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An inversion procedure for obtaining speeds, attenuation, densities, and thicknesses for a layered 
medium is described. The inversion is carried out using the least-squares technique and the forward 
modeling is based on SAFARI. The optimization is a hybrid method combining the global genetic 
algorithms and the local Gauss-Newton method. This is done by taking several gradient steps 
between each update of the object function for each "individual" in the population. The gradients 
for the Gauss-Newton method are computed analytically; this makes the computation faster and 
more stable than computing the gradients by numerical differentiation. The combination of a global 
and a local method makes the hybrid method faster and it gets closer to the global minimum than 
a pure global method. Examples based on both real and synthetic data in wave-number-frequency 
and range-frequency domains show that the method works well. 
PACS numbers: 43.30.Ma, 43.30.Pc, 43.60.Pt, 43.40.Ph 

INTRODUCTION 

Recently there has been a substantial increase in the use 
of global optimization techniques such as simulated anneal- 
ing (SA) •-3 and genetic algorithms (GA) 4'5 applied to inver- 
sion of underwater acoustic signals when the inversion is 
stated as an optimization problem. The reason for this is 
clear, as they are formulated independently of the forward 
model and thus very easy to apply. However, few successful 
inversions of global optimization have been reported for in- 
versions with more than 30 parameters increases. 

Local methods have also been used for seismoacoustic 

problems 6'7 and for seismic exploration. 8-•2 These are based 
on the gradients of the object function and require computa- 
tion of these quantities; provided that it is possible to com- 
pute the gradients, a local method will usually be able to 
descend quite efficiently toward a local minimum. However, 
local methods have the disadvantage of getting trapped in 
suboptimal minima, and the method can become unstable 
when computing the next step in the iteration. 

The idea presented in this paper is to combine the two 
search methods, so that (1) the local method does not get 
trapped in local minima, (2) the computer time used for a 
global method is significantly reduced, and (3) larger prob- 
lems can be handled than if only a global method was used. 

Few examples of combinations of local and global meth- 
ods exist, e.g., Refs. 13 and 14. In Ref. 14 it was suggested 
to use the covariance matrix of the gradient of the object 
function to reparametrize the parameter space. After this re- 
parametrization the search proceeds using SA. This approach 
is efficient if some parameters in the parameter space are 
characterized by a few local minima with prominent features 
in one direction. In Ref. 13 a Monte Carlo method was used 
in combination with a gradient descent method in order to fit 
seismic waveforms of marine data. A Monte Carlo method 

was used first to explore the large parameter space using a 
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coarse grid. When this search was estimated to be in the 
region of the global minimum, the search was sped up using 
a gradient descent method on the most plausible model. 
Given the good performance of guided Monte Carlo methods 
such as SA and GA in comparison with a simple Monte 
Carlo method, it seems natural to combine a guided Monte 
Carlo with a gradient search. 

The goal of the inversion procedure is to find the model 
vector tn that optimizes a cost function or object function ,;b. 
Its formulation depends both on the problem at hand and on 
the measured data available. Here we choose a quadratic 
variation: 

qb(m) = [we]rWe, e= dou •- dcal(m), (1) 

where dot,s and dca I are normalized unit vectors containing 
the Nob s observed and calculated amplitude of the pressure 
field, m is the model vector containing the physical param- 
eters, and W is a diagonal matrix containing the weighting 
for each observation point. Scaling of the data vectors allows 
us to work only with the shape of the pressure field. 

SAFARI 15'•6 is used as the forward model. Thus the en- 
vironment is horizontally stratified and only the acoustic pa- 
rameters are considered. The model vector m with M ele- 

ments is given by 

T T T T T m=[%,yp,p ,z ] , (2) 

with the four subvectors being the speeds %, attenuations 
y•,, densities p, and thicknesses z for the layers. Naturally, 
not all the environmental parameters need to be unknown. 
Analytic computation of the gradients from a wave-theoretic 
model has been done by several authors in the seismic com- 
munity, for example for acoustic • and for elastic media? 

This paper is organized as follows. In Sec. I the hybrid 
method is introduced, followed by an overview of both ge- 
netic algorithms and the Gauss-Newton method. It is impor- 
tant to regularize the solution, here shape functions are used, 
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and this is also described in Sec. I. In Sec. II the approach is 
applied to the inversion of geoacoustic parameters for both 
real and synthetic data. 

