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A numerically efficient, hybrid method is introduced for modeling of short and long range 
seismoacoustic facet reverberation in the ocean environment. The method combines the global 
matrix approach to the solution of the wave equation in horizontally stratified media with a 
boundary element formulation of the boundary conditions at a contour surrounding the facet. 
The present paper describes a two-dimensional formulation for facets within an elastic seabed 
or an elastic ice cover, but allows for simulation of the reverberant field within the water 
column as well. The approach is directly extendable to treat reverberation from seabed- 
penetrating facets as well as three-dimensional elastic facets. In contrast to discrete methods 
such as the finite element and finite difference approaches, the solution obtained with the 
present hybrid approach is not only efficient for short- as well as long-range reverberation, but 
inherently decomposes the total solution in the temporal and spatial spectral components, of 
importance to the basic physical understanding of the factors affecting seismoacoustic facet 
reverberation. 

PACS numbers: 43.30.Gv, 43.30.Bp, 43.30. Ma 

INTRODUCTION 

The effect of noise correlation on the performance of 
ocean acoustic array processing is well established, making it 
important to include such effects in theoretical evaluations 
of signal processing algorithms.• The effect of the noise is 
obviously more severe the more "signal-like" the noise is. 
Thus the "white" electronic noise is less of a problem than 
surface generated noise 2 or shipping noise. 

Another correlated noise component is that generated 
by the signal itself through scattering and reverberation. 
However, in contrast to the, e.g., surface generated ambient 
noise, the reverberant field is directly associated with and 
dependent on the signal to be extracted by the signal process- 
ing. Therefore, the reverberant field will both be proportion- 
al to the signal strength and often have spatial correlation 
characteristics that are more "signal-like" than those of the 
ambient noise, in turn providing more problems for the sig- 
nal processing performance. 

The degradation of the signal processing performance is 
closely related to the degree and nature of the correlation. To 
enable performance analysis of signal processing algorithms, 
it is therefore essential to be able to accurately model the 
array response to scattering and reverberation in realistic 
ocean environments. 

Based on the temporal and spatial correlation charac- 
teristics, the reverberation is divided into two main catego- 
ries, diffuse and facet reverberation. The diffuse reverbera- 
tion is due to scattering by the small-scale, stochastic 
structure of the ocean waveguide, e.g., surface and bottom 
roughness, and bottom inhomogeneity. The facet reverbera- 

tion is due to abrupt changes in the environment, e.g., by 
seamounts and subbottom faults and diapirs. Due to its sto- 
chastic nature, the diffuse reverberation is characterized by a 
relatively low correlation. The ocean facets are of more de- 
terministic nature and therefore give rise to extremely "sig- 
nal-like" reverberation. 

Due to theoretical and computational limitations, the 
numerical modeling tools applied in underwater acoustics 
have until recently been limited to one-way, two-dimension- 
al propagation scenarios, capable of treating the reverbera- 
tion problem only in terms of "target strength," incapable of 
representing real ocean reverberation. Thus available theo- 
ries cannot explain the reverberation received from the con- 
tinental margins as well as the reverberant field observed in 
apparently smooth ocean environments. 

On this background there has been a significant effort in 
recent years to improve the modeling capabilities to incorpo- 
rate scattering and reverberation effects. 

Most theoretical work on dtffuse scattering has been fo- 
cusing on the rough sea surface, where various scattering 
theories have been developed. A very thorough review of 
these approaches was recently given by Thorsos and Jack- 
son. 3 The elastic properties of the ocean bottom become im- 
portant at low frequencies in particular, but not until very 
recently have elastic effects been incorporated in the theo- 
retical analysis of rough bottom scattering. 4'• A review of 
earlier work on bottom scattering is given by Ogilvy. 6 

The facet reverberation is due to local, distinct features 
in the environment. The coupled mode approach of Evans ? 
is capable of modeling the reverberation from two-dimen- 
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sional facets, but is limited to purely fluid environments. It is 
therefore inapplicable to analysis of elastic scattering by ice 
and bottom facets. For such problems, discrete methods 
such as the finite difference (FD) approach has been applied 
to bottom scattering a and arctic ice keel scattering. 9 The 
discrete methods are very general in terms of geometries that 
can be treated, but the computational requirements are sub- 
stantial due to the fact that the entire environment has to be 
discretized with a grid size small compared to the wave- 
lengths involved. These methods are therefore for all practi- 
cal purposes limited to short-range two-dimensional rever- 
beration problems. For the same reason, extension to three 
dimensions is prohibitive, although possible in principle. 
Other problems for the discrete methods are the radiation 
condition at the boundary of the computational mesh as well 
as numerical dispersion introduced by the discretization. 

Some of the most developed approaches for ocean 
acoustic and seismic propagation are the wavenumber inte- 
gration (WI) methods based on separation of variables 
through integral transforms, both for time and frequency 
domain analysis.•J -• One of the main advantages of the inte- 
gral transform methods is the inherent decomposition of the 
total solution in both temporal and spatial spectral compo- 
nents, enabling interpretation of the results in terms of basic 
wave physics. The disadvantage of the integral transform 
methods are their geometric inflexibility, limiting their di- 
rect applicability to problems with separable geometry, e.g., 
a horizontally stratified ocean. 

However, the wave number integration methods can be 
applied to the facet reverberation problem in a hybrid 
scheme. Thus Ingenito j4 and Hackman et al. •5 use a T-ma- 
trix approach to represent the scattered field that is then 
convolved with the waveguide Green's function to produce 
the waveguide reverberation. In their approach multiple 
scattering is accounted for through a scattering series. 

The same problem can be solved in a self-consistent 
manner using Green's theorem for the surface of this facet, 
requiring a finite discretization of the surface for numerical 
implementation. The boundary element method (BEM) 
combines an integral representation of the wave field within 
a volume with a point representation of stresses and dis- 
placements on the boundary between the two domains. The 
need for a dense mesh is limited to this boundary alone, 
eliminating the problem of discretely representing the wave 
field throughout the volume. This feature makes the BEM 
approach advantageous to scattering and radiation prob- 
lems. 

Several boundary element formulations based on wave 
number integration for the Green's functions have been pre- 
sented. However, they have all been formulated for either 
purely fluid or purely elastic media, none of which is directly 
applicable to the ocean seismoacoustic reverberation prob- 
lem. Schuster and Smith t6 combined a boundary integral 
method wilh a wave number inlegration approach to analyze 
scattering by rigid inclusions in a stratified fluid waveguide. 
Dawson and Fawcett •7 used a similar approach to address 
the reverberation from the waveguide boundaries. However, 
both were limited to fluid waveguides and ideal, homoge- 
neous boundary conditions. 

