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The goal of many underwater acoustic modeling problems is to find the physical parameters of 
the environment. With the increase in computer power and the development of advanced 
numerical models it is now feasible to carry out multiparameter inversion. The inversion is posed 
as an optimization problem, which is solved by a directed Monte Carlo search using genetic 
algorithms. The genetic algorithm presented in this paper is formulated by steady-state 
reproduction without duplicates. For the selection of "parents" the object function is scaled 
according to a Boltzmann distribution with a "temperature" equal to the fitness of one of the 
members in the population. The inversion would be incomplete if not followed by an analysis of 
the uncertainties of the result. When using genetic algorithms the response from many 
environmental parameter sets has to be computed in order to estimate the solution. The many 
samples of the models are used to estimate the a posteriori probabilities of the model parameters. 
Thus the uniqueness and uncertainty of the model parameters are assessed. Inversion methods 
are generally formulated independently of forward modeling routines. Here they are applied to 
the inversion of geoacoustic parameters (P and S velocities and layer thickness) in the bottom 
using a horizontally stratified envffonment. The examples show that for synthetic data it is 
feasible to carry out an inversion for bottom parameters using genetic algorithms. 
PACS numbers: 43.30.Ma, 43.30. Pc, 43.60.Pt, 43.40.Ph 

INTRODUCTION 

The inversion of sound fields for determining the un- 
known environmental parameters can be separated into 
four parts: ( 1 ) discretization of the environment and dis- 
½retization or transformation of the data; (2) efficient and 
accurate forward modeling; (3) efficient optimization pro- 
cedures; (4) uncertainty analysis. 

Item (1) is concerned with how to collect and dis- 
cretize a wave field in order to have the necessary physical 
information available for the inversion, and also to deter- 
mine which parameters it is feasible to invert for. Item ( 1 ) 
leads to a set of known environmental parameters and a 
priori bounds for the unknown parameters. Based on the 
above parameters a matched field can be computed by the 
forward acoustic model, item (2). Through an iterative 
scheme, item (3), the match between the observed and 
computed data is maximized by varying the environmental 
parameters. From the best models obtained, it is possible to 
provide estimates of the value of the parameters and their 
uncertainty and importance, item (4). The best solution is 
not very interesting without a proper statistical analysis of 
the result. 

A complete inversion requires equal attention to all 
four items, but it is also clear that each item depends on its 
predecessor. Therefore it is natural that earlier research 
has focused on the first two items. The present paper is 
concerned with the development and application of items 
(3) and (4) to seismoacoustic problems. 

This paper is organized as follows. In Sec. I an over- 
view of optimization techniques is given with global opti- 
mization in mind, followed in Sec. II by an overview of 

uncertainty analysis. In Sec. III the theory and implemen- 
tation of genetic algorithms is presented, while Sec. IV 
describes the statistical analysis method. Finally, in Sec. V 
the approach is applied to the inversion of geoacoustic 
parameters. 

I. OPTIMIZATION METHODS 

The nonlinear inverse problem can be stated as an 
optimization problem: Find the model vector m that min- 
imizes the quadratic deviation 

qb(m)----II Idol- r I deal(m) 1112/11do112, (1) 
where 

Ildoll 
r - (2) Ildcal (m) I1' 

Here, II'll is the 2 norm of a vector, I ' I is the absolute 
value of each observation in a vector, and qb is the object 
function. Minimizing this object function is similar to max- 
imizing the ambiguity function in matched-field processing 
based on the correlation coefficient. Normally, in genetic 
algorithms the fitness function is maximized, but here we 
minimize the fitness function defined by Eq. (1). Here, m 
is the model vector consisting of the physical parameters 
and dob s and dca I are vectors containing the observed and 
calculated data, respectively, of n observations. These ob- 
servations could be from n• ranges, n 2 depths, and n 3 fre- 
quencies, yielding a total of n•n2n 3 observations. The cal- 
culated data are obtained by calling the forward modeling 
routines with the model vector as input. 
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FIG. 1. Slice through the object function. All but the thickness of the first 
sediment layer and the thickness of the second sediment layer are kept to 
their correct values for the environment given in Table I. 

If the phase information is available and reliable then 
it is better to use a modified version of the Bartlett proces- 
sor as the object function, 

&(m) = •1-- iidobsll211dcalll:, 
This will give a less oscillating object function than Eq. 
(1). I 

The object function & has many names depending on 
the application and inversion method. In simulated anneal- 
ing •b defines the energy function which is minimized. In 
genetic algorithms it is common to maximize the fitness, 
which is here defined as 1 --&, or it could be defined as the 
correlation coefficient. Here, as in simulated annealing, we 
are minimizing the object function. 

Often the object function is highly oscillating, as indi- 
cated in Fig. 1, where a slice through a sample object func- 
tion is shown by keeping all but two parameters constant, 
corresponding to the thickness of the first and second sed- 
iment layer. In order not to get trapped in a local minimum 
the starting point for both parameters must be within 5 m 
from the true minimum. For such a problem traditional 
local methods will have little chance of arriving at the 
correct solution, and other methods therefore have to be 
explored. Two approaches exist for resolving this problem: 
Reparametrization of the problem or use of global optimi- 
zation methods. 