I. THE HYBRID APPROACH 

A crucial point in deciding if a global or local method is 
most efficient for a given object function is the number of 
local minima in the search space. By a global method we 
mean a method, such as SA or GA, which does not use 
gradients. If there are only a few local minima a local 
method with a few random starting points is more efficient 
than a global method, because a global method is very inef- 
ficient in descending, as the gradients are not used. For 
noisier data the object function will show several suboptimal 
minima. For this scenario the global method will become 
more efficient as it will not get stuck in each of the minima. 
Finally, if the data becomes too noisy then only an exhaus- 
tive search will find the solution. 

For a large class of inverse problems it is believed that 
the number of local minima in the search space is small. 
Here an efficient approach would be to find the local minima 
by a gradient method and then use a global method to choose 
between these local minima. This is what the hybrid method 
should do. 

The hybrid approach states quite simply that for each 
new child generated by the GA, in addition to the crossover 
and mutation operator, Ng Gauss-Newton steps are applied 
to the child in order to increase the fitness. The choice of Ng 
is problem dependent. For a local problem it is optimal to 
use a large Ng so that the minimum is reached quickly. How- 
ever, if the minimum is not reached during the first set of 
iterations, it can be reached in the next with little extra com- 
putational cost. For very noisy data it is optimal not to per- 
form any Gauss-Newton steps. Experimentally, we found 
the Ng=5 seems to be a good choice. 
A. Genetic algorithms 

Genetic algorithms (GA) are based on an analogy with 
biological evolution. While these have already provided 
promising results in the seismic community, 17-•9 an applica- 
tion to ocean acoustic problems has only recently been 
published. 4 The basic principle of GA is simple: From all 
possible model vectors, an initial population size of q mem- 
ber is selected. The fitness of each member is computed 
based on the fit between the observed and computed data. 
Then through a set of evolutionary steps the initial popula- 
tion evolves in order to become fitter. An evolutionary step 
consists of selecting a parental distribution from the popula- 
tion based on the individual's fitness. The parents are then 
combined in pairs and operators are applied to them to form 
a set of children. Traditionally the crossover and mutation 
operators have been used, but for the hybrid method the 
"Gauss-Newton" operator is also applied. Finally, the chil- 
dren replace part of the population to get a fitter population. 

The environment is discretized into M parameters in a 
model vector m. Each parameter m j, j= 1 ..... M, has a bi- 
nary parameter string of length nj and can take 2nJ discrete 
values according to an a priori probability distribution 
(Gaussian, rectangular or based on a priori information). 

I l = =nj--1 =nl-2 ß ø•3 c(2 
0 = 0 0 0 0 0 m rain 

I 

1 = 0 0 0 0 1 mmin+ 1 Am 
I 

2 = 0 0 0 1 0 m rain 2 Am j + 
3= 0 0 0 1 1 mjmln+ 3 A m 

2nj -1 = 1 1 1 1 1 mj m'ax 

FIG. 1. Binary coding of model parameters. nj is the number of bits. 

Here a rectangular distribution between a lower and upper 
bound min max [mj ,rnj ] is used. We have (see Fig. 1) 

i rnin ß =mj +tj Arnj ij=0,1,2 ..... 2"J--1 (3) rnj , , 
where 

max rnin 

rnj - mj (4) Am j- 2n• - 1 
A major difference between SA and GA is that GA uses 

q model vectors at the same time, where q is the population 
size, while SA uses only one. GA consists essentially of three 
operators: Selection, crossover, and mutation. 

Selection: In order to establish the next generation, a 
subset of the current population must be selected as parents. 
Selection is based on the fitness of the individual models. 

The probability that the kth member is selected as parent is 
made according to a normalized Boltzmann distribution: 

exp[- qb(mk)/T] 
Pk=x•=• exp[-qb(mt)/T] ' k=l ..... q. (5) 
The introduction of temperature T, as in SA, gives us the 

opportunity to stretch the probability and to improve the per- 
formance of the algorithm? Indeed, at the first stage of the 
procedure, by stretching the fitness we avoid choosing as 
parents only those members with the better fit, which would 
otherwise tend to dominate the population; later in the opti- 
mization this stretching leads to better discrimination be- 
tween models with close fitness. As with SA, the choice of 
the temperature T is difficult. It must neither be too high nor 
too low. A good compromise is a temperature of the same 
magnitude as the object function, here T=min[•mn)]. Dur- 
ing the optimization, the fitness increases and the tempera- 
ture decreases. 

Crossover: For each set of parents, each consisting of a 
model vector, two children are constructed. For each param- 
eter in the model vector each child may either be a direct 
copy of one parent, with probability 1-px, or it can be a bit 
crossover of the two parents with crossover probability p•, 
see Fig. 2. The crossover point is chosen randomly in the 
interval [1,N-1], where N is the number of bits used in the 
coding. Different techniques are available to perform this 
crossover of the population. Two of these are single-point 
crossover where the entire chromosome is used once, and 
multiple-point crossover (as used here) where the chromo- 
some is divided into genes related to each parameter on 
which the crossover is applied. 
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FIG. 2. Crossover is a binary exchange of 1 bits between the binary codes 
for two model parameters. l is chosen randomly. 