There has been a significant effort ]n the seismic com- 
munity in applying the hybrid BEM-WI approach to elastic 
scattering problems. Bravo et al. • investigated the ground 
motion for SH waves due to a layered alluvial valley in an 
elastic half-space and Campillo •9 modeled the reverberation 
of SH waves from a salt dome, where both interior and exte- 
rior domains were considered a layered media. The more 
complex P-SV problem has been addressed by Bouchon and 
Aki. lt By assuming periodicity in the horizontal, they dis- 
cretized all boundaries in the stratification and use wave 

number integration to determine the free-field Green's func- 
tions, with the discretization determined from the spatial 
sampling theorem. Thus the discretization is equidistant in 
the horizontal, making the approach inapplicable to, e.g., 
facets with vertical boundaries as pointed out by Bouchon. 2ø 
This problem has been solved for elastic half-space problems 
by Kawase? He interchanged the element and wave num- 
ber integrations, allowing the element integral to be evaluat- 
ed in closed form for each wave number component, assum- 
ing constant displacement and stress along each element. 
This approach has been applied to several seismic problems 
by Kawase and Aki. 

In the present paper we generalize the approach of 
Kawase TM to incorporate linear variation ofthe field param- 
eters over the elements. Further, we will formulate the 
boundary dement representation such that both the exterior 
and interior domains may be stratified with any combination 
of acoustic, elastic, and transversely isotropic layers. This is 
achieved by integrating the boundary element method with 
the direct global matrix approach •2'24 to propagation in 
stratified ocean environments. 

We will here limit the analysis to two-dimensional facets 
that are entirely enclosed in elastic media, thus allowing for 
simulation of reverberation from subbottom facets such as 

salt diapirs and ice facets such as grooves. In a subsequent 
paper, we will extend the formulation to allow analysis of 
reverberation from facets in contact with both elastic and 
fluid layers, such as seamounts and ice keels. 

The paper first outlines the problem under considera- 
tion. Then the boundary integral representation of an elastic 
wave field is described, followed by the boundary element 
formulation. The global matrix approach to the solution of 
the depth separated wave equation is briefly summarized in 
the context of the present boundary element formulation, 
including the closed form integration of the boundary ele- 
ment contributions. The numerical examples examine the 
reverberation from a groove in an arctic ice cover and an 
elastic subbottom facet. 

I. STATEMENT OF PROBLEM 

The problem under consideration is outlined in Fig. 1. A 
range-independent ocean environment, bounded above by a 
possible ice cover and below by a stratified, elastic bottom, is 
assumed to be interrupted by a local deviation from the ideal, 
horizontal stratification, in the following referred to as a 
facet. Such facets can be ice keels or grooves in an arctic ice 
cover or seamounts and diapirs in the ocean bottom. To en- 
able analysis of the forward and backward scattering and 

1630 d. Acoust. Soc. Am., Vol. 89, No. 4, Pt. 1, April 1991 P. Gerstoft and H. Schmidt: $eismoacoustic reverberation 1630 

Downloaded 06 Aug 2010 to 137.110.8.118. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



FIG. I. A horizontally straitfled ocean seismoacoustic environment is inter- 
rupted by a region of different properties, bounded by the surfiace S and 
stratified as well, although not necessarily wil h horizontal interfaces as indi- 
cated here. A {z,x} coordinate system is introduced with the z axis perpen- 
dicular to the interfaces in the stratification. 

reverberation introduced by such facets, we assume the facet 
to be sufficiently local to be enclosed within a surface S, 
outside which the environment is horizontally stratified. 
The inner region is assumed to b e horizontally stratified as 
well, but it could be of any composition, provided a mathe- 
matical/numerical model for its dynamic behavior is avail- 
able. Thus the interior could be a structure, modeled by a 
finite element method, for example. The facet is assumed to 
have infinite extent in the y direction and only line sources 
parallel to the facet will be considered, allowing for a two- 
dimensional plain strain formulation of the wave equation. 

II. BOUNDARY INTEGRAL FIELD REPRESENTATION 

The wave field in an elastic medium is described by the 
body forces fi, the surface tractions ti, and the displacements 
U i ß 

In the frequency domain, the reciprocity theorem of 
elasticity states that if two distinct elastic fields of time de- 
pendence exp(icot), (if//,t/*,u,*) and (fi,ti,u/) exist in a vol- 
ume I/bounded by a surfaceS, then the work of the forces of 
the first system (*) on the displacements of the second is 
equal to the work done by the forces of the second system on 
the displacements of the first (*), 

Assuming the first field (•,t•,u/*) is due to a unit force 
at a point x' inside the volume, • = rS/(x -- x'), then t • and 
u• correspond to the Green's functions H), (x,x';n s ) for trac- 
tions on a face with outgoing normal n s and Gii(x,x') for 
displacements at point x. Insertion in Eq. ( 1 ) then yields 

ui(x) + •a. Hi,(Xs,X;ns)ui(xs)dS 
= •s Git (Xs'X)tj (xs;ns)dS 

+ f•, Gij (x,x •, )f• (x • )dI/, (2)' 
where ui(xs) and ti(Xs;ns) are the x• components of dis- 
placements and tractions on the surface S, respectively. 
Gi• (xs,x) is the displacement in thex• direction at x s due to 
a force in the x• direction at x and H•, (Xs,X;n s) is the trac- 
tion in the x i direction at the point xs on the surface S with 

outgoing normal ns, due to a force in the x• direction at a 
point x inside the volume. 

Letting the surface S correspond to the boundaries of 
the volume with known boundary conditions, and letting the 
field point x approach a point x.;. the boundary, Eq. (2) 
yields an integral equation for the boundary displacements 
and tractions, 

u,(x;.) = [a,, 5 
-- H•, (Xs,X•.;ns)u s (xs) ]dS 

;.% ' )f,( + (xs,x•, xr)dg. (3) 

Equation (3) is valid only for points x.•. inside the volume. 
Therefore, the surface integral must enclose the singularity 
of the traction Green's function H•i(xs;xL.;n s ) at x.•. = x s. 
However, the integration around the singularity can be per- 
formed explicitly, modifying the integral equation to 

Cqll I (X•-) = •.S' [ Gfi (x.%-[x.•-)t] (x3,.;nfi,) 
-- Hi, (xs;x•.;n. • ) u• (Xs) ] dS 

+ ;. G• (x.•.;x r )f/(x r) d t; (4) 
where the surface integral is interpreted as the Cauchy prin- 
ciple value, and for a smooth boundary, 

C o = Zi,,/2. (5) 
After solving Eq. (4) for the boundary tractions and 

displacements, the displacements at any point can be found 
from Eq. (3), and the associated stresses follow from 
Hooke's law. 