The oscillations of the object function can often be 
reduced by another parametrization of the model. By 
transforming the data to another domain or by using a 
subset of the observed data to obtain a local problem, the 
object function can become more regular, and if there are 
only a few minima it can likely be inverted by a local 
method. Naturally, such a local method should in general 
be used since it is much faster. Moreover, the minimum 
will always be reached, provided it is a local problem. This 
method, however, requires a detailed knowledge of the ob- 
ject function and reparametrization may be impossible in 
multiparameter inversions. The local methods can further 
be stabilized by use of singular-value decomposition and 
regularization techniques. 2-4 Using the above approaches 

the compressional velocity of the ocean and bottom has 
been determined by inverting the modal eigenvalues in the 
water column, 3 and more recently, the bottom shear veloc- 
ities have been determined by inverting the group velocity 
of the bottom interface wave? 

Global optimization methods accept that the object 
function is irregular and try to find the global minimum, 
without doing an exhaustive search. Advantages of global 
optimization are that it only requires the value of the object 
function at arbitrary points in space and the problem can 
then be solved without any further knowledge of the object 
function. It is thus expected that once the global inversion 
method has been tuned, any forward modeling method can 
be used without much change in the optimization param- 
eters. Early solutions to the global problem were attempted 
using a simple Monte Carlo method, whereas modern 
methods use directional searches such as genetic algorithms 
(GA) or simulated annealing (SA). 

An introduction to GA is given by Goldberg 6 and 
Davis. ? The implementation used here is described in detail 
in Sec. III. GA are based on an analogy with biological 
evolution, one of the most efficient optimizing systems. GA 
have, to our knowledge, not yet been used in the underwa- 
ter acoustic community, but these algorithms have pro- 
vided promising results in the seismic community. 8-1• 

The basic principle of GA is simple: From all possible 
model vectors, an initial population of q members is se- 
lected. The fitness of each member is computed based on 
the difference between the observed data and the computed 
data. Then through a set of evolutionary steps the initial 
population evolves in order to become more fit. An evolu- 
tionary step consists of selecting a parental distribution 
from the initial population based on the individual's fitness. 
The parents are then combined in pairs, and operators are 
applied to them to form a set of children. The operators are 
traditionally the crossover and mutation operators, see Sec. 
III: Finally the children replace part of the initial distribu- 
tion to get a more fit population. 

Current implementations of GA in the geophysical 
field are based on the total replacement algorithm, where 
the whole population is replaced for each generation. It has 
here been found that the steady-state replacement algo- 
rithm, where zz the least-fit fraction f of a population is 
replaced in each iteration, see e.g., Ref. 7, is both more 
robust and quicker than current implementations, see Sec. 
III and the examples in Sec. V. 

Simulated annealing (SA) •2 has, since its 
rediscovery, •3 received much attention; first in seismic ex- 
ploration applications and later in underwater 
acoustics. •'•-•6 The two main problems for SA are to find 
an adequate cooling schedule and to be able to control the 
"move class." The best annealing schedules are found by 
taking advantage of statistical information acquired during 
annealing, see, e.g., Refs. 17, 18. While control of the tem- 
perature is not a problem, little success has been obtained 
with controlling the "move class," i.e., the set of possible 
neighbors which the current model can move to. This is 
believed to be as important as using a good method for 
determining the temperature. For example, in the start of 
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the optimization we first determine some intervals for the 
most important parameters and later, while refining the 
former parameters, other parameters can then be deter- 
mined. While SA cannot adaptively change the move class 
during the annealing, GA are very efficient in this respect. 
GA work simultaneously on several model vectors during 
the iterations. Thus when one model parameter is more 
important than another, the model vector containing the 
best fit for this parameter is more likely to be selected as a 
parent. When after some iterations a good fit is found for 
this parameter other parts of the model vector will become 
important. 

Recently, several comparisons between SA and GA 
have been made for geophysical applications, generally fa- 
voring GA. TM A meaningful comparison, however, is dif- 
ficult to perform. Both SA and GA can be described by a 
Markov chain for meandering in search space. To obtain 
the next guess of the solution, GA can describe a wide 
range of operators, whereas SA just forms a random move 
from the current model. In this sense SA is more restricted 
and the developers of SA concentrate on how to regulate 
the temperature or find some essential temperatures where 
the transition of the optimization develops rapidly. 

The difference between SA and GA can be further 
understood by considering the avenue of Monte Carlo 
methods. The simplest Monte Carlo method is based on 
one member meandering in the search space, randomly 
selecting the next step. This search can be significantly 
improved by applying some simple rules for meandering in 
the search space, as exactly both SA and GA do. SA is 
based on a single member meandering in the search space, 
while GA is based on a population which intercommuni- 
cates while meandering in the search space. The advantage 
of intercommunicating individuals is that the next guess of 
the solution can be based on operators combining informa- 
tion from all the individuals. Both SA and GA can be 
performed in parallel. This increases the possibility that the 
global minimum will be found and it also becomes possible 
to estimate the probability distribution for the solution. 