Mutation: This is a random change of one bit in the 
model vector, performed with probability Pm in order to bet- 
ter explore the search space, see Fig. 3. 

It is possible that a run of a GA will approach a local 
minimum. In order to increase the probability of finding the 
global minimum, several independent populations are 
started. This is also advantageous for collecting statistical 
information to estimate the a posteriori probabilities. For 
advice on how to set the optimization parameters, see Ref. 4. 

B. Gauss-Newton 

A minimum of Eq. (1) is obtained by linearizing the 
function dcal(m ) in the neighborhood of some working point, 
and a solution to the linearized problem is then found. This 
procedure is iterated, using for the new working point the 
solution found at the previous step, until a stable solution is 
determined. The Gauss-Newton approach described in this 
section is standard; for further detail see the published 
literature.6-9,n. 20 

For the linearization, we need to compute the derivative 
of the calculated pressures J=Vdeal(m), where the ijth ele- 
ment of the NobsXM JacobJan matrix is given by 

Odcal,i(m) 
Jij - 8mj ' (6) 

see the Appendix. For a model perturbation ,fro from the 
current model m, a Taylor expansion with terms up to the 
second order of the object function, Eq. (1), is performed 

•(m+ •Sm)= •(m)+ gr6m+ «smrH6m, (7) 
where the vector of first derivatives, the gradient g, and the 
matrix of second derivatives, the Hessian H, of the object 
function are given by 

g = 2 [ W J] rwe, (8) 
H= 2[W J] rwj + 2[W(?j)]rwe, (9) 

•2[WJ]rWJ. (10) 

i i 

FIG. 3. Mutation is a random change of one bit. 

Neglecting the second term in Eq. (9) is the Gauss- 
Newton approximation and corresponds to assuming that the 
residuals e are locally linear with respect to the parameter 
changes. We minimize Eq. (7) subject to a regularization 
term, and obtain lhe Gauss-Newton regularized iteration: 

•Sm= ([WJ]7WJ+ XBTB) - l[wj] rwe. (11) 
The matrix B is the regularization matrix, and X is a 
Lagrange multiplier. In general, B will impose some smooth- 
ness constraint on the solution. In the present study B is the 
identity matrix, thus the iteration in Eq. (11) corresponds to 
the Levenberg-Marquardt method. An error analysis is inde- 
pendent of the particular iteration method chosen, but does 
depend on the regularization operator. 

The best tool for solving and analyzing the solution of a 
local method is the singular-value decomposition (SVD) of 
WJ. 7-9 Given orthogonal matrices U, V, and a diagonal ma- 
trix •; such that J=UY•V r, the solution of Eq. (11) for h=0 
belongs to the space spanned by the columns v of V (param- 
eter eigenvectors); the corresponding diagonal terms o' i in •; 
(singular values) ::tre an indication of the relative importance 
of each eigenvector for the given problem. Using the 
singular-value decomposition, Eq. (11) is written 

M M 

i=10'i -•' •k '= O.i-•'•Vi(Oli). (12) 
From Eq. (12) it is seen that small singular values will indi- 
cate low sensitivit:y of the field to the corresponding param- 
eter eigenvector, and moreover may cause numerical insta- 
bility in the computation. The effect of the regularization 
term in Eq. (11) is to damp the smaller singular values by 
shifting all the singular values away from the origin, so that 
the computation becomes stable. However the information in 
the parameter subspace spanned by the corresponding eigen- 
vectors cannot be retrieved accurately. 

The use of SVD is straightforward when the parameter 
vector m has elements with the same physical meaning, e.g., 
sound speed as a function of depth within the seafloor. If m 
is a combination of parameters with different physical di- 
mensions, a coordinate transform would be introduced so 
that the SVD is independent from the physical units of the 
different parameters, and thus is invariant to scaling. But 
even if this is done correctly, several problems will arise 
when using a local method in several parameters having dif- 
ferent physical meaning. 

In this application a simple scaling has been used: A 
diagonal matrix containing the current values of the model 
vector D=diag[mi-l,m, • ..... m• 1] has been used to scale 
the model vector. The Jacobian matrix J should then be re- 
placed by JD in Eq. (11). The resulting solution m ø must 
then be rescaled to obtain the model vector m=D-•m ø. 
Other methods for determining the scaling matrix exist D, 
see Ref. 8. 

