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The multi-snapshot, multi-frequency sparse Bayesian learning (SBL) processor is derived and its
performance compared to the Bartlett, minimum variance distortionless response, and white noise
constraint processors for the matched field processing application. The two-source model and
data scenario of interest includes realistic mismatch implemented in the form of array tilt and
data snapshots not exactly corresponding to the range-depth grid of the replica vectors. Results
demonstrate that SBL behaves similar to an adaptive processor when localizing a weaker source
in the presence of a stronger source, is robust to mismatch, and exhibits improved localization
performance when compared to the other processors. Unlike the basis or matching pursuit meth-
ods, SBL automatically determines sparsity and its solution can be interpreted as an ambiguity
surface. Because of its computational efficiency and performance, SBL is practical for applica-
tions requiring adaptive and robust processing. VC 2017 Acoustical Society of America.
[http://dx.doi.org/10.1121/1.4983467]
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I. INTRODUCTION

Matched field processing (MFP) is a generalized beam-
forming method which matches received array data to a dic-
tionary of replica vectors to localize one or several sources.1

Traditionally, the Bartlett processor2 is used as a point of
departure to estimate source location parameters. This locali-
zation problem can be reformulated as an underdetermined
system of linear equations which might be solved using algo-
rithms such as orthogonal matching pursuit3 or with an opti-
mization known as basis pursuit4 (BP). While a particular
algorithm might be selected or even tailored to meet the
need of a problem,5 estimating a sparse number of source
locations and amplitudes recorded with few sensors from
many more candidate Green’s functions is coined compres-
sive sensing.6,7

Compressive sensing (CS) implemented with the BP
method outperforms the high-resolution minimum variance
distortionless response8 (MVDR) or MUSIC (Ref. 9) meth-
ods, discriminating between multiple, coherent plane-wave
arrivals for the beamforming application.10 CS possesses
properties similar to an adaptive processor and offers mod-
est localization improvement when compared to the white
noise constraint11 (WNC) processor for the MFP applica-
tion in single- and multiple-source scenarios.12 Note that
even in single source scenarios, adaptive processing may be
desirable to improve localization performance over multi-
ple cycles (generated by the interference pattern of adjacent
modes).

However, CS has a shortcoming: for S unknown sources
present, the number of sparse solutions K required to localize
all sources is K! S.12 Additional ambiguous solutions are

due to the presence of (environmental) mismatch, defined as
a misalignment between the actual source field observed at
the array and the modeled replica vector. Furthermore, sev-
eral sparse solutions might correspond to a single source if it
does not remain in a single range-depth cell for all processed
data snapshots. This problem might also be encountered in
realistic scenarios when jointly processing multiple frequen-
cies and multiple snapshots in order to localize one or more
sources.

An alternative CS implementation, known as sparse
Bayesian learning (SBL),13 offers relief to this shortcom-
ing. SBL has the advantage that it determines sparsity auto-
matically without any user input. Following the CS
approach, SBL also reformulates the parameter estimation
problem as an underdetermined linear problem. The varia-
bles in the problem are treated as Gaussian random vectors
and evidence maximization is performed using Bayesian
analysis to obtain a sparse solution,14 e.g., demonstrated for
plane wave beamforming.15,16 It has been shown that SBL
can be interpreted as an iterative, re-weighted BP algo-
rithm17 and that SBL exhibits similar sparse signal recovery
when compared to the BP method.15,18 BP performance in
the presence of perturbations or mismatch has been
investigated.12,19,20

This paper compares processor localization performance
using simulated and SWellEx-96 data subject to mismatch.
In particular, we investigate processor performance in the
presence of array tilt and when data snapshots are distributed
uniformly between range-depth grid points. SBL perfor-
mance is compared to the non-adaptive Bartlett and adaptive
WNC and MVDR processors. Section II introduces the pro-
cessors followed by a description of data and simulation
processing in Sec. III. Results are presented in Sec. IV fol-
lowed by discussion in Sec. V and conclusions in Sec. VI.a)Electronic mail: gemba@ucsd.edu
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II. PROCESSORS

A. Bartlett, WNC, and MVDR processors

Bartlett is a spatial matched-filter processor which
matches replica vectors aðhÞ (corresponding to the complex
wavefield of a source at frequency f and position h received
at an array of N elements) to the data y,

PBðhÞ ¼ aHðhÞKaðhÞ: (1)

The superscript H denotes the Hermitian operator and PBðhÞ
denotes the Bartlett power at position h (i.e., range and
depth) using normalized replicas vectors [i.e., jjaðhÞjj2 ¼ 1].
The sample covariance matrix (SCM) K 2 CN%N is obtained
using L snapshots,

K ¼ 1

L

XL

l¼1

yly
H
l : (2)

The snapshot yl 2 CN consists of a vector of Fourier coeffi-
cients at a single frequency f obtained via a fast Fourier
transform (FFT) of the lth data segment from each of the
array elements. While Bartlett does not invert K and thus
does not have a minimum number of required snapshots, it
suffers from high sidelobes. Sidelobe suppression is impor-
tant if several sources (or a combination of sources and inter-
ferers) are present.

