteriori distribution for the two profiles is included
as Fig. 9. From the a posteriori distribution the standard
deviation for each sound-speed point has been estimated and
is included as error bars in the figure. It is seen that the
standard deviation increases with depth. The lower depths
are only determined with considerable uncertainty �i.e., large
standard deviations�, as the sound speed at these depths is
not important for the wave propagation in the water column.
In general only the first few wavelengths �corresponding to
20–30 m� of the sediment are important for the wave propa-
gation.

In order to better understand the performance of the GA
environmental parameter estimates at each of the six fre-
quencies the Bartlett power measure for model RD-1 and
RD-6 is plotted in Fig. 10. The solid line represents the
magnitude-squared pressure across the array, Eq. �5�, and the
dashed line and dotted line represent Bartlett power measure,
Eq. �6�, for the best environment for model RD-1 and RD-6,
respectively. The closer the two lines are the better the fit
between the model and the data. From the figure it is seen
that, as noted earlier, the optimization over environmental
parameters is mainly improving the fit at the higher frequen-
cies, RD-6 provides a better fit than RD-1.

D. Ocean sound speed

During the conduct of the experiment 15 CTD’s were
collected �a CTD is a probe for measuring conductivity tem-
perature and density in the ocean�. The sound-speed variabil-
ity was small, less than �1 m/s, for the corresponding
sound-speed profiles. These sound-speed profiles formed a
data base for calculating the EOFs. Through an empirical
procedure minimizing the error between the series represen-
tation, Eq. �A3�, and the actual sound-speed profiles it was
determined that five EOFs were sufficient.

As described in Sec. I C, three representations of the
sound-speed profile are available, individual sound-speed
points �model RI-8�, EOFs �model RI-7� and ad hoc. The
‘‘ad-hoc’’ sound-speed representation is not described since
sufficient sound-speed observations were available and thus

EOFs were preferable. For the EOF coefficients �model
RI-7� the search interval was �5 to 5 m/s for the five coef-
ficients, thus in total 16 parameters were used in this optimi-
zation. For the individual sound-speed points �mode RI-8�,
21 points were used in describing the profile, and each point
was given a search interval of �2 to 2 m/s around the mean
profile.

The results of both inversions are given in Table IV and
the corresponding sound-speed profiles in Fig. 11. The re-
sults obtained for RI-8 are unusual, as it has too many free
variables. This causes a very good fit, but the model should
be rejected because it has an unphysical sound-speed profile.
As the GA-mean does not represent an actual sampled model
vector it is possible that the GA-mean Bartlett power is bet-
ter that the GA-best, as is the case for the combined band of
RI-8. It is seen that RI-7 has a better fitness than the other
range-independent models, but the estimated range is further
away from the baseline value.

The estimated sound-speed profiles are shown in Fig. 11
using models: �a� RI-8 and �b� RI-7. The sound-speed mea-
surements taken at the source and receiver are shown for
reference. From the a posteriori distribution the standard de-
viation for some of the sound-speed points have been esti-
mated and are included as error bars in the figure. The stan-
dard deviations indicate that sound-speed estimation based
on the individual sound-speed points is more uncertain. The
estimated sound-speed profiles are based on the mean of the
a posteriori distribution as the individual sound-speed points
gave an unrealistic profile when the GA-best estimate was
used. The use of the GA-mean works as a regularization tool
that smooths out the unrealistic high frequency variations in
the profile. The lower part of the profile is smoother than the

FIG. 9. The GA-best estimate of sediment sound speeds using model RD-6
at the source �solid line� and at the receiver �dashed line�. The horizontal
bars indicates one standard deviation to either side of the mean of the a
posteriori distribution.

FIG. 10. The power across the array for each of the six frequencies. Mag-
nitude squared of the pressure �solid line�, Bartlett power measure, Eq. �3�,
for RD-1 estimates �dotted line�, and for RD-6 estimates �dashed line�.
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upper which could indicate that it is more well determined,
probably because the lower part is more important for the
wave propagation. The extra degrees of freedom for the
sound speed enables it to obtain a good Bartlett power. In
fact, this is the best Bartlett power for all range-independent
models. This underlines how important the ocean sound-
speed profile is for the wave propagation, and thus the esti-
mated parameters. If there are minor uncertainties in the
ocean sound speed this can have a major influence on the
estimates of the remaining parameters. In order to obtain a
physically realistic estimate using single sound speed points
the solution has probably to be regularized so that either the
deviation from an expected profile is penalized or the second
derivative of the profile is penalized.31

The estimated sound-speed profile using EOFs is close
to the expected, and also the estimated values for the geo-
metric and geoacoustic parameters are close to those found
without optimizing over ocean sound speed.