We first solve Eq. (12) with an insignificant value of 
h(•.=10-5o-•1); if this new model vector does not give an 
improved value of the object function we multiply )t by a 
factor 10 and resolve Eq. (12). This continues until an im- 
proved value of the object function is found or the stop cri- 

2183 d. Acoust. Soc. Am., Vol. 97, No. 4, April 1995 Peter Gerstoft: Inversion of acoustic data 2183 



terion is satisfied. The stop criterion is that the maximum 
number of iterations is reached or that for all parameters 
i=I,...,M: 

•Srni< Arni• , (13) 
where •=0.2 and Am i is the discretization step size given by 
Eq. (4). 

An important step in obtaining a solution by a local 
method is the determination of the derivatives of the pressure 
field with respect to the model parameters. These can be 
computed in three ways: •2 finite difference, adjoint state 
technique, and analytical differentiation. 

The adjoint state is based directly on the differential 
equation, see Reft 20. 

For the finite difference method, the main problem is to 
determine the step size. This should be determined by some 
adaptive method in order to get a stable result. It is also 
computationally demanding; for a problem of M parameters 
a finite difference solution requires at least M+I forward 
models. This is in contrast to both adjoint and analytical 
differentiation where the computation of derivatives does not 
increase the computer time significantly. Thus finite differ- 
ence should only be used for small problems. In addition, 
finite difference will have problems in obtaining stable de- 
rivatives; it cannot easily be automated. 

Analytic differentiation has been used in seismic reflec- 
tivity modeling in the frequency-wave-number domain by 
Refs. 11 and 12 for seismic exploration problems, but for 
each formulation of the forward model the analytic differen- 
tiation is different. 

In the present application we derive analytical expres- 
sions for the gradient using the direct global matrix method 
(DGM) as implemented in SAFARI. These are essential in 
getting a Gauss-Newton method to work and are developed 
in the Appendix. 

C. Regularization 
Experience with synthetic and real data 5'2• had shown 

that it is advantageous to regularize the solution in order to 
have a priori well-behaved solutions. Regularization is intro- 
duced via shape functions: 

Ms 

m= '• laihi, (14) 
i 

where h i is the /the shape function or basis function, /.t i is 
the coefficient associated with the shape function, and M s is 
the number of shape functions used. The advantages of shape 
functions are (1) To constrain the solution to belong to a 
certain class of expected profiles. (2) To describe the varia- 
tion of the parameters with fewer coefficients and in so doing 
to reduce the number of unknowns. This can also constrain 

the solution to be more physically correct. By linking the 
velocities in the sediment together we can describe them by 
a smoother function and, further, the number of unknowns is 
reduced. (3) To link correlated parameters. For example the 
source of receiver depth is often specified in depth from the 
surface. Alternatively, using shape functions they can be 
specified from the bottom. 

TABLE I. Comparison of inversion results for the three examples. CPU 
time is for a DEC-3000/800 workstation. 

CPU Model calls New individuals 

Case Obj fn (rain) ( X 10 3) ( X 10 3) 
A1-GA 0.003 14 50 50 

Al-hy 0.0001 0.6 1 0.2 
A1-GN 0.006 0.03 0.022 ... 
A2-GA 0.0003 14 50 50 

A2-hy 0.000007 9 10 1 
B-G^ 0.56 40 10 10 

B-hy 0.62 14 1 0.2 

Regularization using shape functions may decrease the 
correlation between parameters and this would improve the 
inversion results. This was done in Ref. 5 where we inverted 

for the slope and the offset of the water sound speed instead 
of inverting for the absolute sound speed at discrete points. 

II. EXAMPLES 

The examples will compare the hybrid approach in both 
wave number or range domain on both synthetic and real 
data to the classical genetic algorithms and Gauss-Newton 
methods. 

For the GA the "standard" parameters 4'5 were used: 
Population size 32, crossover rate 0.8, mutation probability 
0.05, and reproduction size 0.5. A full GA run will consist of 
several parallel populations each with 2000 forward models. 
For the hybrid method, a run will consist of one population 
with 1000-5000 forward models and five Gauss-Newton 
iterations or five forward models for each new individual. 