In general, the surface integral must cover all boundar- 
ies enclosing the volume, making closed form solution of Eq. 
(4) impossible for all but trivial problems. Numerical imple- 
mentation is therefore the only alternative, requiring dis- 
cretization of the boundary $, which is the basis for the 
boundary element method. However, many problems in 
ocean acoustics and seismology involve boundaries of signif- 
icant---often infinite--extent. 

The discrete wave number approach of Bouchon and 
Aki •l overcomes this problem by assuming periodicity in 
the problem, ih combination with the use of a complex fre- 
quency formulation. However, the number ofdiscretization 
points required for typical long range ocean acoustics prob- 
lems becomes excessive using this approach, at significant 
compulational cost. 

However, the Green's functions in Eq. (3) can be cho- 
sen arbitrarily provided they satisfy the wave equation in the 
entire volume. [t is easily shown that the surface integral will 
always vanish along parts of the boundary where the chosen 
Green's fimctions satisfy the prescribed boundary condi- 
tions. For typical ocean acoustic problems where the envi- 
ronment is globally horizontally stratified but with local fac- 
ets such as ice keels, subbottom faults, and diapirs, we can 
therefore limit the surface integral to cover only the facet, 
provided the Green's function used in the formulation satis- 
fies all boundary conditions in the stratification. This. to- 
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gether with the fact that efficient numerical codes are avail- 
able for finding the Green's functions for stratified ocean 
seismoacoustic environments, makes such an approach an 
efficient alternative to finite element and finite difference 

approaches, in particular for long-range scattering and re- 
verberation problems. Further, due to the discretization be- 
ing limited to the boundary of the facet, this approach is the 
most suitable for three-dimensional facet reverberation, al- 
lowing analysis of out-of-plane scattering from finite ice 
keels, bottom diapirs, etc. 

III. BOUNDARY ELEMENT FORMULATION 

In the following, we describe the discretization of the 
integral equation, Eq. (4), for two-dimensional, plane strain 
problems. 

A. Exterior region 
Assuming the exterior medium bounded by the surface 

S is plane stratified, a Cartesian coordinate system 
x = (x• ,x 2 ) = (z,x) is introduced, with the z axis perpen- 
dicular to the stratification, Fig. 1. 

We will here use collocation for discretizing Eq. (4). 
The boundary S is approximated by M linear segments, or 
elements, connected in M nodes, with node number m at x'" 
connecting elements number m and rn + 1 as indicated in 
Fig. 2. Note that we will use a superscript m to indicate node 
number and a subscript m to indicate element number in the 
following. With the normal pointing away from the volume 
of interest, i.e., into the inclusion for the outer domain, de- 
noted n,, = (cos 0,,,sin 0 m ), a local coordinate system 
yc[ -- 1,1] is introduced for the element, Fig. 2, yielding the 
parameter representation for the coordinates of points on the 
element, 

z,,(y) ] [z•l /,,{ - sin 0,, xm(y)/ = [x•/+•- COS0m Y' (6) 
with x,• = (z•,x•,) being the coordinates for the center 
point of the element and l,,being the length of the element. 

The distribution of displacements and stresses along the 
element are now assumed to be in the form 

t(y)J={tm-'/N(y) + t" N(-y), (7) 

x 

FIG. 2. Boundary element notation. Element m interconnects nodes m - 1 
and rn and has the normal n m = (cos 0re,sin 0,,, ) pointing away from the 
volume Volinterest. A local coordinate system y• [ -- 1,1 ] is introduced for 
the element, as indicated. 

with u'" t'"being the displacements and tractions in node 
number m, and N(y) being a linear interpolation function, 

N(y) = (1 --y)/2. (8) 
Insertion of Eq. (7) now yields the following discrete 

form of Eq. (4): 
M 2 

C"u;'= • • [Gj7"t?--m?u;' ] +•7, 
rn--lj--I 

n=l ..... M, i= 1,2, (9) 
where g•' is obtained from the volume integral in Eq. (4), 
representing the source contribution to the node displace- 
ments, and G?" and H? are the influence matrices 

G ?= -• Gjf(x,, (y),x"N( - y)dy --I 

l,•+, Gj,(x,• +• (y),x•N(y)dy, (10) + 2 _• 
.... =l'"• H x " H•i 2 •, •'( '" (y),x ;n,,N( -y)dy 

l,,f , ,,. + -- H•,(x,• +, (y),x ,n,, +, )N(y)dy. ( 11 ) 
I 

B. Combining two regions 

For homogeneous boundary conditions u? = 0 or 
t?' = 0, the BEM equations, Eq. (9), can be solved for the 
unknown node tractions or displacements, respectively. For 
the inclusion being elastic, the boundary element equations 
must be set up for the interior of the inclusion, now with the 
surface normal pointing out into the exterior region, 

M 2 

m = I j = I 

n=l ..... M, i=1,2. (12) 
The node displacements and tractions in the two regions 
must now satisfy the continuity conditions, 

u , (13) 

?"= -t m, (14) 
which, inserted into Eq. (12), yield 

M 2 

C u, = • • ( - G•T"tj" - tt;,?"u 7) + 
m=lj=l 

n = 1,...,M, i= 1,2. (15) 
Equations (9) and (15) now form a system of linear equa- 
tions that can be solved for the node tractions and displace- 
ments, 

[•--I •G][;]: [•] . (16) 
C. Influence functions 

The kernel G;i(x,, (y),x") represents the displacement in 
the x• direction at a point x m (y) on element m, due to a 
virtual unit force in the x• direction at the node at x" for the 
exterior layered medium without the facet. Similarly, the 
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kernel Hji (Xm (y) ,x";nm ) represents the xj component of the 
tractions on the rnth element with outgoing normal n,,. 