II. UNCERTAINTY ANALYSIS 

For an oscillating partially sampled object function, 
one can never be sure of having obtained the absolute min- 
imum. In the case of data contaminated by noise, the glo- 
bal minimum might not be the global minimum in a noise- 
free environment, as the noise can offset this minimum. 
However, the minimum obtained in a noisy environment 
will still be the maximum likelihood estimate of the solu- 
tion. In order to include this uncertainty it seems more 
appropriate to describe the solution to the inversion prob- 
lem in terms of statistics, see, e.g., Refs. 18-20. This is done 
in a Bayesian framework. Guided by GA, samples are 
taken from the a priori distribution to obtain the a posterJ- 
ori distribution. This function combines our knowledge of 
theory and all prior information about possible geoacoustic 
models. The a posteriori distribution can then be used as an 
input to the next step in the inversion, as described in the 
example i n Sec. V C, or combined with other information 

to obtain a new probability distribution. This could, for 
instance, be the probability for a certain arrival time or the 
probability for finding oil. 

The difficulty of solving the optimization problem is 
determined both by the number of local minima in the 
problem and the size of the search space. While the num- 
ber of minima is not known a priori, the size of the search 
space is easily computed as the product of the possible 
values for each parameter. Thus we use the size of the 
search space as a measure of the complexity of the prob- 
lem. The uncertainty and the size of the search space are 
closely related since a large problem is harder to solve and 
thus more uncertain than a smaller problem. In order to 
limit the search space, each parameter should only be dis- 
cretized so finely that the difference between two neighbor- 
ing values can be seen in the data. Naturally to know this 
a priori requires some expert knowledge. A priori knowl- 
edge could also exclude some parameter combinations or 
weight the search space according to where the minimum 
is most likely to be located. 

A resolution and variance analysis 2• is an important 
part of the solution for locally linear methods. Here it will 
be shown that similar tools are available for global meth- 
ods; both the marginal probability distribution for each 
parameter and the correlation coefficient will be computed, 
see Sees. IV and V. 

III. GENETIC ALGORITHMS 

The seismoacoustic environment will be discretized 
into M environmental parameters contained in a model 
vector m. Each of these parameters, j--1 ..... M, can take 
2•J discrete values according to a rectangular probability 
distribution, where nj is the number of bits in the jth 
parameter string. The a priori distribution of each param- 
eter could easily be chosen as another distribution, such as 
a Gaussian probability distribution. The a priori rectangu- 
lar distribution is given by the lower and upper bounds, 
0• i" and 07 ax . The parameter is discretized into 2•J values: 

Oj,ij=o•inq-AOjij, ij=O ..... 2n -- 1, (4) 
where 

AOj= ( o?ax--o7in)/(2nj -- l). (5) 
Only when the forward modeling routines are called, is 

the model vector used. For the GA only the integer values 
/j in Eq. (4) are used, but Eq. (4) defines a unique rela- 
tionship between the two representations. For each param- 
eter the integer values of the model vector are represented 
as a binary string of length n j, where nj is the number of 
bits in the jth parameter string. The reason for this binary 
coding is that the crossover and mutation operators, which 
are described later, work on the binary string. In accor- 
dance with natural terminology this bit string is called a 
gene. A given point in the data space can then be repre- 
sented by a list of the M model parameters represented as 
a binary string, each of the binary strings having a length 
nj. This gives a total search space of 12 = II•=•2•i. 
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To initialize the population, q members are selected 
randomly from the search space, and for each of these 
members k= 1 ..... q, the corresponding object function, Eq. 
(1), or in GA terminology, the fitness function 1--•b(mk), 
is computed. The members in the generation are sorted 
according to their object function, •b (m•) •b (ink) •b (mq), 
where the most fit, i.e., these that have the best match to 
the data, are the ones with the lowest object function. 

In order to establish a new population, also with q 
members, fq parents must be selected, where the fraction 
0 < f < 1. Each parent is chosen by assigning a probability 
to each of the q models based on their fitness. In the sim- 
plest selection method--stochastic sampling--the proba- 
bility for selection of a model for reproduction is based on 
the ratio 

I 
k= l ..... q, (6) P•'=EL ] [ 1 -- •b (ml) 1' 

where 1-•b(m•) is the fitness of each member in a popu- 
lation as given by the sum in Eq. (1). Thus the new can- 
didates for reproduction are chosen in a probabilistic man- 
ner according to Eq. (6). In order to favor the best 
candidates, the object function is very often stretched be- 
fore calculating the probability for selection, Eq. (6)? 7 
Stretching is the mapping of •b(m•) for all individual to 
another domain where the values can either be closer to- 
gether or, normally, stretched further out. The purpose of 
this stretching is in the start of the evolution to assign a 
more equal probability to all parameters than in Eq. (6), 
and at later stages to put more emphasis on the fittest of 
the members. 