The WNC processor Pwnc discriminates against other
sources/interferers while offering a degree of robustness in
frequently encountered replica-data mismatch scenarios. The
WNC is versatile because of its ability to adjust its behavior
(thus resolution and sidelobe suppression) from Bartlett to
MVDR (Ref. 21) at the expense of inverting K. To have K
invertible, we require L!N (diagonal loading of K can be
used to mitigate this requirement). The WNC processor is
given by

PwncðhÞ ¼ aH
wðhÞKawðhÞ; (3)

where

aw hð Þ ¼ Kþ !Ið Þ'1
a hð Þ

aH hð Þ Kþ !Ið Þ'1a hð Þ
:

The adaptive weights awðhÞ correspond to diagonally loaded
MVDR weights and are obtained by solving

min
aw

aH
wðhÞKawðhÞ

subject to aH
wðhÞaðhÞ ¼ 1;

jaH
wðhÞawðhÞj'1 ! d2; (4)

for each replica vector at position h. The constraining value
d2 imposes a gain constraint on the adaptive weights and the
white noise gain constraint Gwng such that

d2 ( Gwng ¼ jaH
wðhÞawðhÞj'1 < N; (5)

which in practice is normalized and expressed as
10 log10ðd2=NÞ ( 0 dB:

The data used to construct the SCM is not normalized,
which requires robust selection of an initialization value !0 for
this barrier optimization problem such that jaH

wðhÞawðhÞj'1
!0

< d2. Since !ðhÞ can span many orders of magnitude, ! is
parameterized using the decibel scale. The search routine is
implemented in terms of a singular value decomposition of K
with !0 ¼ 10 log10ðTrðKÞ=NÞ ' 30. Tr denotes the trace of a
matrix. The iterative algorithm converges when a selected
constraint is satisfied within 60.1 dB. Thus, PwncðhÞ denotes
the WNC power at position h for a selected (white noise gain)
constraint. The constraint frequently falls within ['6
'2] dB28 and we use a constraint of '3 dB for processing.

The WNC solution approaches the MVDR as ! ! 0. In
practice, it is common to load the diagonal of the SCM when
using the MVDR. We approximate the MVDR using a white
noise gain constraint of '20 dB and denote the loaded
MVDR processor by PMVðhÞ. Selecting such a low constraint
essentially bypasses the optimization in Eq. (4) for most can-
didate positions h.

To localize a source, Eqs. (1) and (3) are evaluated at M
range-depth positions or cells h. Computed ambiguity surfa-
ces for F processed frequencies are averaged,

PFðhÞ ¼
XF

f¼1

Pðh; f Þ: (6)

Processing additional frequencies improves source localiza-
tion performance for a weaker source in the presence of a
stronger source and environmental or model mismatch.

B. Sparse Bayesian learning

In this section we summarize the multi-frequency SBL
algorithm, discuss its estimate of the noise, and present a
pseudocode for its implementation.

1. SBL formulation

The lth data snapshot yl can be expressed with an under-
determined system of linear equations

yl ¼ Axl þ nl: (7)

In Eq. (7), A ¼ ½aðh1Þ;…; aðhMÞ* is the dictionary contain-
ing M replica vectors and nl + CN ðnlj0; r2INÞ is complex
Gaussian noise. xl is the vector of complex source ampli-
tudes with entries corresponding to the same range-depth
cells as in h. SBL models the unknown source amplitudes as
complex Gaussian random variables with prior density pðxlÞ
¼ CN ðxlj0;CÞ, where C is a diagonal covariance matrix,
i.e., C ¼ diagðc1;…; cMÞ ¼ diagðcÞ. The vector c is the
source power in each range-depth cell h. Since the noise is
Gaussian, the likelihood is expressed as pðyljxl; AÞ
¼ CN ðyljAxl; r2INÞ.