Since both the inner and outer domains separated by the 
boundary S are assumed to be plane stratified, the Green's 
functions are most conveniently determined by separation of 
variables through integral transforms. The theory for propa- 
gation in plane stratified media is well established, 25'26 and 
several numerical schemes have been developed for the solu- 
tion, including various forms of the propagator matrix ap- 
proach of Thomson 27 and Haskell, 28 the invariant embed- 
ding approach of Kenneth, 'ø the discrete wave number 
method by Bouchon and Aki, '• and the direct global matrix 
(DGM) method of Schmidt. 12.24 The DGM approach in- 
herently solves for multiple sources and receivers simulta- 
neously for arbitrary fluid/solid stratifications, and is there- 
fore well suited for computation of the kernels of Eq. (4). 
We will here use a modified version of the DGM s^v^RI 
code, 29 incorporating multiple sources and analytical inte- 
gration of the Green's functions over the boundary elements. 
The use ofs^F^m is convenient since it retains all features of 

the existing code, including the mixed fluid/solid stratifica- 
tions characteristic of ocean acoustic reverberation prob- 
lems, as well as special features such as transverse isotropy 3ø 
and interface roughness) 

1. Green's functions for stratified media 

Here, only an outline of the DGM approach will be giv- 
en, focusing on the details pertinent to the present BEM 
formulation; for further details, reference is made to the pub- 
lished literature. 12,24 The displacements and stresses of time 
dependence exp (kot) are, in vector form, 

f(x) = trr0(x)j . (17) 
The tractions on a surface with outgoing normal n, needed in 
the BEM formulation, are determined from the stress tensor 
by the relation 

ti (x;n) = % (x)n• (x). (18) 
The solution for a stratified medium is based on the inte- 

gral transform representation of the Green's function, for 
plane strain the Fourier transform, 

f(x,x') = [(z,z';k)e -ik(:'-:"l dk, (19) 

~ , f(x,x,)ei•-(.• ,'l dx, (20) f(z,z ;k) = •-• 
with x = (z,x) being the field point, x' = (z',x') the source 
point, and the depth-dependent Green's function •(z,z';k) 
satisfying an ordinary differential equation in depth, the so- 
called depth-separated wave equation. 

The DGM approach solves the depth-separated wave 
equation by expressing the total Green's function in layer 
number m as a superposition of the free-field Green's func- 
tion for sources in the layer, and solutions to the homoge- 
neous wave equation, 

f/(z,z ;k) = f/(z,z';k) + •/ (z;k ), (21) 
where both the source contribution f• (z,z';k) and the homo- 

geneous solution • (z;k) in an elastic layer are of the form 
•(z;k) = Kt(k)Et(z,k)At(k), (22) 

where K (k) is a coefficient matrix, a function of wave num- 
ber k only and E• (z,k) is a diagonal matrix containing all 
depth dependence, 

E•(z,k)=diag[e • ,e rs• ,e •,e "' ], (23) 
with z- = z - z t_ •, z + = z• - z being the distances from 
the field point to the interfaces bounding the layer above and 
below, respectively, and 

a: xf}•-h •, /•: •fk 2 - K•, (24) 
with h• and •q being the wave numbers for compression and 
shear, respectively, and A•(k) is a vector containing the 
wave field amplitudes, known for the source contribution 
and to be determined from the boundary conditions for the 
homogeneous solution. 

The boundary conditions to be satisfied simultaneously 
at all horizontal interfaces then take the form 

•(z,;k) - •'•, (zt;k) 
:ft •(z•;k)-ft(zAk), I=I...(M-1), (25) 

i.e., a global system of linear equations in the wave field am- 
plitudes A• (k), the solution of which is unconditionally sta- 
ble with the particular choice of local coordinate systems 
used in the depth solutions, Eq. (23). Once solved, the solu- 
tion vector A t (k) is inserted into Eq. (22) and superposed 
with the source contributions, and the displacement and 
stress components of the Green's function are determined at 
any depth in the stratification through evaluation of the 
Fourier transforms, Eq. (19), with the tractions following 
from Eq. (18). Further, the source contributions only ap- 
pear on the right-hand side of Eq. (25). Multiple sources can 
therefore be treated simply by adding multiple right-hand 
sides, enabling the determination of all kernels in Eqs. (10) 
and ( 11 ) with one solution of Eq. (25). This feature of the 
hybrid DOM-BEM approach is the main reason for the nu- 
merical efficiency of the present approach. 

To determine the influence functions, the element inte- 
grations in Eqs. (10) and ( 11 ) must be performed. This can 
of course be done by numerical quadrature, requiring proper 
sampling of the Green's functions over the elements. How- 
ever, the present wave number representation of the kernels 
allows for closed form evaluation of the element integrals. 
This is described in the following section. 

2. Element integration 

The components of the Green's functions to be integrat- 
ed over the elements in Eqs. (10) and ( 11 ) are obtained by 
evaluation of the integral over wave number, Eq. (19), of the 
kernels obtained from the DGM solution. 

The integrations to be performed in Eqs. (10) and ( 11 ) 
are therefore of the form 

m 2 I • 

X e •-0,,,,(• •'"• dk )N( _+ y)dy. (26) 
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Insertion of Eq. 22 and interchange of the integrations 
yield 

I• = K(k) E(z•, (y),k} 

Xe-ik½""'(v)- x"}N( _y)dy)A(k)dk. (27) 
If we choose the interpolation function as a linear combina- 
tion Legendre function, 

where j,, is the spherical Bessel function of order n, then the 
inner integration can be performed in closed form. 

For the present linear variation over the elements, 

N(y) = (Po (Y) -- P, (y))/2. (3O) 

Insertion of the parameter representation for the ele- 
ment coordinates, Eq. (6), then yields 

N(y) = • a,,P. (y), (28) 
and use the identity 3• 

• P. (y)dRYdy = 2inj,, (R), (29) I 

[Jo(( -- lets,, -- kc,• ) (l•,/2)) q-/j• (( -- ias,,-- kc,,) (lm/2))] 
. diag] jo((--iris.. --kc,.)(l,,,/2))+ij•((-iris..--kc,.)(l,./2))] &j (k) = / Jø((ias"'-kc'"(l'"2))q-iJ•((ias'"-kc"')(l'•/2)) [' 

L jo((ifis.,--kc,.(l../2))+ij,((ifis.,-kc.,)(l../2)) • 

I,, +, = l•,K(k)J,• (k)E(z•,k)A(k)e •k(x;;, x") dk, 
(31) 

where J,,+- (k) i s the diagonal matrix, 

(32) 

with (c,,,Sm ) = (COS 0,,, ,sin 0,, ). 
It is now clear from the form of Eq. (31 ) that the ele- 

ment integration can be accounted for simply by modifying 
the wave number kernels computed by SAFARI by multipli- 
cation with the element length and the diagonal matrix in 
Eq. (32). 

D. Field computation 

Once the nodal displacements have been determined by 
solving the BEM equations (16), the field in the external 
region is determined from the discretized integral represen- 
tation, 

M 2 

u,(x) = Z Z [G•'(x)t?--Hjj'(x)u?] 
m--lj--I 

+ gi(x), i= 1,2, (33) 
similar to Eq. (9), but with the node x"replaced by the field 
point x. The stresses follow from Hooke's law, applied at the 
field point x. 