By introducing the most successful control parameter 
in SA, the temperature, into the possibility of selection, 
very good results have been obtained for GA. Iø Thus an 
alternative probability of selection is 

exp[ --•b(m•)/T] 
Pt•=XI= 1 exp[--•(mt)/T] ' k=] ..... q, (7) 

where T is the temperature as defined in SA. From the 
behavior of the exponential function it can be seen that for 
high temperatures all model vectors are almost equally 
likely to be selected, whereas for low temperatures model 
vectors with lower values of the object function are more 
likely to be selected. Thus for low temperatures even small 
differences in the object function can be discriminated. An 
essential point is to choose a proper cooling schedule. In 
the SA literature advanced schedules have been found by 
studying the analogy with statistical physics, Is or finite- 
time thermodynamics. I? They are, however, not easy to 
implement in practice. A low temperature will drive the 
current population toward the minimum closest to the 
most fit member in the population. The disadvantage of a 
low temperature is that the variety in models will be lost by 
only selecting the best members. A good compromise be- 
tween the two criteria is obtained when the temperature is 
of the same magnitude as the object function of the popu- 
lation, i.e., T•4(mk). Experience has shown that choos- 
ing the temperature equal to the fittest in each generation 

gives good results. As the evolution continues the value of 
the object function will decrease and the temperature will 
also become lower. 

After the selection of parents, several operators will be 
applied to the parents to form a new generation. These 
operators could work on real numbers and could be, for 
example, mean or random operators. Traditionally, this 
consists of the crossover operator and the mutation oper- 
ator for the parameters coded in a binary format. In the 
present paper only traditional operators have been used. 

The crossover is the first part of reproduction. For 
each set of parents, each consisting of a model vector, two 
children are constructed, and for each parameter in the 
model vector each child may either be a direct copy of one 
parent, with probability 1 -p,,, or it can be a bit crossover 
of the two parents with crossover probability p•,. The cross- 
over is done by splicing together pieces of the binary string 
(genes) copied from the two parents. Let the binary strings 
for one parameter in the model vector for each of the two 
parents be given by 

(a0 ..... aN_i) and (rio ..... /•N-]), (8) 

then a crossover point ! is randomly selected from the 
interval [1,N-- 1] and the two children are now given by 

(aO ..... al-l,& ..... •N-I) 
and (9) 

l,a,, ..... aN_l). 

Since this is done for each parameter this method is called 
multiple-point crossover. There also exists the classical 
single-point crossover where the whole binary parameter 
vector is concatenated into one string and the children are 
determined by crossover from this string. This describes 
the classical crossover operator, but in general it could be 
any operator combining the information in the two param- 
eters. 

After the crossover operation, each bit of the parame- 
ter vector can be perturbed with low mutation probability 
p,, (p,•m0.05) in order to better explore the search space. 
This process is referred to as a mutation operator, which 
helps to insure that the process does not get stuck in a'local 
minimum. 

Before the children replace the least fit members of the 
intial population, a check is made that all the children are 
different and that none of them are present in the initial 
population. Thus in the steady-state algorithm, all q mem- 
bers of a generation will be different. This is in contrast to 
the total replacement method, where a large number, say 
90%, of a generation are identical when the optimization 
has matured. 

It is possible that one run of a GA will approach a 
local minimum. In order to increase the probability of find- 
ing the global minimum, several independent parallel pop- 
ulations M •r are started. This is similar to the ensemble 

22 23 approach in SA. ' This is also advantageous for collect- 
ing statistical information to estimate the probability den- 
sities, as described below. 
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IV. A POSTERIORI STATISTICS 

During the inversion process the samples of the search 
space are saved. From these observations the a posterJori 
probabilities can be estimatedß For the problem of estimat- 
ing N parameters this results in an N-d•menslonal spaceß 
To display part of this probability function two methods 
are followedß Tarantola et al. 24 recommend displaying the 
most likely model vectors and their relative probabilitiesß 
Frazer and Basu •8 use a graph-binning technique to sample 
the marginal probability density for each parameterß By 
this method the most likely model vectors may not be 
resolved, but useful statistics can be retrieved. 

The marginal probability density functions can be es- 
timated by sampling the model vectors as the evolution 
progressesß These samples are ordered according to their 
energy, value of object function, and when forming the 
probability distribution they are weighted according to a 
Boltzmann distribution, similarly to the weighting per- 
formed for the optimization, Eq. (7). Choosing the tem- 
perature equal to the energy of the fittest in the sample will 
favor the fittest part of the population, and choosing the 
temperature equal to the energy of the least fit will corre- 
spond to a more even weighting of the population. Expe- 
rience has shown that a good temperature is the average of 
the best 50 samples. The probability for the kth model 
vector is then given by 

exp[ --•6(mk)/T] 
tr(mk) = Z•__o• exp[ -- •6(m•)/T] (10) 
For the ith parameter in the model vector the marginal 

probability distribution for obtaining the particular value K 
can be found by summing Eq. (10): 

Z•øb• exp[--½b(mt)/T]•(m•=ff) 
•r/(rni= •c) - EkNob• exp [ _ •b (m•)/T] , (11) 

where Nob s is the number of observed model vectors and T 
is the temperature. It has been found that when several 
parallel runs are executed, it is sufficient to save the best 
part of the obtained model vectors in a population, (1 
--f )q in each of the Mpa r populations. This is sufficient 
because in the steady-state algorithm the fittest part of a 
generation is kept for each generation. 