Next we extend the single-frequency SBL approach15,22

to include multiple frequencies.16,23,24 Denote the collection
of L snapshots at the fth frequency as Yf ¼ ½y1;…; yL*. Let
the corresponding collection of source amplitude vectors and
dictionaries be denoted by Xf and Af, respectively. Then
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Yf ¼ Af Xf þ Nf ; f ¼ 1; 2;…;F; (8)

where Nf are additive noise contributions. For approximately
stationary sources, xl,f are assumed independent over time.
Hence, we have

pðXf Þ ¼
YL

l¼1

CN ðxf ;lj0;Cf Þ; f ¼ 1; 2;…;F; (9)

where Cf ¼ diagðcf Þ is the covariance of the source ampli-
tudes at frequency f. We assume that Xf are independent
for F processed frequencies. There is no assumption of
sparsity in the frequency domain, which makes this formula-
tion attractive for localizing a few broadband sources from
many candidate replica vectors. Because vectors contained
in X1;…;XF and N1;…;NF are independent, the joint evi-
dence pðY1;…;YFÞ over all frequencies is

pðY1;…;YFÞ ¼
YF

f¼1

pðYf Þ ¼
YF

f¼1

YL

l¼1

CN ðyf ;lj0;Ryf
Þ;

(10)

where the model covariance Ryf
¼ r2

f Iþ Af Cf A
H
f . To esti-

mate cf (denoted by ĉf ), we maximize the joint evidence

fĉ1 , , , ĉFg ¼ arg max
fc1,,,cFg

pðY1;…;YFÞ

¼ arg min
fc1,,,cFg

XF

f¼1

L log jRyf
jþ TrðYH

f R'1
yf

Yf Þ

8
<

:

9
=

;
;

(11)

where j , j denotes the determinant of a matrix. To obtain a
minimum of this objective function, we equate its deriva-
tives to zero,

@

@cf ;m

XF

f¼1

L log jRyf
jþ Tr YH

f R'1
yf

Yf

! "
8
<

:

9
=

;
¼ 0: (12)

This yields the fixed point update rule23,24

ĉnew
f ;m ¼ ĉold

f ;m

jjYH
f R'1

yf
af ;mjj22

L aH
f ;mR'1

yf
af ;m

: (13)

The optimization is performed by iterating through the update
rule in Eq. (13), which converges in practice. At each itera-
tion, an estimate of the noise variance is required (see Sec.
II B 2). The K sparse entries in ĉf correspond to an estimate of
the powers of K sources.

We can form the multi-frequency estimate as

ĉ ¼
XF

f¼1

ĉf : (14)

Similar to Eq. (6), summing F processed ambiguity surfaces
with SBL [Eq. (14)] may improve localization performance
if the sparsity across frequencies is the same. Since ĉf is the

source variance estimate at frequency f, a plot of ĉ can be
interpreted as a broadband ambiguity surface.

An alternate way to enhance sparsity of the solution is
to set C ¼ C1 ¼ , , , ¼ CF. This assumes that Xf has the
same statistical distribution at each frequency. A sparse C
would impose identical sparsity constraints on X1;…;XF.
Maximizing the joint evidence, we have

ĉ ¼ arg min
c

XF

f¼1

L log jRyf
jþ TrðYH

f R'1
yf

Yf Þ

8
<

:

9
=

;
; (15)

where Ryf
¼ r2

f Iþ Af CAH
f . Computing the derivative of the

objective function and equating it to zero gives the update
rule24

ĉnew
m ¼ ĉold

m

XF

f¼1

kYH
f R'1

yf
af ;m k2

2

L
XF

f¼1

aH
f ;mR'1

yf
af ;m

: (16)

Similar to Eq. (14), a plot of ĉ [Eq. (16)] can be interpreted
as a broadband ambiguity surface. The update rule Eq. (16)
is used in our multi-frequency data analysis.

2. SBL noise estimate

Let AM denote the matrix formed by K columns of A
indexed by M, where the set M indicates the location of
non-zero entries of c with cardinality K. We estimate M
from ĉnew by picking the strongest K peaks. The noise vari-
ance r2

f estimate15,16,24,25 is given by

r̂2
f ¼

1

N ' K
Tr IN ' Af ;MAþf ;M

! "
Kf

! "
; (17)

where AþM denotes the Moore-Penrose pseudo-inverse of the
matrix AM. In scenarios including environmental mismatch,
r̂2

f can be influenced by model mismatch and not closely rep-
resent the actual ambient noise variance.26,27

3. SBL pseudo-code

SBL is implemented as shown in Table I. The unknown
source variance cm is estimated by iterating over the fixed
point update rule in Eq. (16). The iterations are performed
until the error criterion (!) in line 8 is met or if the maximum
number of iterations (Nt) is reached. We assume a single
source, i.e., K¼ 1, for estimating the noise variance. The
algorithm performance was not observed to be sensitive to K
in simulations. This assumption makes the algorithm flexi-
ble, as there is no requirement to know the true number of
sources.