We could now use SAFARI to compute the Green's func- 
tions in Eq. (33) for each of N desired receiver depths, re- 
quiring computation of 2XM X N Green's functions for 
each combination of the coordinate indices/j. Further, in 
cases where the field in a fluid layer has to be computed, we 
would have to establish a reciprocity theorem for combined 
fluid/solid regions. 32 In such cases, Eq. (1) is not directly 
applicable since point forces cannot be applied in fluid me- 
dia. However, we can modify Eq. (33) to be more numeri- 
cally efficient and more important directly allowing for com- 
putation of the field everywhere in a fluid/solid strat- 
ification. 

As is clear from the form of the field representation, Eq. 
(33), the surface integral is equivalent to a source distribu- 
tion. We can therefore apply it as such in the superposition 
principle of the DGM approach, where the total field within 

I 

a layer is a sum of the free-field source contributions in the 
layer and a solution satisfying the homogeneous wave equa- 
tion. Equation (33) is therefore reformulated such that all 
parts of the solution satisfying the homogeneous wave equa- 
tion in layer l are collected in the term u•* (x). These include 
all contributions from sources and elements in other layers 
as well as the field reflected off the horizontal boundaries of 
the layer. Equation (33) then takes the form 

Mt 2 

u,(x)= Z Z [Gj,(x)tj -HS,"(x)u;"] 
m I j- 1 

q- fii(x,x') q- u,.*(x), i= 1,2, (34) 
where G•,. (x) and H• (x) are now the free-field influence 
functions, and • (x,x') are the displacements corresponding 
to the free-field Green's function for the physical sources 
within the layer. The summation obviously includes only the 
M• nodes that are present in the actual layer. The term 
u•*(x) represents a yet unknown homogeneous solution to 
be determined from the boundary conditions at the horizon- 
tal interfaces. Since the field in each layer is now expressed as 
a superposition of free-field source terms (elements and 
physical sources) and an unknown homogeneous solution, 
we can use the DGM approach to solve for the homogeneous 
solution. 

We insert the known wave number repregentation for 
the free-field Green's functions and perform the element in- 
tegrations analytically as described above to yield 

u•(x) = •(z,,,,z,k)t • -- h•(z,.,z,k)u) ] 
• =lj:l 

Xe -'•;;' •)dk+•(x,x')+u•(x), i=1,2. 
(35) 

We then apply the fo•ard Fourier transform, Eq. (20) 
with k replaced by k ', to Eq. (35) together with the identity 
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I e,,,k+•.•dx=_6(k+k,), (36) 
2rr 

and obtain the wave number kernels for the displacement at 
the receiver depth z, 

Mt 2 
ikx'• r • c a,(z;k) = • • e tgj,(z,.,z; - 

c Mu?] + - h# - 
+ ap(z;k), i= 1,2. (37) 

The corresponding wave number kernels for the stress 
at depth z are now found from Hooke's law. In the wave 
number domain, the spatial variation of the free-space 
Green's function is known; thus we obtain the spatial deriva- 
tives of the displacements involved in Hooke's law by alge- 
braic operations in Eq. (37), yielding the displacement- 
stress vector, 

•(z;k) = tb0 (z;k) l 
where the "source" term •, (z;k) is a superposition of the 
contributions from the physical sources and the boundary 
elements within layer i. The homogeneous solution • (z;k) 
is of the form given in •. (21), with the plane-wave ampli- 
tudes A• (k) being unknown. 

By detemining the source terms and the coefficients to 
the homogeneous solution at the horizontal boundaries of 
the layer, z = zt • and z = zt, we have all terms needed for 
the DGM equations, Eq. (25), the solution of which deter- 
mines the unknown wave field amplitudes A• (k) in all lay- 
ers, fluid or solid, simultaneously, and the total field can then 
be determined by evaluating the backward Fourier trans- 
form of Eq. (37). 

In addilion to automatically determining the field in any 
fluid or elastic layer in the stratification, this approach is 
more efficient since all source and element terms in the wave 
number kernels for the physical souroes and element contri- 
butions in •. (37) are simply superimposed, requiring only 
one right-hand side in the global matrix equations (25). 

E. Numerical considerations 

Although the influence matrices of the BEM equations, 
Eq. (9), are straightforward computed by means of a slight- 
ly modified SAFAm code as described above, there are several 
numerical issues that must be considered. Some of these is- 
sues are of general nature for wave number integration algor- 
ithms and some are introduced in particular for the BEM 
formulation, requiring computation of extremely short- 
range Green's functions. 

L Green's function singularities 

The Green's functions H•i (Xs,x•;ns) for tractions have 
a ]x s -- x•:] - J singularity that must be enclosed by the sur- 
face integration in Eq. (3). This can be accomplished by 
interpreting the integral as the Cauchy principal value and 
explicitly adding the contribution from a contour encircling 
the singularity. This is illustrated in Fig. 3, showing node 
number m connecting elements number m and m + !. The 

FIG. 3. [ntegratiou contour for singu- 
lar contributioq. The volume Vis indi- 
cated by the hatched area. 

singularity is encircled by a small circular arc of radius e. If 
the arc was encircling the singularity entirely, the contour 
integral would be - 1. For the present angle, 
0 '" = rr - (0,,, • • - 0,,, ), we assume a proportional contri- 
bution, 

AI'" = -- [rr-- (O,,, + • -- 0,,) ]/2rr, (39) 
yielding the following expression for the factor C" in Eq. 
(9): 

C"=l+Al"=[rr+(Or•+•- 0,,) ]/2rr, (40) 
which for a node with no change in element angle translates 
to a factor of C" ----- 1/2. 

2. Wave number integration 
The numerical evaluation of the wave number integrals 

is a critical point for wave number integration approaches. 
There are two critical issues to consider. One is the trunca- 
tion of the wave number integration interval, and the other is 
the wave number sampling. :a 

To obtain an accurate solution, it is necessary to trun- 
cate the wave number integration at a poinl where the eli- 
minated integral to infinity is negligible. A proper choice: is 
therefore closely linked to the asymptotic behavior of the 
kernels for k • +__ ca. For large wave numbers, the weakest 
decay of the free-field integrands of the backward Fourier 
transform, Eq. (19), is of the form 

- , (41) f(z,z;k)e 'k•k Je •l:-•'le ia• 
The analytical integration over the element has in- 

creased the convergence by k ' • as opposed to a simple 
boundary integral representation. For cases where source 
and receivers are at different depths, the exponential func- 
tion usually ensures a rapid conversion, making it sufficient 
to include wave numbers slightly higher than the largest 
wave number in the environment. For source and receiver at 
the same depth, the existence of the integral is ensured only 
by cancellation through the multiplication with the expo- 
nential function in range x, and here the truncation becomes 
a critical issue. An abrupt truncation will always give rise to 
truncation errors. However, this problem can be overcome 
by tapering the kernel over a wave number interval where 
the exponential function oscillates through several per- 
iods, 2• ensuring proper cancellation. The actual choice of 
tapering interval is obviously dependent on the range x se- 
parating source and receiver. In traditional waveguide com- 
putations, the range is usually relatively large compared to 
the wavelength, making tapering of the highest 10% of the 
wave numbers sufficient. However, in the present case the 
computation of the element influence matrices involves ex- 
tremely short ranges as well as small depth separations, re- 
quiring substantially more tapering. The actual numerical 
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values will be discussed in relation to the examples following 
in the next section. 