The a posterJori mean value and covariance of the 
model parameters can also be estimated: 

Nobs 
E(m) = • m•r(m/½), (12) 

C(m) =E([m--E(m) ] [m--E(m) ] T) (13) 
Nobs 

= • m•(mk)T•r(m•)--E(m)E(m) T. (14) 

The diagonal of the covariance matrix is the variance of 
each parameter. It is useful to normalize the covariance 
matrix to obtain the correlation coefficient. For the corre- 
lation coefficient the off-diagonal terms show how different 
model parameters interact. A value of 1 means that, the 

TABLE I. Environmental model for inversion. 

Compression Shear 

Lower interface Speed Atten. Speed Atten. Density 
Medium m m/s dB/3. m/s dB/3. kg/m 3 
Water 50 1500 0 ...... 1000 
Sediment I 100 1600 0.1 500 0.2 1600 
Sediment 2 150 1800 0.1 1000 0.2 2000 
Basement -" 2800 0.1 1500 0.2 2200 

parameters are fully correlated, 0 uncorrelated, and --1 
negatively correlated. 

V. EXAMPLES 

Since GA are formulated independently of the forward 
modeling routine, it can easily be adapted to any acoustic 
propagation code. The versatility of GA is illustrated by 
applying either OASES, :5 Sees. IV A-C, or SNAP, 26 Sec. 
IV D, as the forward model. 

The OASES program is an enhanced version of the 
SAFARI program; 27 it is a wave number integration code 
and assumes a horizontal stratification of the environment. 
The comparison between the observed and computed data 
here is carried out in the horizontal wave number domain. 
Thus the real observed data are recorded on a horizontal 
array. For real data, the estimation of the wave number 
spectrum can cause some problems since quite large aper- 
tures must be used in order to obtain reasonable estimates, 
see, e.g., Ref. 28. The advantage of using the wave number 
domain is that the output of the forward modeling is in this 
domain and that fewer wave numbers are required for the 
inversion than for reconstructing the real field. The phys- 
ical parameters which could be inverted for each sediment 
layer are the thickness, P-wave velocity and attenuation, 
S-wave velocity and attenuation, and the density. 

The examples presented in Sees. IV A-C are all based 
on the environment given in Table I. Thus the observed 
data will be computed using this environment. In order to 
obtain the maximum response from the bottom, both 
source and receivers are placed on the seabed. The source 
frequency is 100 Hz and the zz magnitude of the horizontal 
wave number spectrum is computed at 64 points in the 
phase velocity range from 1200 to 3000 m/s. First the 
convergence of the algorithm is assessed and compared to 
SA. Thereafter the algorithm is applied to obtain the com- 
pressional velocity profile and to estimate both the com- 
pressional and shear-velocity profiles and the thickness of 
the sediment layers. The sensitivity of the physical param- 
eters to variation in the sampling parameters is explored. 

The examples here are run by fixing some parameters 
and letting others vary. In a real inversion, all parameters 
would be allowed to vary, but some of the parameters 
would be more certain than others. The available computer 
time should be used with care. Thus the a priori impor- 
tance and uncertainty of each parameter should be used to 
determine how much computer time should be used on 
each parameter. This can be expressed in terms of how 
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many discretizations, or bits, each parameter should have. 
For example, the P velocity would probably have more bits 
than the P attenuation, and P velocities close to the source 
and receivers will have more bits than those far away from 
the source and receivers. 

A. Tuning the GA parameters and comparison to SA 
The environment given in Table I was used to create 

the (synthetic) observed data. For the inversion it was 
assumed that the bottom consisted of 11 layers each 10 m 
thick. Thus the first five layers correspond to sediment 1, 
layers 6-10 to sediment 2, and layer 11 to the basement 
layer. In each of these, the P velocity could vary between 
1500 and 3100 m/s with 256 discrete values, i.e., a discret- 
ization interval of 6.25 m/s. All other parameters in the 
layers are regarded as fixed. The problem size is thus 
256 TM _ 3 X 1026. Such a large search space is prohibitive for 
an exhaustive search method. 

In the present implementation there are relatively few 
GA parameters which have to be tuned for each applica- 
tion, and the precise value of each of these does not seem to 
be very important. Based on our limited experience, the 
following values are recommended. 

( 1 ) The population size q should be large enough that 
the model vectors can represent several minima, but also 
small enough that several iterations can be performed; 
q= 64 seems to be a good compromise. 

(2) The reproduction size f should be large enough 
that the fittest individuals stay in the population during the 
iterations; f should be less than 0.9, here f=0.5. 

(3) The temperature T should be chosen so that it 
follows the best fit in each population, T=min(•b(mk) ). 

(4) The crossover rate depends on how independent 
the parameters in the model vector are. A crossover rate Px 
close to 1.0 seems to be a good choice for independent 
parameters; for dependent parameters a lower value ofœx is 
recommended, here Px = 0.8. 

(5) It has been found that a high mutation rate gives 
the best result, here œ,•=0.05. 

(6) The number of forward computations for each 
population should be relatively low, 1000-5000, here 2000 
is used. 

(7) The number of parallel runs Mva r depends on the 
application. To obtain a reasonable estimate of the inver- 
sion parameters, Mpar = 1 is sufficient. For computing the 
probability distribution it must be larger, e.g., Mpar = 100. 