III. DATA SELECTION AND PROCESSING

A. SWellEx-96 data

We use the relatively range-independent SWellEx-96
Event S5 data set12,28–30 recorded on a 64 element vertical
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line array (VLA) sampled at 1500 Hz with N¼ 21 of those
elements used for processing. The surface ship R/V Sproul
traveled with a radial velocity of 2.5 m/s towards the VLA
with closest point of approach (CPA) at approximately 1 km
(Fig. 1). The ship towed a deep and a shallow source, both
projecting different multi-tonal waveforms.

For the 75 min Event S5, we use the deep source at fre-
quencies 166 and 201 Hz for processing. The data are split
into 156 segments, resulting in a single segment length of
29 s. A FFT length of 4096 samples (2.7 s) with 50% overlap
results in L¼ 21 snapshots for each segment with a FFT bin
width of 0.37 Hz. Our algorithm searches the adjacent 62
FFT bins and extracts the FFT value corresponding to the
maximum bin power to accommodate Doppler shift. For the

Bartlett processor, each snapshot is windowed spatially with
a normalized Kaiser window with b¼ 4.7. The adaptive pro-
cessors optimize their own weights.

A delayed copy of the SWellEx-96 Event S5 data is
added to the original SWellEx-96 Event S5 data to construct
a two-source scenario, resulting in a source separation of
1 km. This separation (14 data segments) reduces the number
of segments with two sources present from 156 to 142 and
the start time of the event to approximately 7 min. Source 2
is the weaker source and located farther in range than source
1 (with respect to the VLA from 7 to 61 min). The snapshots
of source 2 are added to the snapshots of source 1: Y ¼ Y1

þ nY2. The source 1 to source 2 power ratio (SSR)
n ¼ 10'3=20jjY1jjF=jjY2jjF , hence source 2 is 3 dB below
the power of source 1. F denotes the Frobenius norm. The
snapshots in Y are used to construct the SCM.

To ensure the sources are not coherent, each snapshot
in Yi ¼ ½y1;…; yL* is multiplied by a random phase prior
to adding the delayed data set to the original data set.
This requirement is necessary for adaptive (MVDR and
WNC) and eigenanalysis methods31 because signal coher-
ence affects processor performance when inverting the
SCM. SBL does not invert the SCM but requires an optimi-
zation procedure [see Eq. (16)].

For the range-independent waveguide geoacoustic
model (Fig. 2), the water depth is 4 m below the deepest ele-
ment of the array at 212 m. The VLA spans the lower half
of the water column and the inter-element spacing is 5.6 m
which corresponds to a design frequency of 133 Hz using a
sound speed of 1488 m/s. The seafloor is composed of a
23.5 m thick sediment layer, overlaying a 800 m thick mud-
stone layer. Replica vectors are computed using the Kraken
normal mode code32 with a range and depth discretization of
50 m and 10 m on a 10 km% 200 m grid, respectively.

While many parameters may contribute to mismatch in
realistic scenarios, array-tilt belongs to the set of important
MFP parameters.29,33 Tilt generally is encountered to some
degree when using vertical line arrays spanning a significant
portion of a shallow water column. Hydrophone

TABLE I. Algorithm 1: Multi-frequency SBL algorithm.

1: Parameters: ! ¼ 10'8; Nt ¼ 5000

2: Input: Kf ; Af8f
3: Initialization: cold

m ¼ 1; 8m; r̂2
f ¼ 0:1; 8f

4: for i¼ 1 to Nt

5: Compute: Ryf
¼ r̂2

f Iþ Af ColdAH
f

6: cnew
m update 8m using Eq. (16)

7: r̂2
f estimate 8f using Eq. (17) with K¼ 1

8: If
jjcnew ' coldjj1
jjcoldjj1

< !, break

9: cold ¼ cnew

10: end

11: Output: cnew; r̂2
f 8f

FIG. 1. (Color online) SWellEx-96 Event S5 showing the path of the surface
ship R/V Sproul in blue. The ship towed a deep source at +60 m depth along
roughly a 200 m isobath during the 75 min VLA recording.

FIG. 2. Waveguide with sound speed profile, VLA, and geo-acoustic param-
eters for range-independent SWellEx-96 Event S5. A single element out of
the 22 element subset is excluded from processing.
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displacement due to an array tilt is incorporated into the
Kraken field calculation. The tilted array remains in a
straight line anchored at the bottom.