The wave number sampling is traditionally a critical is- 
sue for wave number integration algorithms. However, it is 
relatively straightforward to determine a sufficient sampling 
through the sampling theorem in combination with choos- 
ing a complex wave number integration contour, as de- 
scribed in detail in Ref. 29. In summary, the wave number 
sampling interval Ak should satisfy the inequality 

&k < 2•c/aR, (42) 

where R is the maximum range of interest and a is a factor 
which should be at least 2.0 for cases involving the spectrum 
for negative wave numbers. A value of a ---- 3.0 has been 
found empirically to be sufficient for all practical purposes. 
However, this sampling is not sufficient to ensure correct 
results. The discrete integration will still give rise to wrap- 
around of the field outside the range window aR. This wrap- 
around is reduced by choosing a complex wave number con- 
tour for evaluation of the inverse Fourier transform, Eq. 
(19). 

In setting up the BEM equations, Eq. (9), we need to 
determine extremely short-range influence functions as well 
as long-range Green's functions for the field produced on the 
facet boundary by the physical sources. According to the 
above discussion, we therefore need a large wave number 
interval for the influence functions, but with weak sampling 
requirements, whereas the sampling requirements are 
stricter for the source field, over a much smaller wave num- 
ber interval, however. 

It is therefore convenient to separate the wave number 
computation and integration for the two components, in 
spite of the fact that the DGM approach could solve for both 
simultaneously. For the same reason, the Green's function 
computations needed for the received field are also per- 
Formed as a separate computation, allowing adjustment of 
the sampling parameters to the receiver positions of interest. 
The splitting of the Green's function computations in three 
independent parts also has the advantage that the computa- 
tionally most intensive part, the evaluation of the influence 
functions, can be performed just once for a particular envi- 
ronment, and reused for several source-receiver scenarios. 

In summary, the basic algorithm can be separated into 
five distinct parts: 

( 1 ) Computation of exterior influence function [Eqs. 
(10) and (11)]. 

(2) Computation of interior influence function [ Eqs. 
(10) and (11)]. 

(3) Computation of source contribution to nodal dis 
placements [2 in Eq. (16) ]. 

(4) Solve the BEM system of equations [Eq. (16) ]. 
(5) Computation of the scattered field [ Eq. (37) ]. 
Parts 1, 2, 3, and 5 each represent a SAFARI run. For 

parts 1 and 2, the computation involves a number of inde- 
pendent sources corresponding to two times the number of 
nodes. For an inclusion with homogeneous boundary condi- 
tions, part 2 is not necessary. We roughly estimate a BEM 
computation will take from 3-10 times the CPU time of a 
normal SAFARI run, depending on the number of nodes. 

3. Time domain solutions 

For time domain solutions obtained by Fourier synthe- 
sis, the frequency sampling is a critical issue. However, in 
analogy to the wave number sampling, wraparound can be 
eliminated by evaluating the Fourier series along a complex 
frequency contour. When using complex frequency, it is not 
necessary also to use complex wave number. Complex fre- 
quency has been used in all time domain solutions following. 

IV. NUMERICAL EXAMPLES 

To illustrate the efficiency and versatility of the hybrid 
DGM-BEM approach for simulation of ocean seismoacous- 
tic reverberation, we will apply it to three different reverber- 
ation scenarios. The first is a simple benchmark problem, 
which will be used to illustrate the correctness of the solu- 
tion. The second problem concerns the long-range reverber- 
ation produced by a groove in the ice sheet covering an Arc- 
tic Ocean environment with a realistic sound-speed profile. 
The last example simulates the short-range reverberation 
from an elastic bottom facet in the time domain. 

A. Semicircular canyon in elastic half-space 
To evaluate the performance of the DGM-BEM ap- 

proach, we will apply it to the problem used by Kawase 2• to 
evaluate his approach. A homogeneous elastic half-space 

(a) 
40 

3,0 

2.0 

0.0 
-200 -•o.o o.o lo.o 20.0 

Ronge (rr•eter) 

(b) 

4,0 I 

200 -:o.o o.o •oo 200 

Ronge (rne[er) 

FIG. 4. Displacements at the surface of a semicircular canyon computed by 
the present approach with 30 elements (solid) curve, and by a standard 
boundary integral method with 60 nodes (dashed curves), The results ob- 
tained by the present approach are in perfect agreement with the results of 
Kawase 2• and Wong? (a) Vertical displacements versus horizontal node 
position; (b) horizontal displacements. 
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with shear speed c s, Poisson ratio v = 0.33 (cp = 2c s ), and 
densityp has a semicircular canyon with radius a. We deter- 
mine the vertical and horizontal displacements at the surface 
of the canyon for a vertically incident, plane P wave of fre- 
quency f= cs/a , i.e., with a Pwavelength equal to the diam- 
eter of the canyon. The displacement amplitude of the inci- 
dent wave is unity. We use 30 boundary elements for 
representing the canyon, and Fig. 4 (a) shows the computed 
vertical node displacements versus the horizontal node posi- 
tion as a solid curve. Figure 4(b) shows the corresponding 
horizontal displacements. The results are in perfect agree- 
ment with the results obtained by Kawase 21 and earlier by 
Wong. 33 To illustrate the accuracy and efficiency of the 
present closed form element integration, we have shown the 
results obtained with a standard boundary integral method 
with 60 nodes and no element integration as dashed curves. 
The results of the standard approach have obviously not 
converged to the correct solution with 60 nodes. Due to the 
doubling of the number of nodes, the standard solution was 
obtained at almost four times the computational cost, clearly 
indicating the efficiency and accuracy of the present ap- 
proach. 

For the actual computation of the influence function, 
the wave number kernels are sampled with 1024 points for a 
horizontal phase velocity c = •o/k from -- 20 to 20 m/s. For 
phase velocities lower than 200 m/s, tapering has been ap- 
plied in order to speed up the convergence. H6wever, this is 
computationally very demanding and an analytical evalua- 
tion of this contribution will significantly speed up the com- 
putations. An adaptive scheme a4'35 would also significantly 
improve the speed of the computations. 