Having recast the inversion problem into an optimiza- 
tion problem, the best measure of the convergence is the 
energy of the fittest individual in the population as a func- 
tion of computer time. Since most of the CPU time is spent 
in the forward modeling routines, the amount of computer 
time is proportional to the number of sample models. The 
fitness is the relative deviation of the observed and the 
calculated data as determined by Eq. ( 1 ) or (3). 

Examples of convergence for different optimization pa- 
rameters are shown in Fig. 2, where each curve is based on 
the average of 50 realizations. The energy is here the fittest 
individual in a population. The best result (solid line) is 
obtained for q=64, œm=0.05, œx=0.8, and f=0.5; the 
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FIG. 2. Convergence of the fitness of the population versus number of 
models. The basic optimization parameters are q = 64, p,, = 0.05, p• = 0.8, 
and fg=0.5. Solid line: only basic parameters. Dotted line: p•,=0.01. 
Dashed line: temperature is constant and equal to 0.5. 

other curves are obtained by changing one parameter at a 
time. A low value of the mutation rate (dotted line) does 
not converge very well, as it is more likely that it will get 
trapped in a local minimum. Finally the dashed curve 
shows the performance for an optimal fixed temperature. 
The optimal temperature was found by trying several dif- 
ferent temperatures. Other simple temperature schedules 
such as linear and power law schedules were also tried 
without being much better than when the temperature fol- 
lows the energy of the population. 

Using the same environmental setup, the GA algo- 
rithm was compared to the successful SA implementation 
of Collins and Kuperman, ]4 Fig. 3. This SA implementa- 
tion is based on the so-called fast SA method of Szu and 
Hartley. 29 Here it has been used with the starting temper- 
ature of 1. The SA was slower for this example. One reason 
is that the parameters are altered one at a time, a metrop- 
olis step. For a large class of inversion problems the inver- 
sion parameters can be ordered according to their sensitiv- 
ity to the object function. The most sensitive parameters 
will usually be the most important parameters for the ob- 
ject function, and they can be ordered in a hierarchy ac- 
cording to their importance. Therefore, it is important to 
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•0.06 i 
=-10.04. ', . ,.,, 
0.02 i \'x ..... • ' 

()= 
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FIG. 3. Comparison between genetic algorithms (solid line) and simu- 
lated annealing (dashed line). The genetic algorithms use the same pa- 
rameters as in Fig. 2. 
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FIG. 4. Histogram of fitness of all observations for the inversion for the 
11 P velocities. 

TABLE II. The best inverted velocity profile and the difference from the 
true model. 

P vel. Diff. 
Layer m/s m/s 

1 1600 0 
2 1600 0 
3 1594 --6 
4 1594 -6 
5 1569 --31 
6 1806 6 
7 1538 --262 
8 1800 0 
9 1925 125 

10 1918 118 
11 2912 112 

determine one parameter nearly correctly before attempt- 
ing to find values for the other parameters. For example, in 
the above example the first velocity must be approximately 
determined before any of the other parameters can be es- 
timated, so only every 1 lth model improves the estimated 
model vector. GA starts with q= 64 different estimates of 
the first velocity, and during the optimization it works si- 
multaneously on all parameters. For GA the move classes 
are changed as the iteration carries on. This is believed to 
be one of the major assets of GA. 

B. Inversion for the velocity profile 

The first example illustrates the use of global optimi- 
zation to find the compressional velocity profile in the bot- 
tom. The same environment was used; also the parameters 
were fixed as when tuning the GA parameters. The inver- 
sion is done in Mpar= 100 parallel runs each sampling 2000 
models. This gives a total of 2 X 105 modeling runs, which 
is not much compared to the 3 • 1026 possible models. The 
optimization part of the inversion was run in order to find 
the best models from the end of each population, in total 
Mparqf=3200 models. A postprocessor was then run to 
compute the a posteriori probability distribution based on 
these models. 

From the histogram of the best energies, Fig. 4, it is 
seen that a few of the samples have a good (low) energy, 
the fittest individual has an energy of 0.001. Thus the mean 
relative error between the observed and computed data is 

0• _• 3% for the fittest individual. The model giving 
the best fit to the data, Table II, finds the velocity best in 
the upper layers, which are more important for the wave 
propagation in the ocean waveguide than the lower layers. 
The wave number spectrum based on the 64 sample points 
for this model and the true model is given in Fig. 5(a). A 
denser sampling of the wave number spectrum, again using 
the same best model and the true parameters, Fig. 5(b), 
shows that even though the inversion has not been based 
on the modal peaks these are determined quite well. 

For all the best models the probability distribution for 
each parameter is estimated. This can either be done by 
equal sampling, Fig. 6(a), or by weighting the energy ac- 
cording to a Boltzmann distribution, Fig. 6(b), where the 

temperature is equal to the average energy for the 50 best 
models. Both graphs display the marginal probability dis- 
tribution for the velocity in each of the 11 layers as a 
function of the velocity. The curves have been scaled so 
that the black area under each curve is the same. The true 
profile is the solid line. For equal sampling, Fig. 6(a), there 
are two peaks in the velocity probability distribution for 
the 2nd to 5th layer. They correspond to a velocity of 
about 1900 m/s, though with less probability than the true 
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FIGi 5. Comparison of the best model (dashed line) and the true model 
(solid line) in the horizontal wave number domain: (a) Only 64 sample 
points, and (b) The densely sampled spectrum (1024 points). 