To estimate the SNR at the array, we use the signal and
a representative noise frequency. For an array, the conven-
tional definition of input SNR is the average element-level
signal power divided by the average noise power. When the
signal is recorded in the presence of noise, we approximate
this definition as

SNR - 10 log10

Tr Ksþnð Þ
Tr Knð Þ ' 1

# $
dBð Þ: (18)

Ksþn refers to the signal plus noise SCM and Kn is the SCM
computed at a neighboring noise frequency.

B. Simulations

To explore processor performance in a controlled envi-
ronment subject to array tilt, we use the SWellEx-96 replica
vectors to simulate a multi-frequency scenario. Source mag-
nitudes are selected such that SSR is 3 dB. Source 2 is the
weaker source and is farther in range relative to source 1 by
1 km. To simulate L¼ 21 snapshots while ensuring that both
sources are incoherent, each source phase is selected inde-
pendently from a uniform distribution [0, 2p) for each snap-
shot. The simulated received data vectors are added,

Y ¼ aðh1ÞxT
1 þ aðh2ÞxT

2 þ N; (19)

where each xi 2 CL contains L complex amplitudes for the
ith source. As with the actual data, these complex source
amplitudes are modeled as deterministic sequences. The
observations Y ¼ ½y1; :::; yL* are used to construct the SCM
over L snapshots.

Processor performance at a particular frequency is eval-
uated for additive noise (SNR discretization is 1 dB). Here,
array (or average single element) SNR is defined as the ratio
of the power of the weaker source 2 to independent and iden-
tically distributed (i.i.d.) complex Gaussian noise n,

SNR ¼ 10 log10

jjaxjj22
Efjjnjj22g

dBð Þ: (20)

Equation (20) corresponds to the single snapshot SNR,
where a is the source replica and x its complex amplitude.

When simulating L¼ 21 snapshots, the signals are added to
i.i.d. complex Gaussian noise. When processing multiple fre-
quencies, each frequency has the same SNR and is generated
with a different noise seed.

To evaluate processor performance when the source
wavefield does not correspond exactly to a dictionary entry,
we simulate the stationary sources [Eq. (19)] on a more
finely spaced grid of replica vectors (2 m in depth and 10 m
in range). The finely spaced replica set allows each of the
L¼ 21 snapshots to be drawn randomly from 24 different
positions while remaining within 61/2 cell to the grid point
(10 m depth and 50 m range discretization).

Processor performance is measured by comparing the
two dominant peaks found on the ambiguity surface to the
grid point of the weaker source. Comparing both peaks
(rather than deciding which peak corresponds to which
source) is reasonable because processors fail in localizing
the weaker source first.12 The localization statistic PL for the
weaker source is computed by

PL ¼
C

Q
; (21)

where C is the number of correctly found peaks for
Q¼ 1000 simulations.34

IV. RESULTS

A. Simulations

First we compare processor performance using data sim-
ulated with and without array tilt mismatch. Panels in Fig. 3
introduce the two source scenario for SNR 0 dB showing
normalized ambiguity surfaces using L¼ 21 snapshots at a
single frequency (166 Hz). Panels on the left are mismatch
free and Bartlett [Fig. 3(a)] displays many ambiguous posi-
tions competitive to source 2. This poor performance indi-
cates that adaptive processing is required for localizing the
weaker source. WNC '3 dB [panel (b)] and SBL [panel (c)]
localize both sources. Panels (d)–(f) include a mismatch of a
1. array tilt. The array tilt is included in the data using Eq.
(19), whereas the replica vectors used to localize sources are
computed for a 0. array tilt. The adaptive processors display
an increased amount of ambiguity but localize the weaker
source. Its power is close to '3 dB in panels (b), (c), and (f),
and at '2.1 dB in panel (e). The strongest sidelobe in panel

FIG. 3. (Color online) Localization for
two simulated sources at 166 Hz and
SNR 0 dB. True positions are indicated
by white squares and each panel is nor-
malized by its respective peak value.
Source 1 is located at 2.5 km with
power 3 dB above source 2 located at
3.5 km. Left panels are mismatch free,
right panels have a data mismatch of
1. array-tilt: (a), (d) Bartlett; (b), (e)
WNC '3 dB; and (c), (f) SBL.
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(e) at approximately 70 m depth and 8.6 km range is at
'4 dB.

Normalized plots are used to facilitate a visual compari-
son of ambiguity surfaces. However, they give the appear-
ance that sidelobe level increases as mismatch increases
while the mainlobe power remains unchanged. When mis-
match is present, processor output power at the location of
the mainlobe decreases.