V. CONCLUSIONS

Inversion was performed using high-quality acoustic
field data collected on a vertical array in a mildly range-
dependent shallow water environment. Two signal bands
were used, a band centered around 170 Hz and a band cen-

tered around 335 Hz. Inversion at a single frequency, 169.9
Hz, using this data has previously been reported.1

Data from several frequencies were combined using the
incoherent Bartlett processor. When the inversion was based
on several frequencies it was found that the solution became
more stable. The lower frequency data were easier to invert
since there are fewer modes and thus less information about
the environment in the observations. At the higher frequency
more parameters can be estimated as there are more modes
and thus more information.

A range-dependent adiabatic normal mode code was
used for the forward model. The lower frequency data did
not require range dependence, but the Bartlett power for the
higher frequencies improved significantly when range depen-
dence was included. With the range-dependent model
�RD-6� a Bartlett power of �0.6 dB �compared to 0 dB
maximum� was obtained using the combined frequency
band, clearly indicating that a good environmental model
was found.

Inclusion of the ocean sound speed in the inversion pro-
cess was also investigated for a range-independent environ-
ment. As acoustic data is very sensitive to the ocean sound
speed it should in general be included. The sound speed was
represented using both individual sound-speed points as well
as empirical orthonormal functions �EOFs�. In the present
case a Bartlett power of �0.6 dB was obtained when using
EOFs, indicating that also this environmental model could be
likely.

The global estimation method, genetic algorithms, was
applied to experimental observations at several frequencies
for estimating the geometric, geoacoustic, and ocean sound-
speed model parameters. The geometric parameters such as
source range and depth, array hydrophone positions, and
bathymetry were included in the search. Thus all important
forward model parameters in a range-dependent environment
using acoustic field observations were estimated. Based on
the a posteriori distributions the geometric parameters were
well estimated and the resolution of the first few wavelengths
of the bottom is probably sufficient for most underwater
acoustic applications.

APPENDIX: EMPIRICAL ORTHONORMAL FUNCTIONS

The use of empirical orthonormal functions �EOF� for
representing ocean sound-speed profiles follows directly
from the Karhunen–Loeve expansion from random process
theory.32 The method is straightforward, given a sequence of
sound-speed vectors �cm� m�1,2,.. . ,M , sampled at D dis-
crete points �z1 ,z2 ,. . . ,zD�. First form a sample mean vector
c̄. A set of orthonormal vectors vj , the EOFs or shape func-
tions, are determined as the eigenvectors of the sample co-
variance matrix C given by

C��1/M � �
m�1

M

�cm� c̄��cm� c̄�T. �A1�

The orthonormal vectors could also be found by order-
ing all the observed sound-speed vectors into a single matrix
Q��c1�c̄,c2�c̄,...,cM�c̄� and then do a singular value de-
composition of this matrix, i.e., Q�� j�1

M � jvjujT. The cova-

FIG. 11. Estimated GA-mean ocean sound-speed profiles �solid line� using:
�a� RI-8 �sound-speed points� and �b� RI-7 �EOFs�. For reference, the sound-
speed profile at the receiver �dashed line� and at the source �dotted line� are
shown. The horizontal bars indicate one standard deviation to either side of
the GA-mean.
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riance matrix C can then be expressed in terms of the singu-
lar eigenvectors:

C�QQT��
j�1

M

� j
2vjvj

T . �A2�

Thus the eigenvectors of the covariance matrix Eq. �A1� and
the singular vectors vj are identical. They are, though, ar-
rived at from different viewpoints.

For any one of the sound-speed vectors a series repre-
sentation, using J terms, is given by �similar to Eq. �7��

�c� c̄���
j�1

J

� jvj , �A3�

where the coefficients �j are given by the vector inner prod-
uct

� j��c� c̄�Tvj . �A4�

The global optimization for ocean sound-speed estimation is
carried out over the EOF coefficients ��j� where the number
of coefficients J is selected based on experience.
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