776 J. Acoust. Soc. Am., Vol. 95, No. 2, Februany 1994 P. Gerstoft: Inversion of seismoacoustic data 776 



_ L I 

'-• 7 

9 

1500 1900 2300 2700 3100 

(b) 

I 
11 

1500 1900 2300 :2700 3100 

P-velocity (m/s) 

FIG. 6. Probability distribution for each of the I I P velocities: (a) ob- 
tained by an equal representation of all the sampled models; (b) obtained 
by sampling from a Boltzmann distribution with a "temperature" corre- 
sponding to the average fitness of the 50 best models. (The solid line is the 
true model.) 

velocity at 1600 m/s. This is in contrast to Fig. 6(b) where 
this ambiguity has been removed, and the values of the 
lower layers are also better resolved. Thus for equal sam- 
pling, the marginal probability distribution is more ambig- 
uous than for the weighted probability distribution. In both 
graphs the velocities closest to the seabottom are best re- 
solved as they receive the most energy. It is also seen that 
the velocities closest to an interface are less well resolved, 
i.e., the probability distribution is more spread out. A sim- 
ilar conclusion can be drawn by plotting the most likely 
model vectors, Fig. 7, for the most likely 20 models. Ideally 
this should be shown for one model at a time to obtain the 

variation between each parameter for a given model vector. 
By showing the 20 most likely models this display becomes 
similar to showing the marginal probability distribution. 

The magnitude of the correlation coefficient between 
the inverted parameters, here the P velocity in each layer, 
is shown in Fig. 8. The first velocity in the bottom is de- 
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9 

II III 
•500 ]9• 2•00 27oo 3100 
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FIG. 7. The 20 mos! likely sets of velocities for the ! 1 layers. 

termined nearly correctly in all 3200 models, and thus is so 
relatively dominating that it is only weakly correlated with 
all the other velocities. The velocities in the lowest layer 
are so in-significant that they are not coupled to the rest of 
the parameters 

C. Inversion for sediment layer properties 
For the same environment it is now assumed that the 

number of sediment layers are known and we then invert 
for the thickness of the two sediment layers and the three 
compressional and shear velocities. For this example we 
again sample 2000 models per population, but with 200 
parallel runs. The thickness of the sediments is assumed to 
be in the range of 20-84 m, the P velocity in the range of 
1500-3100 m/s, and the $ velocity in the range of 400- 
2000 m/s; all the parameters can assume 256 values, giving 
a total search space of 2568=2X l019. 

Again the histogram of the energy, Fig. 9, shows that 
some of the model vectors have obtained a good (low) 
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FIG. 8. Correlation coefficient between the 11 layer velocities. 
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FIG. 9. Histogram of fitness for the inversion of the eight parameters. 

energy. The marginal probability density, Fig. 10, is 
weighted according to a Boltzmann distribution, with a 
temperature equal to the average of the 50 fittest models. It 
is here seen that only the P velocity in the first layer is well 
resolved; for the other parameters there are considerable 
ambiguities. Some of these ambiguities could be removed 
by introducing more physical knowledge into the model. 
For example, the S velocity in layer I should not exceed 
the P velocity and thus the ambiguity at 1600 m/s could be 
removed. 

The magnitude of the correlation coefficient, Fig. 11, 
between the inverted parameters, shows that the P and S' 
velocities in the first layers are somewhat coupled. It can 
also be seen that the thickness of the second and the S 
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FIG. 10. Probability distribution for the eight parameters: (a) P velocity, 
(b) o e velocity, and (c) thickness. (The solid line is the true model.) 
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FIG. 11. Correlation coefficient between the eight parameters. 

velocity of the last layer are not coupled to the other pa- 
rameters very much. This is because they are less impor- 
tant than the other parameters, i.e., they have a flatter 
distribution in Fig. 10. 

In order to investigate the sensitivity of the inverted 
parameters to the sampling of the wave field, the wave 
numbers were sampled in a larger phase velocity window, 
from 400-3000 m/s. From the physics of wave propagation 
it is clear that the range of the phase velocity interval 
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FIG. 12. Probability distribution for the eight parameters using a larger 
phase velocity interval from 400-3000 m/s, but still only 64 wave num- 
bers: (a) P velocity, (b) $ velocity, and (c) thickness. (The solid line is 
the true model.) 

778 J. Acoust. Soc. Am., Vol. 95, No. 2, February 1994 P. Gerstoft: Inversion of seismoacouslic data 778 



(a) 
I 

(a) 

1500 1900 230O 

P-velocity 
2700 3100 

l 
(b) 

I 
] 
I 

400 800 1200 1600 2000 

S-velocity 

(c) 

20 40 60 80 

Thickness 

1500 1900 2300 

P-velocity 
2700 3100 

4O0 
i i 

1200 1600 

S-velocity 

(b) 

200O 

(c) 

20 40 60 80 
Thickness 

FIG. 13. Probability distribution for the eight parameters using a larger 
phase velocity interval from 400-3000 m/s and 256 wave numbers: (a) P 
velocity, (b) $ velocity, and (c) thickness. (The solid line is the true 
model. ) 

should, in general, include the sound velocities to be esti- 
mated. By sampling at lower velocities it was observed, as 
expected, that the shear waves were better resolved and 
that the shallower layers are also better resolved, due to 
lower grazing angles, Fig. 12. By increasing the number of 
wave number samples to 256 in this interval, the overall 
resolution was improved a little, mainly for the lower lay- 
ers, Fig. 13. In a noisy environment the more information 
that is available, the more reliable the solution. Thus for 
data contaminated with noise, more points should give a 
better estimate of the solution. 