B. Reverberation from ice facets 

We next address a problem that for computational rea- 
sons is prohibitive for discrete methods and that cannot be 

15km or 30km 

100 *WATER 
2000 

SUBBOTtOM I 
FIG. 5. Arctic environment with a semicircular groove in an elastic ice cov- 
er. A canonical bilinear sound-speed profile is assumed in the water column 
of 2000-m depth. Two different ranges between source and groove are con- 
sidered, i 5 and 30 kin. 

solved by any of the earlier published BEM approaches due 
to the fluid-elastic nature of the stratification. 

We consider the long-range reverberation from a groove 
in an ice sheet covering a realistic Arctic Ocean environ- 
ment. The ice sheet is assumed to be of uniform thickness 4 
m, except for the groove that is assumed to be semicircular 
with radius 3.9 m, almost penetrating the ice as shown in Fig. 
5. The compressional and shear speeds of the ice are 3000 
and 1600 m/s, respectively, and the density 0.9 g/cm -•. A 
bilinear sound-speed profile is assumed in the water column 
ofdepth 2000 m, with 1435 m/s just below the ice and 1481 
m/s at the seabed. The bottom is relatively unimportant for 
the long-range propagation and reverberation in this case, 
and we therefore assume it to be a fluid half-space with a 
sound speed of 1481 m/s. 

A 50-Hz acoustic line source is assumed to be placed at a 
depth of 100 m, producing the field shown as contours in 
depth and range in Fig. 6(a} in the absence ofthe ice groove. 
The contour interval is 3 dB, but the absolutelevels are arbi- 
trary. The field clearly exhibits the characteristic surface 
duct and convergence zone pattern, with the convergence 
zone distance being approximately 30 kin. We now consider 

(b) 

e6.o ao.o 

FIG. 6. Contours of acoustic field in an arctic environment for a 50-Hz line 
source at depth 100 m. Contour interval is 3 dB, but actual levels are arbi- 
trary. (a} Field in absence of groove; (b} field scattered by groove at 15-kin 
range; (c} field scattered by groove at 30-km range. 
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two positions of the groove, one at 30-km range in the con- 
vergence zone and one at 15 kin, i.e., halfa convergence zone 
away from the source. The scattered fields produced in the 
two cases are shown in the form of field contours in Fig. 6 (b) 
and (c). 

There are several things to note in the results shown in 
Fig. 6. First of all, the structure of the scattered field is very 
similar for the two cases due to the significance of the surface 
duct propagation, but the levels are in general 3 dB higher 
for the groove at 30 km due to the convergence zone contri- 
bution. Further, because the scattered field itself is dominat- 
ed by the convergence zone path due to the dominantly verti- 
cal angles generated, the reverberation produced on a 
vertical array in a monostatic scenario is approximately 6 dB 
higher for the groove at 30-km distance than for the one at 
15-km distance. Here, it should of course be pointed out that 
these considerations ignore geometric spreading associated 
with more realistic point source scenarios. On the other 
hand, the issue is signal to noise ratio (SNR), and a target 
signal will be subject to the same geometric spreading laws. 
Thus a signal from a target at 100-m depth in the conver- 
gence zone will be only a couple of dB higher than for the 
target at 15-km range (ignoring geometric spreading), but 
the reverberation from a groove at the same distance is 6 dB 
higher, translating into a 3- to 4-dB-higher SNR in terms of 
reverberation for the target and ice facet at 15-km range. 

Another important issue is the energy loss induced by 
scattering into flexural waves in the ice, which when accu- 

Freq 500 ttz 

10 5 0 5 10 

Horizontal wavenumber (10'* 1) 

I 
1o• 

Freq: 50 Hz 

Horizontal wavenumber (10" -1) 

FIG. 7. Wave number kernel for scattered acoustic pressure: (a) below ice 
cover, at depth 4.0 m; (b) at depth 55 m. Scattering into evanescent flexural 
wave in ice is evident, in particular in the backward direction (negative 
wave numbers). 

mulated over many ice facet interactions is suspected to be 
an important transmission loss mechanism 5 due to the fact 
that these waves are subsonic and therefore evanescent in the 
water column. To illustrate this qualitatively and demon- 
strate the interpretation advantage of the wave field decom- 
position inherent in the present approach, Fig. 7(a) shows 
the wave number kernel for the scattered field just below the 
ice. Both the negative and positive wave number spectrum is 
shown, with the negative wave numbers corresponding to 
the backscattered field. The wave numbers I kl (0.2 corre- 
spond to waves propagating in the water column, whereas 
the larger wave numbers are evanescent in the water column, 
as can be observed in Fig. 7(b), showing the corresponding 
wave number kernels at depth 55 m. As may be expected, the 
propagating components are slightly stronger in the forward 
direction. However, it is more interesting to note the 
strength of the scattered flexural waves, represented by the 
strong peaks in the evanescent regimes. In particular, the 
relative strength of the backward scattered flexural wave is 
interesting, a phenomenon that could be addressed in future 
scattering experiments, in particular if geophone arrays are 
deployed on the ice. 

As the wavelength is much larger than width of the ice 
groove, the exact shape of the groove is not important. Here, 
ten elements were used and the sound speed profile was mod- 
eled by ten layers with c(z) 2 linear in each layer. The wave 
number sampling parameters were similar to the ones in the 
previous examples for computation of the influence func- 
tion. For the propagation of the scattered field, the wave 
number kernel was sampled in 1024 points over an interval 
corresponding to phase velocities between -- 200 and 200 
m/s. The total computation time was 3 min on an Alliant 
FX-40 with two processors. 

C. Reverberation from subbottom facets 

As a last example, we will illustrate the versatility of the 
DGM-BEM approach by simulating the short-range, time 
domain reverberation from a subbottom elastic facet. The 

environment is shown in Fig. 8. A cylindric granite inclusion 
of radius 70 m is embedded in the subbottom of a stratified 
shallow water environment with water depth 200 m. The 
bottom consists of a 30-m silt/sand sediment layer overlay- 
ing a sand subbottom. The environmental parameters are 
summarized in Table I. 

A transient acoustic source at depths 10 and 400 m from 
the center of the facet range is transmitting a second-order 
Blackman-Harris pressure pulse, shown in Fig. 9, with a 
center frequency of 20 Hz. We compute the acoustic field in 
the water column over a fine grid in the range window 200- 
550 m relative to the source, covering both the backscatter- 
ing and forward scattering regions for the facet. 