This corresponds to evaluating 200-1000 new individuals. 
The examples will show comparisons between GA and 

the hybrid method. The main findings are summarized in 
Table I. The basis for comparison of the two methods is how 
fast the final estimate is obtained. How well the final esti- 

mate fits the data is expressed through the value of the object 
function, Eq. (1). How fast the solution is obtained is best 
expressed through the CPU-time, which depends on the ac- 
tual implementation of the code. It could also be expressed 
by the number of forward modeling calls, but because the 
GN also needs a gradient the forward modeling calls are 
more CPU intensive for this method (about a factor 2-5 
depending on the number of gradients to be computed). Fi- 
nally, the speed can also be expressed as number of new 
individuals. For the hybrid method, computation of a new 
individual requires Ng forward models; using Ng=5 makes a 
new individual a factor 5X2=10 more intensive than the 
simple GA. This extra effort is often well spent. 

It is instructive to bear in mind some limiting cases: (1) 
For a purely local problem GN is faster than the hybrid 
method which is faster than GA. The GN does not waste any 
time exploring the model space. (2) If the GA and hybrid 
method have the same number of new individuals the hybrid 
will always outperform the GA because it does additional 
GN steps which will give better or at worst the same fitness. 
(3) On very noisy data the hybrid method will just waste 
time computing gradients. 
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FIG. 4. The inversion result (dashed line) for the sound-speed profile using (a) GA, (b) Gauss-Newton, and (c) the hybrid method. The true solution is the 
solid line. 

A. Inversion in wave-number domain 

In order to describe the approach we first invert for the 
sound-speed profile given the simple environmental model 
given in Table II, which is similar to the environment given 
in Ref. 4 except that we have no shear. The bottom is param- 
etrized into 10 layers, each 10 m thick, plus a basement 
layer; in total 11 layers. In order to obtain maximum re- 
sponse from the bottom, both the source and the receivers are 
placed on the seabed. The source frequency is 100 Hz and 
the magnitude of the horizontal wave-number spectrum is 
computed at 64 points equally spaced in the phase velocity 
range from 1200 to 3000 m/s. The amount of information 
available to retrieve the parameters here is rather limited in 
order to make the inversion more difficult. These examples 
are purely synthetic. Thus there is no consideration of how 
we should obtain the input data from actual experiments. For 
a discussion of how to transform real data to wave-number 
domain, see Refs. 11 and 12. 

In the first example (case A1) we will only invert for the 
sound-speed profile in the bottom; all other parameters are 
kept at their correct values, First we solved the problem us- 
ing GA alone with 25 populations, each consisting of 2000 
forward models, which gives a total of $0 000 forward model 
calculations. The search interval for each parameter is 1500- 
3100 m/s. The best solution obtained is displayed in Fig. 
4(a). The first layers are well determined, whereas the lower 
layers are less well determined. One advantage of this 
method is that we can obtain as estimate of the accuracy of 
the solution by plotting the marginal a posterJori 
probabilities, 4 Fig. 5. These show that as we get down to the 
lower layers the solution becomes more uncertain, and there 
is no well-defined peak. 

The Gauss-Newton method is always sensitive to the 
starting values. We ran it with the initial model vector being 

TABLE 11. Environmental model for inversion. 

Depth span Speed Atten. Density 
Medium (m) (m/s) (dB/k) (kg/m 3) 
water 0-50 1500 0 1000 

sediment 1 50-100 1600 0.1 1600 
sediment 2 100-150 1800 0.1 2000 
basement 150-• 2800 0.1 2200 

uniformly 1500 m/s. After 22 iterations the optimization did 
not improve and the result is given in Fig. 4(b). A food match 
is obtained down to 100 m, but below the match is unstable. 
This could indicate some stability problems with numerically 
insignificant gradients. A singular value decomposition was 
done at the correct values for all the eleven P-velocities (as a 
local uncertainty measure depends on the analysis point), 
Fig. 6. The inverse solution is a weighted sum of all the 
modes, see Eq. (12). Thus by inspection of the figure the 
deeper layers are seen to be mainly determined by the higher 
eigenvectors and 'Ihe upper layers are determined by the 
lower eigenvectors. The lower eigenvectors are best deter- 
mined and thus the upper layers would be more precisely 
determined by a ]local method. The deeper layers, corre- 
sponding to the higher eigenvectors (about 9-11), are harder 
to retrieve and, cc•nsidering the associated singular values, 
may cause numerical instability if they are not damped. 

For the same problem, the hybrid approach was run with 
five iterations for the Gauss-Newton method on each new 

individual. This was done for one population with 1000 for- 
ward models or 1000/5=200 new individuals in total. In this 

50 

70 

• 90 

• ]]0 

130 

150 "' '-'•' ; '-' ' I • ' ' ' I ' • " ' f" '1 
]500 2000 2500 3oo0 

Sound speed (m/s) 

FIG. 5. The marginal a posteriori distribution for each of the eleven sound 
speeds. 
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case even the sound speed in the lowest layer is matched 
quite well, Fig. 4(c). 