Instead of using only the magnitude of the wave num- 
ber spectrum it might be possible also to extract the phase 
information. Then it is optimal to use the modified Bartlett 
processor, Eq. (3). For the larger phase velocity window, 
this gives, Fig. 14, a less ambiguous aposteriori distribution 
than just using the amplitude alone, Fig. 10. 

D. Inversion for source location and environmental 
parameters 

In a recent workshop on matched field processing 3ø a 
blind test was given, Fig. 15, with uncertainties in both the 
source location and the environmental parameters. The un- 
certainties in the source depth and range were so large that 
they became the most important parameters, and it was 
thus more challenging to find the environmental parame- 
ters. Further, colored noise with a S/N=40 dB was ap- 
plied to the data. The participants in the workshop re- 

FIG. 14. Probability distribution for the eight parameters using also the 
phase of the wave number spectrum and using the modified Bartlett pro- 
cessor as the object function: (a) P velocity, (b) S velocity, and 
thickness. (The solid line is the true model.) 

ceived the above information as well as the pressure 
received on a vertical array spanning the water column 
with 20 receivers from 5 to 100 m. 

The nine parameters, see Fig. 15, can all take 51 val- 
ues, and thus the size of the search space is 2 X l0 •s. Since 
the environment is range independent and it is a long-range 
propagation problem it is optimal to use normal modes as 
the forward model. Here a modified version of SNAP 26 is 
used. For the optimization 125 000 model vectors are sam- 
pled using 50 independent populations. Since this could be 
achieved in 5 CPU hours on an Alpha workstation, no 
attempt has been made to reduce the number of sampled 
model vectors. 

The result of the inversion is shown in Fig. 16. It is 

0=1025_+25m 

200m 

.: C{O) = 1500 •- 2.5 m/s C(O'='} = 14gO + 2.5 m/s 

FIG. 15. The environment for the general mismatch case. The source 
frequency is 250 Hz and is located between O-100 m in depth and 5-10 
km in range. 
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FIG. 16. Probability distribution for the general mismatch ease based on 
the parameters in Fig. 15. The arrows indicate the correct values. 

seen, that the source range, source depth, and water depth 
are quite well determined. For the water velocities there 
are some ambiguities in the values. A plot of the two- 
dimensional marginal a posterJori probability distribution 
between the lower- and upper-water velocities reveal that 
these are correlated, Fig. 17, as there is a constant slope. It 
is easier to invert a set of uncorrelated parameters since a 
better fit can then be obtained by changing only one pa- 
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Top water velocity (m/s) 

FIG. 17. 2-D marginal probability distribution between the upper- and 
lower-sound velocity in the water. 

rameter as opposed to changing several parameters simul- 
taneously. The water velocity profile is therefore better 
modeled by a constant shape function plus a sloping shape 
function; these could be thought of as the first two func- 
tions in a set of empirical orthogonal functions (EOF). 
The constant shape function is here taken as the velocity at 
the top and the slope representing the deviation from this 
at the bottom. The range of the two amplitudes are then 
1497.5-1502.5 and 15-25 m/s. 

The result of using shape functions for the water ve- 
locity gives a high resolution of source range, source depth, 
water velocity slope, and water depth, Fig. 18. Since the 
water velocity profile now has been inverted better, the less 
important parameter in the sediment can also be better 
resolved, see Fig. 18 compared to Fig. 16. This shows that 
very different results can be obtained depending on how 
the environment is discretized. 

VI. CONCLUSIONS 

It has been demonstrated that the global optimization 
method genetic algorithms (GA) is quite robust as it re- 
quires little prior knowledge, and thus automatic inversion 
is not impossible. Specifically it was found that for selec- 
tion of the parental distribution, a faster convergence is 
obtained if the energy is scaled with a temperature similar 
to that used in simulated annealing (SA). This tempera- 
ture is conveniently selected as the value of the object func- 
tion for the best individual in a population. For the replace- 
ment of a generation, only part of the population is 
replaced in each iteration (steady-state reproduction). 
This method seems faster than other implementations of 
GA and looks promising compared with SA. 

The result of the optimization is displayed as an a 
posterJori probability distribution and is presented either as 
the 20 best models or as the marginal probability distribu- 
tion for each parameter. Thus an indication of the impor- 
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FIG. 18. Probability distribution for the general mismatch case based on 
the discretizion of the water velocity by shape functions. The arrows 
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tance and uniqueness of each parameter is obtained, and 
the uncertainty in the solution has been assessed. 

The approach has been illustrated by several examples. 
These show that for noise-free synthetic data it is feasible 
to estimate the geoacoustic parameters and that the accu- 
racy with which they are found is closely related to the 
physical importance of the individual parameters. 
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