Figure 10(a) shows the field contours at t = 0.35 s, 
shortly after the first interaction with the facet. Red color 
indicates positive stress (negative pressure), and blue indi- 
cates negative stress. The incident and bottom bounced 
wavelets are clearly identifiable, together with the secondary 
surface bounce. In addition, the facet reverberated wavelet is 
visible in the bottom left half of Fig. 10(a). Figure 10(b) and 
(c) shows the field at t = 0.40 s and t = 0.45 s, where the 
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FIG. 8. Cylindric granite inclusion in stratified elastic seabed. Transient 
source at 10-m depth, 400 m from center of inclusion. Pressure field in water 
determined over entire water depth, 200 m, between 200- and 550-m range 
from source. 

major wavelets of the incident and scattered wavelets are still 
visible, but very difficult to interpret in detail. 

Here, we can take advantage of the separation of the 
incident field and the scattered field inherent in the BEM 

A 

approach, simply by excluding the source term •i (z,z';k) in 
Eq. (37), leaving only the boundary element contributions 
as source terms in the DGM solution. Figure I I (a), (b), 
and (c} shows the scattered field alone, at times 0.35, 0.40, 
and 0.45 s, respectively. Figure l 1 (b) shows a clear domi- 
nance of forward scattering from the facet. However, it is 
more interesting to note the conversion into shear waves and 
interface waves induced by the facet, evident in Fig. l 1 (c). 
The peaks in the pressure field at the bottom at range 340 m 
and the negative peak at 450 m correspond to scattered shear 
body waves and Scholte waves. To illustrate the more de- 
tailed time variation of the reverberation, the equivalent 
time series recorded by a vertical array at 200-m range is 
shown in stacked format in Fig. 12. Again the primary arri- 
vals are identifiable in the total signals shown in Fig. 12(a), 

TABLE 1. Environmental parameters for bottom facet problem. 

Medium 

Compression Shear 

Speed Atten Speed Atten Density 
m/s dB/A m/s dB/,t g/cm -• 

Water 1500 0 ...... 1.0 
Silt/sand 1600 0.2 400 0.5 1.6 
Sand 1800 0. I 600 0.2 1.8 
Granite 5000 0.01 2500 0.02 2.4 

o.oo o.os o.•o o.•s o.ao 

Time (seconds) 

FIG. 9. Second-order Blackman-Harris source pulse with center frequency 
20 Hz. 

(a) 

•o.o :ao.o aoo.o a•o.o •oo.o •=o.o •oo.o 

Range (m} 
550.0 

(b) 

200.0 2•o.o aoo.o a5o.o 400.0 4•o.o 

Range (m) 
500.0 

? 

550.0 

o 

•.o z50.o 3oo.0 a5o.o 4•.o 450.0 500.0 550.0 

Range 

FIG. 10. Snapshot contours of full acoustic field at times (a) 0.35 s, (b) 0.40 
s, and (c) 0.45 s. Positive stress (negative pressure) amplitude indicated by 
red colors, negative by blue colors. 
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(c) 
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FIG. l I. Snapshot contours of scattered acoustic field at times (a) 0.35 s, 
lb) 0.40 s, and (c) 0.45 s. Positive stress (negative pressure) amplitude 
indicated by red colors, negative by blue colors. 

but the temporal structure of the scattered field is much 
more easily interpreted by eliminating the physical source 
field, as done in Fig. 12lb). 

Figure 13 shows the stacked time series for a geophone 
array placed on the seabed at depth 200 m, ranging from 200- 
to 550-m range, i.e., covering both the forward and back- 
scattering regions. Figure 13(a) and lb) shows the vertical 
geophone component for the total field and scattered field, 
respectively, and 13 (c) shows the corresponding horizontal 
geophone components. Multiple scattering from the inclu- 
sion is evident, with the earliest arrival appearing at slightly 
shorter range than the center of the facet, consistent with the 
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Range: 0.2 krc 
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0.0 0.2 0.4 0.6 0.6 t.o 
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FIG. 12. Stacked time series on vertical hydrophone array spanning whole 
water column at range 200 m from source, 200 m from inclusion in the 
backward direction. (a) Full field; lb) scattered field. 

snapshots of the scattered field in Fig. 11. It is interesting to 
note that the converted shear and Scholte waves are domin- 
ating the scattered field. 

We chose a circular inclusion for simplicity, but the 
method and the code do not make any assumptton regarding 
symmetry and an arbitrary shape could have been chosen. 
For the actual modeling of the inclusion, 40 elements were 
used. 

In order to find the time response from 0-1 s, we com- 
puted the response at frequencies in the range from 0-46 Hz. 
The influence matrix for both the exterior and interior was 
computed using the same wave number sampling param- 
eters as in the previous examples. For computation of the 
source contribution at the scatterer and for propagation of 
the solution from the scatterer, the wave number response 
was sampled at 1024 points in the horizontal phase velocity 
interval from -- 200 to 200 m/s. The total computation time 
for this example was 2.5 h on an Alliant FX-40 with two 
processors and 10 min on a Cray-2. 
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FIG. 13. Stacked, synthetic time series for gcophones on the seabed 200- to 550-m range from source, above facet. (a) Vertical velocity, total field; (b) vertical 
velocity, scattered field; (c) horizontal velocity, total field; and (d) horizontal velocity, scattered field. 

V. CONCLUSIONS 

A hybrid boundary element-wave number integration 
approach has been presented for simulation of two-dimen- 
sional seismoacoustic scattering and reverberation from fac- 
ets in an arctic ice cover and a stratified elastic seabed. There 

are several advantages of the present hybrid BEM-WI ap- 
proach compared to the alternative discrete methods: 

( 1 ) The discretization is limited to the boundary of the 
facet. 

(2) Short- as well as long-range reverberation can be 
treated efficiently. 

(3) In terms of basic understanding of the factors affect- 
ing ocean seismoacoustic reverberation, an important ad- 
vantage of the present approach is its inherent spectral de- 
composition of the total solution in both the frequency and 
wave number domains. 

(4) The reverberated field can be directly separated 
from the total field, significantly aiding the interpretation. 

(5) The DGM-BEM approach is extendable to three 
dimensions due to the fact that only the facet boundary 
needs to be discretized. 

The present DGM-BEM is of more general applicabili- 
ty to ocean seismoacoustic reverberation problems than ear- 
lier published hybrid boundary integral-wavenumber inte- 
gration methods due to the following inherent features: 

( 1 ) Both exterior and interior domains can be stratified 
fluid-elastic media, including transversely isotropic layers. 

(2) Efficient computation of the Green's functions for 
stratified exterior and interior domains by means of modi- 
fied DGM-SAFAR! code. 

(3) Closed form element integrations significantly in- 
crease the accuracy and thus reduce the discretization re- 
quirements. 

(4) Reverberant field computed by the existing seis- 
moacoustic propagation model, retaining all existing fea- 
tures in terms of environmental models and outputs avail- 
able. 
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