We also tried to increase the population size to 256 and 
let the Gauss-Newton run until convergence. This corre- 
sponds to selecting random starting points and using a local 
method from all these points. The fit by this method was 
about the same as for one Gauss-Newton iteration. Thus it 

seems better to use a guided random search than to use ran- 
dom starting points for the hybrid method. 

The CPU times and values of the object function for this 
example (A1) are given in Table I. For this example the 
hybrid method is both much faster and more accurate. The 
actual convergence in the value of the object function versus 
the number of sampled models is displayed in Fig. 7. The 
number of sampled models is stacked since several popula- 
tions are used for the GA. 

Next (case A2) we show that we can successfully invert 
a many-parameter problem. This is done by parametrizing 
the sub-bottom into 11 layers and then inverting for all four 
of the physical parameters in each layer, i.e., eleven veloci- 
ties (range 1500-3100 m/s), eleven attenuations (range 0-1 
dB/M, eleven densities (range 1000-3000 kg/m3), and ten 
thicknesses (range 0-50 m). The initial values are selected 
randomly from the search interval. Each of the 43 parameters 
could take 256 values; this corresponds to a search space of 

0.02 

0.06 

0.04 

0.02 

a) 

0 1 2 3 4 5 

Number of sampled models (.10 3 ) 

b) 

200 400 600 800 1000 

Number of sampled models 

FIG. 7. Performance of the GA (solid line) and the hybrid (dashed line) for 
the inversions for sound speed. The only difference between (a) and (b) is 
the horizontal scale. 

25643=10129. Admittedly, this over-parametrization would 
normally be avoided, but the example shows the flexibility of 
the method. 

For the hybrid approach we used one population with 
1000 new individuals, or 1000x5=5000 forward models. 
The GA used 25 parallel populations each with a size of 32 
and running 2000 forward runs. In total 50 000 forward mod- 
els were run. We did try to increase the number of popula- 
tions drastically, but it did not improve the performance. The 
CPU times and values of the object function for this example 
(A2) are given in Table I. The retrieved parameters are as 
shown in Fig. 8. For the hybrid method only the attenuation 
and density below 150 m are not well determined, but this is 
due to their lack of importance for wave propagation. The 
solution by GA has minor deviations for most of the param- 
eters. 
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FIG. 8. Inversion for thickness, speed, attenuation, and density: True solution (solid line), GA (dashed line), and hybrid (dotted line). 
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FIG. 9. Measurement configuration. 

B. Inversion of real transmission loss data 

As an additional test of the algorithm we inverted real 
shallow water transmission loss data, 22 case B. The data are 
quite noisy and have only limited information. This data set 
has been analyzed by Lambert 2t using the author's GA code. 

The experiment Tellaro took place in the Gulf of La 
Spezia in June 1992. The measurement configuration is 
sketched in Fig. 9: Four receivers are moored to the bottom 
at several depths (2, 5, 10, and 15 m) and a 330 Hz source is 
towed at a fixed depth of 7 m. The recording made with the 
5-m-deep receiver was chosen because of its low noise com- 
pared to the others. The data, however, are still very noisy 
and we are obliged to smooth them by averaging the signal 
from six neighboring range values (Fig. 10). 

From CTD measurements we have precise information 
on the water sound-speed profile and the water depth. It is 
reasonable to assume a constant water sound speed of 1523 
m/s and a water depth of 16 m. Since the data are very noisy, 
especially at longer range, we use the signal between ranges 
270 and 1600 m. In order to decrease the influence of the 

long-range data, they are weighted by 1/ ,/•, where r is the 
distance between source and receiver. 

To describe the sediment, 10 layers of different thick- 
nesses were used. Velocities and attenuation in each layer 
had to be retrieved, in total 20 parameters. The velocities and 
attenuations in the layers are coupled together using the 
shape functions in Fig. 11. Thus the actual profile is a 
weighted sum of the four shape functions, as described in 
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FIG. 10. Range-averaged signal for a receiver at 5-m depth. 
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FIG. ll. Shape functions for the speed and attenuation in the sediment. 