To compare processor localization performance of the
weaker source at different SNRs, we compute localization
statistics (Fig. 4) using Eq. (21). The scenario is the same as
in Fig. 3. The single frequency (166 Hz), no mismatch panel
in Fig. 4(a) shows that Bartlett yields poor performance in
localizing the weaker source. MVDR exhibits ideal (PL¼ 1)
performance in localizing the weaker source until a SNR of
5 dB. The WNC '3 dB and SBL have a PL< 1 at a SNR
below '3 and '6 dB, respectively.

Next we draw data snapshots independently from a
more finely spaced grid of replica vectors while sources
remain within a discretization cell. The performance of all
processors degrades [Fig. 4(b)] and SBL exhibits a PL¼ 1 at
SNR above '2 dB. Adding an additional frequency (201 Hz)
helps with localizing the source at reduced SNRs for all
adaptive processors [Fig. 4(c)].

To investigate processor robustness to mismatch, we
include a 1. array tilt in the data while the other parameters
remain unchanged. Localization statistics [Fig. 4(d)–4(f)]
show that the MVDR exhibits a significant loss in perfor-
mance in all panels, demonstrating that it is not robust to
mismatch. SBL and WNC '3 dB exhibit ideal performance
at SNRs above '3 and 6 dB, respectively, in Fig. 4(d). Their
relative performance is similar to the mismatch-free case.
Processing an additional frequency [panel (f)] is beneficial
due to the reduced performance of all processors when using
only a single frequency [panel (e)] and when data snapshots
do not exactly correspond to the replica vectors used for
localization.

Processor robustness is further investigated for different
degrees of array tilt mismatch (Fig. 5). All data snapshots
are randomly drawn from a finer replica vector mesh located
within respective discretization cells. Using two frequencies

(166 and 201 Hz) increases the processor output power at the
location of source 2 but Bartlett and MVDR display poor
performance. SBL exhibits improved performance when
localizing the quiet source under increased mismatch and at
lower SNRs in panels (a)–(c). Results for SNR 10 dB (not
shown) yield only minor improvements in localizing the
weaker source when compared to Fig. 5(a) for all processors
but the MVDR.

B. SWellEx-96 data

It is useful to estimate the SNR at the VLA of the fre-
quencies emitted by the deep source over the entire Event S5
to allow for a comparison to the simulated data. Figure 6(a)
shows SNR at 166 and 201 Hz using two neighboring noise

FIG. 4. (Color online) Probability of
localizing (PL) the weaker source 2 for
166 Hz [(a), (b), (d), (e)] and two-
frequency (166 and 201 Hz) [(c), (f)].
L¼ 21 data snapshots are drawn ran-
domly from a finer replica vector mesh
for stationary sources in (b), (c), (e),
(f). Left panels are without array-tilt
mismatch, right panels include a 1.

array-tilt mismatch.

FIG. 5. (Color online) Probability of localizing (PL) the weaker source using
multi-frequency (166 and 201 Hz) in the presence of array-tilt mismatch at
SNR (a) 0 dB, (b) '5 dB, and (c) '10 dB. Data snapshots are drawn ran-
domly from a finer replica vector mesh for stationary sources.

3416 J. Acoust. Soc. Am. 141 (5), May 2017 Gemba et al.



frequencies at 161 and 214 Hz, respectively. The theoretical
array gain is 13 dB. Twenty-one data snapshots are used to
estimate the SCM. As the source travels towards the array,
the average element SNR increases and is a maximum of
14 dB at CPA, approximately at 61 min. To be consistent
with results presented in Ref. 12, we plot the x axis in
reverse time.

The tilt with respect to the source-array plane
changes over time [panel (b)]. Correlation is defined as
the normalized inner product of the data snapshot and
best-matching replica vector [see Eqs. (3) and (4) in Ref.
35 for a detailed discussion]. This value is plotted over
time for replica vectors computed with different degrees
of VLA tilt in the source-array plane. Computed curves
follow a similar trend as SNR in panel (a) and it can be
observed that different tilts are dominant at different
times throughout the 75 min event. Most notably, replica
vectors computed with a 1. tilt perform well over most
of the data set while replica vectors computed with a 0.

tilt yield poor performance at CPA. At CPA, the tilt with
respect to the source-array plane is 2..

The azimuth of the source to the VLA (Fig. 1) as well as
the bearing of the tilted VLA change over time. Source-VLA
azimuth is computed using GPS data and a tilt/heading sen-
sor mounted on the VLA recorded bearing angle with respect
to magnetic north. These data are combined [panel (c)] in
order to visualize the tilt bearing angle with respect to the
source-VLA plane. This angle varies in time from '50. to
60.. The mismatch is greatest for a 0. relative bearing angle
when using replica vectors computed with a 0. tilt. Note that
the top of the array is always tilted away from the source. To
reduce mismatch when processing the entire data set, we
generate replica vectors having a 1. tilt in the source-array
plane.