Sec. I B. The first shape function gives a constant offset to 
the sediment sound speed, and shape functions 3 and 4 are 
used to describe the slope of the sediment sound speed. 
Shape function 2 was introduced to give more freedom to the 
first meter of the sediment, as it is very important. By using 
these 4 shape functions the number of unknowns is reduced 
from 20 to 2X4=8 

Earlier, a seismic broadband analysis at the Tellaro site 
was carried out to estimate the bottom sound-speed profile. 
The S-wave sound speed was estimated to be about 100 m/s 7 
and therefore its influence on the transmission loss can be 

neglected. The P-wave sound-speed profile was estimated 
with the Herglotz-Wiechert analysis of the refracted 
arrival 2324 and provided the broadband estimated sound- 
speed profile in Fig. 12. The bandwidth was 10-200 Hz. 
This profile is used for reference but it is not necessarily the 
correct one. As it is a broadband experiment it probably has 
a deeper penetration depth than single-frequency measure- 
ments because the lower frequencies penetrate further into 
the sediment. 

For the inversion using GA we used 1000 forward mod- 
eling runs in ten parallel populations, in total 10 000 forward 
modeling runs. For the hybrid inversion we used only 1000 
forward modeling in one population. Increasing the size of 
the population did not have any effect in this case. The value 
of the object function as found by the two methods are nearly 
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FIG. 12. Sound-speed profile for the Tellaro site determined by the broad- 
band estimate (solid line}, GA (dashed line). and the hybrid (dotted line}. 
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FIG. 13. Pressure field for the Tellaro site: The data (solid line) and result 
(dashed line} by (a) GA and (b) the hybrid method. The y axis is arbitrarily 
scaled. 

the same, 0.56 (GA) and 0.62 (hybrid). The inverted sound- 
speed profiles are shown in Fig. 12, and the corresponding 
fields for the two methods are shown in Fig. 13(a) and (b). 

In this example the GA and the hybrid performed about 
equal, which is probably due to the rather noisy data, and 
thus the many local minima in the object function. In this 
example the CPU time used for the two examples is about 
equal, see Table I. For the hybrid method we have to com- 
pute the gradient for each parameter and then combine the 
gradients to obtain the derivatives of the shape functions. 
Thus we are actually computing 20 gradients and not just 8; 
the shape functions also call for a lot of computer bookkeep- 
ing. However, the shape functions are very useful in regular- 
izing the solution. 

The results of this inversion seem to support the conclu- 
sion of Ref. 21 that for a frequency of 330 Hz only the first 
few meters of the sediment are important for wave propaga- 
tion. Therefore, information about the deeper layers can only 
be retrieved with considerable uncertainty. The fact that we 
obtain the same sound-speeu profile for the first few meters 
using two different measurement methods and two different 
inversion approaches gives us a high degree of confidence in 
the solution for the first few meters of the sediment. 

III. CONCLUSIONS 

A hybrid optimization method combining the global ge- 
netic algorithm and the local Gauss-Newton method has 

been developed. This method takes several gradient steps 
between each update of the object function for each "indi- 
vidual" in the population. For a large class of optimization 
problems the optimization is both faster and more accurate 
than by using the genetic algorithm or Gauss-Newton alone. 
This approach makes it feasible to solve problems with more 
parameters than if a global optimization was used alone, and 
we have the ability to use both local and global uncertainty 
estimates. 

Due to the analytic derivation of the gradients a local 
method is limited to the particular forward model used, here 
SAFARI. It is, however, feasible to derive exact gradients for 
most forward models. In this respect the global optimization 
method is more flexible since the forward modeling method 
can be easily replaced. 

ACKNOWLEDGMENTS 

This paper is based on inspiration from and collabora- 
tion with Andrea Caiti, Don Gringras, Finn Jensen, and Marc 
Lambert. Special thanks goes to Andrea Caiti for providing 
the experimental data. 

APPENDIX: DERIVATIVES OF THE PRESSURE 

In this Appendix we derive analytical expressions for the 
pressure gradient using the direct global matrix method as 
implemented in SAFARI. Here only an outline of the DGM 
approach is given, focusing on those details necessary to 
obtain the derivatives. For further particulars see the pub- 
lished literature. ]s']6 

1. Green's functions for stratified media 

We express the displacements and pressure for a field 
point x=(x,z) and of time dependence exp(itot) in vector 
form, 

f(x) ={uz,-p}r(x). (A1) 
The solution for a stratified medium is based on the 

integral transform representation of the Green's function, for 
cylindrical geometry the Hankel transformation, 

f{x) = f(k)Jo(kx)k dk, (A2) 

ilk)= r(x)J0(kx)x ax. (A3) 

The depth-dependent Green's function •(k) satisfies the 
depth-separated wave equation. 