Next we investigate processor performance to localize a
weaker source in a scenario subject to array tilt mismatch.
Panels in Fig. 7 show two SWellEx-96 sources located at 2.5
and 3.5 km in range at approximately 48 min into the event.
Left panels use replica vectors with a 0. tilt, right panels use
replica vectors with a 1. tilt. The number of ambiguous posi-
tions is reduced in panels (d)–(f) when compared to panels
(a)–(c). Similar to the simulations in Fig. 3, Bartlett [panels
(a), (d)] displays the most ambiguity whereas WNC '3 dB
[panels (b), (e)] and SBL [panels (c), (f)] display less ambi-
guity for source localization. Processing two frequencies
(Fig. 8) slightly reduces the number of ambiguous peaks
competitive in power to sources 1 and 2 to less than 5 for all
but the Bartlett processor.

To demonstrate processor robustness to localizing the
weaker source, we extend our processing in Fig. 8 to the
entire Event S5. We extract the five highest power levels and
corresponding range information for each ambiguity surface.
This data then is displayed as a vertical stripe, containing
only the five power levels in their respective range cells. The
vertical stripes are assembled in temporal order and individ-
ually normalized range-time panels are shown in Fig. 9 for
each processor.

The left panels use replica vectors computed with a 0.

array tilt, whereas panels on the right are computed using
replica vectors with a 1. array tilt. All processors localize
the stronger source 1 such that a track is evident over the dis-
played 75 min event. WNC '3 dB [panel (b)] localizes
source 2 sporadically. It is not evident from panel (d) using
Bartlett that a second source is present due to parallel run-
ning sidelobes. When accounting for a 1. array tilt, WNC
'3 dB localizes the weaker source 2 over most of the event

FIG. 6. (Color online) (a) SWellEx-96 deep source average element level
SNR. (b) Data correlation for three replica vector tilts and (c) VLA tilt bear-
ing angle with respect to the source-VLA plane. At times, the source inter-
rupted the CW transmission over the 75 min track (most notably at 59, 56,
39, 22, and 18 min).

FIG. 7. (Color online) Localization for
two SWellEx-96 sources at 166 Hz for
data segment 85 of 142. True positions
are indicated by white squares. Replica
vectors are computed with 0. (left pan-
els) and 1. (right panels) tilt: (a), (d)
Bartlett; (b), (e) WNC '3 dB, and (c),
(f) SBL. Bartlett displays the most
ambiguity while all other processors
exhibit fewer ambiguous localizations.
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[panel (e)]. Panels (c), (f) demonstrate that SBL localizes the
weaker source at most times using either set of replica vec-
tors when compared to WNC panels (b), (e), respectively.

It is apparent that processor performance differs in
localizing the weaker source in Figs. 9(a)–9(c). To quantify
this difference, we turn to GPS data recorded at the surface
ship. We overlayed the track of the weaker source in panels
(a)–(c) with the groundtruth GPS track and allowed a varia-
tion of 62 range cells at each time step. A processor suc-
cessfully detected the source if it had a single non-zero entry
within these five candidate range cells. Bartlett, WNC
'3 dB, and SBL have 40, 72, and 98 localizations, respec-
tively, over the entire track. SBL localizes the weaker source
at closer distance to CPA when compared to WNC '3 dB,
most notably between 65 and 72 min.

Representative CPU times for WNC '3 dB, SBL and
basis pursuit are shown in Fig. 10. The BP method is imple-
mented using CVX (Ref. 36) for single and multiple
frequencies.12 The benchmark ambiguity surface (using
20% 200 ¼ 4000 replica vectors) is the same as in Fig. 3 but
snapshots are drawn from the more finely spaced grid of rep-
lica vectors. Mismatch increases the time required for SBL
and BP to converge. BP uses a pre-determined regularizer to
compute two sparse solutions rather than determining the

desired regularizer with a walk along the LASSO path. We
average over 100 realizations to estimate CPU time for each
number of snapshots. Single frequency Bartlett results (not
shown) are constant across snapshots with 0.002 s. WNC
'3 dB and SBL CPU time roughly are independent of the
number of snapshots and scale approximately linearly with
the number of frequencies. SBL is slower by a factor of 10
when compared to WNC '3 dB, using either 1 or 2
frequencies.

V. DISCUSSION

Simulation results demonstrate that SBL localizes a
weaker source at lower SNRs than WNC '3 dB in ideal sce-
narios [Fig. 4(a)] and in more realistic single- and multi-
frequency scenarios when snapshots do not correspond
exactly to replica entries [Figs. 4(b) and 4(c)]. These obser-
vations are consistent with CS results implemented using
basis pursuit.12 Results in Figs. 4(d)–4(f) and Fig. 5 indicate
that SBL offers a degree of robustness against mismatch in
the form of array tilt including snapshots drawn from a finer
replica vector mesh while exhibiting improved localization
performance when compared to other processors at low
SNR.

FIG. 8. (Color online) As in Fig. 7 but
using two frequencies (166 and
201 Hz) reduces the ambiguous peaks
competitive in power to source 1 and
source 2 to approximately 5 or less for
WNC '3 dB and SBL.

FIG. 9. Multi-frequency (166 and 201 Hz) range localization of two sources for the SWellEx-96 Event S5. For each of the 142 processed segments/ambiguity
surfaces (Fig. 8 shows No. 85), five peaks corresponding to the highest power levels are plotted. Replica vectors are computed with 0. (left panels) and 1.

(right panels) tilt: (a), (d) Bartlett; (b), (e) WNC '3 dB; and (c), (f) SBL.

3418 J. Acoust. Soc. Am. 141 (5), May 2017 Gemba et al.



The SWellEx-96 data set includes mismatch in the form
of array tilt (Fig. 6) which is exploited to demonstrated pro-
cessor localization robustness. SBL [Fig. 9(c)] exhibits
improved performance over the entire track when compared
to WNC [Fig. 9(b)] in localizing a weaker source in the pres-
ence of a stronger source. SBL also offers improved localiza-
tion performance for the weaker source close to CPA at
61 min when compared to panels (a), (b). This observation is
supported by simulations in Fig. 5, showing that SBL can
accommodate mismatch in the form of array tilt up to 2..
The adaptive processors perform well in localizing the
weaker source when this mismatch is within 61. [Figs. 9(e)
and 9(f)]. Of course, in addition to tilt, the data contains a
modest amount of unknown environmental mismatch. It is
noteworthy that ambiguous solutions in panel (f) are not as
connected when compared to Bartlett [panel (d)] and WNC
[panel (e)], which further improves visualization of the track.
A similar argument can be made when comparing individual
panels on the left, but SBL displays a small amount of
ambiguous, connected peaks.

Snapshots used to construct the SCM cover a time inter-
val of 29 s. In this interval, the source moves approximately
70 m which is more than one range discretization cell (50 m).
Previous results using the basis pursuit method12 indicate
that processing snapshots and or multiple frequencies corre-
sponding to adjacent cells yield adjacent sparse solutions.
Panels in Figs. 8(b), 8(c), 8(e), and 8(f) display significant
processor output power in two adjacent cells corresponding
to the location of the stronger source. Using BP, the number
of sparse solutions required to localize all sources is
unknown since multiple solutions might correspond to a sin-
gle source. This problem is amplified in scenarios with mis-
match: the processor identifies false locations before both
sources are localized [Fig. 8(c) displays many ambiguous
positions similar in power to both sources]. SBL requires no
a priori knowledge of number of sparse solutions, automati-
cally determines sparsity, and therefore sidesteps this prob-
lem entirely.

It is noteworthy that some SBL ambiguous solutions
correspond to ambiguous WNC solutions [e.g., Figs. 7(b)

and 7(c)]. WNC yielded good performance using a constant
tuning parameter of '3 dB and WNC generally performs
well when selecting a value within ['6 '2] dB. However, it
is difficult to assess how to select the optimum white noise
gain constraint to localize the weaker source.12 In contrast,
SBL explains the data by use of an optimization without
being constrained by a similar tuning parameter.

On average, Bartlett, WNC, and SBL require 3, 25, and
375 s, respectively, to compute all multi-frequency ambigu-
ity surfaces used to construct a respective panel in Fig. 9.
Our MFP toolbox is implemented using MATLAB whereas the
142 data segments are parallelized on 25 processors. The
SBL algorithm can be parallelized over frequency except for
the update rule in Eq. (16) to offset SBL’s frequency depen-
dent CPU time (Fig. 10). BP’s execution time increases qua-
dratically with the number of snapshots while SBL’s
execution time largely is snapshot independent.

VI. CONCLUSIONS

We demonstrated that sparse Bayesian learning (SBL)
behaves similar to an adaptive processor and outperforms
WNC '3 dB when localizing a weaker source in the presence
of a stronger source in simulations and with the SWellEx-96
data set. Furthermore, SBL is robust to mismatch in the form
of array tilt and additional, modest (unknown) data-replica
mismatch. Unlike other sparse methods, SBL automatically
determines sparsity. SBL’s processing time is independent of
the number of snapshots and it is a factor 10 slower when
compared to the WNC.
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