The DGM approach solves the depth separated wave 
equation by expressing the total Green's function in layer l 
as a superposition of the free-field Green's function for 
sources in the layer, and the solutions to the homogeneous 
wave equation, 

[l(k) = }l(k) + •? (k), (A4) 
where both the source contribution ft(k), and the homoge- 
neous solution [•(k) in a layer are of the form 

•? ( k ) = Kl( k )El(z,k )Dl( k ), (A5) 
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where Kt(k ) is a coefficient matrix which transforms the po- 
tentials to displacements and stresses. The diagonal matrix 
El(z,k) is the phase matrix which propagates the potentials 
from the interfaces. It contains all the depth dependence, 

Et(z,k ) = diag[e- •Z-,e • + ], (A6) 
where z-=z-zt_•, z+=zt-z are the distances from the 
field point to the interfaces bounding the layer above and 
below, respectively, and the vertical wave number ot given by 

= (^7) 
Here, h is the compressional wave number given by 

h= •p(1-iSp)= 1-t407r log e , 
where ¾p is the attenuation per wavelength. D t in Eq. (A5) is 
a vector containing wave field amplitudes, known for the 
source contribution and determined from the boundary con- 
ditions for the homogeneous solution. 

The boundary conditions to be satisfied simultaneously 
at all horizontal interfaces (L- 1) then take the form 

?Ll--??=}l--}l_i, /=1 ..... (L- 1). (A9) 
This is a global system of linear equations in the wave-field 
amplitudes Dr, the solution of which is unconditionally 
stable with the particular choice of local coordinate systems 
used in the depth solutions, Eq. (A6). Once solved, the solu- 
tion vector D t is inserted into Eq. (A5) and superposed with 
the source contributions. 

Expressed in matrix form the system of equations in Eq. 
(A9) can be written as 

AD=F, (^10) 

where F is the source vector and D is the wave-length am- 
plitudes. The coefficient matrix A is a block-banded matrix. 
For each layer it has the structure 

po• 2 

-- p •o2E 
where E = e- azt. 

pro:E , 
-p(o2J 

2. The Jaaobmn 

In the derivation of the derivatives we will assume that 
these are not taken in a source or receiver layer. Thus we will 
only consider the inhomogeneous contribution, Eq. (A5). 
The source and receiver layers are trivial extensions. The 
derivatives in an elastic medium have also been derived; 
these are considerably more complicated due to the doubling 
of the matrices involved. 

To find the derivatives with respect to the medium prop- 
erties we differentiate Eq. (A2), 

x ) O' /O •-• - Jo -•--So(kx) dk. (A12) 

Thus the derivatives in the range domain is found by inte- 
grating the contributions from each wave number. In the fol- 
lowing we concentrate on obtaining the derivatives for one 
wave number. Neglecting the inhomogeneous contribution, 
the derivative of the field can be expressed by differentiation 
of Eq. (A5) 

c•(k) OK OE 
80 - 'j•ED + K•-•D + KE•-•. (A13) 

By differentiation of Eq. (A10) the derivative of the potential 
function JD/00 is •ound by solving the system of equations 

8D 8F 8A 

A• :•- saD. (A14) 
Note that the coefficient matrix A is unchanged. Thus to find 
the derivatives we just have to solve the system of equations 
for an extra right-hand side for each parameter in the param- 
eter vector 0. This can be done at little extra cost. 

For the defiva'ives of the coefficient matrix with respect 
to the layer parameters in layer l, a•aOt, only that part of 
the matrix representing layer l, aAt/aO t, is nonzero. The fol- 
lowing derivatives are obtained: 

aA• _ 0 p•2 

•z•E :j, (A15) __ p•2 

8A 1 = 1 
op o : -E 1 

(A16) 

1 -(1- otz)E' 

8A t 0 - pro2zE 
= (A17) 

3a - ( 1 - az)E 1 
pro2zE 0 

From Eq. (A17) we can find the derivatives of the velocities 
and attenuation by computing the derivatives of the vertical 

ho• i 

(A18) 

(A19) 

wave number 

0a h 

Oh or' 

0ot Oa Oh -h-h h 2 

Ocp c)h OCp Ol Cp OlCp ' 
Oa 0ot Oh - h o - i 

83, Oh 83, a cp 40rr log e a c•, 40w log e' 
(A20) 

The above dcscribes the basic details for obtaining the 
derivatives. Often we are not interested in the derivative of 
the complex pressure itself, but only the derivative of the 
amplitude and/or the unit pressure vector: 

Amplitude: The above is based on a complex pressure 
field P=Pr+iPi. Often the optimization is only based on 

d -• q_ -• the amplitude [PI= •F7- F{. Then the derivatives are 
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Unit-pressure vector: The unit pressure is defined as 

P 

0 = (prp)m- (A22) 
The derivative is 

(A23) 

- J Re{fi (p•}, (A24) (prp) v2 • r J 
where the superscript T indicates conjugate transpose. 
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