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Matched field processing is a generalized beamforming method that matches received array data to

a dictionary of replica vectors in order to locate one or more sources. Its solution set is sparse since

there are considerably fewer sources than replicas. Using compressive sensing (CS) implemented

using basis pursuit, the matched field problem is reformulated as an underdetermined, convex

optimization problem. CS estimates the unknown source amplitudes using the replica dictionary to

best explain the data, subject to a row-sparsity constraint. This constraint selects the best matching

replicas within the dictionary when using multiple observations and/or frequencies. For a single

source, theory and simulations show that the performance of CS and the Bartlett processor are

equivalent for any number of snapshots. Contrary to most adaptive processors, CS also can accom-

modate coherent sources. For a single and multiple incoherent sources, simulations indicate that CS

offers modest localization performance improvement over the adaptive white noise constraint

processor. SWellEx-96 experiment data results show comparable performance for both processors

when localizing a weaker source in the presence of a stronger source. Moreover, CS often displays

less ambiguity, demonstrating it is robust to data-replica mismatch.
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I. INTRODUCTION

Matched field processing (MFP) is a generalized beam-

forming method that matches received array data to a dictio-

nary of replicas to localize a source (see Baggeroer et al.,
1993, for a historical overview). The solution set inherently

is sparse, having substantially fewer sources than possible

positions and is a candidate application for compressible

(approximately sparse) processors.

Compressive sensing (CS; e.g., see Candès and Wakin,

2008) provides the framework to obtain sparse solutions to

underdetermined problems with convex optimization (‘1-norm

minimization) rather than an exhaustive search (‘0-norm mini-

mization). This is possible if the underlying signal is sparse

and if the replica dictionary that maps the underlying signal to

the observations is sufficiently incoherent. However, dictio-

nary entries may be coherent or even redundant in practice

because the entries represent a physical process and therefore

cannot be chosen arbitrarily (Candès et al., 2011). This is the

case for plane wave beamforming, and Xenaki et al. (2014)

discuss the relationship between replica coherence and signal-

to-noise ratio (SNR). We extend the CS approach from the

beamforming (Edelmann and Gaumond, 2011) to the MFP

application, and estimate location and amplitude parameters in

single- and multi-source scenarios.

CS, potentially, is attractive because it can achieve super-

resolution beyond the Rayleigh limit even for the single snap-

shot case (Fortunati et al., 2014). CS has been investigated in

the time domain for ultrasound signals (David et al., 2015) and

wavenumber tracking (Le Courtois and Bonnel, 2015).

Singular value decomposition can help to improve the rank of

the dictionary (Malioutov et al., 2005; Edelmann and

Gaumond, 2011). However, CS performance degrades in the

presence of mismatch due to a misalignment between the

actual source field observed at the array and the modeled rep-

lica vector (also known as sources off the grid). In the presence

of mismatch, grid refinement or a continuous grid might

improve performance (Xenaki and Gerstoft, 2015). For single

snapshot data using the basis pursuit method (Chen et al.,
1998), CS can outperform traditional beamforming methods

under challenging scenarios (Xenaki et al., 2014) at moderate

to high SNRs. Beamforming results using multiple snapshots

(Gerstoft et al., 2015) indicate that CS outperforms the mini-

mum variance (MV; Capon, 1969) and MUSIC (Schmidt,

1986) processors in multi-source scenarios.

CS algorithms also have been investigated in underwa-

ter source localization applications. In addition to basis pur-

suit de-noising (Liu et al., 2012) and regularization via the

Lasso path (Tibshirani, 1996), Forero and Baxley (2014)

showed that an elastic-net (Zou and Hastie, 2005) might be a

useful additional constraint for source localization.

Localization performance for closely spaced sources (Forero

and Baxley, 2014) and broadband underwater source locali-

zation (Forero, 2014) has been investigated. It was shown in

Xu et al. (2010) that the solution to the Lasso has desirable

robustness properties and offers protection from noise.

Considering the wide applicability of CS, we investigate the

performance of CS (implemented using the basis pursuit

method and Lasso) and compare it to non-adaptive and adap-

tive matched field processors.

The non-adaptive Bartlett processor (Bucker, 1976) has

been used in most papers on MFP, and thus it is ana)Electronic mail: gemba@ucsd.edu
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appropriate candidate for a baseline comparison. We con-

sider this processor using single and multiple (incoherently

combined) frequencies. The adaptive white noise constraint

(WNC; Cox et al., 1987) processor offers potentially high-

resolution source localization performance (Krolik, 1992;

Debever and Kuperman, 2007). The processor is a good

benchmark candidate because, unlike MV, the WNC is more

robust to data-replica mismatch in realistic scenarios [see

Eq. (3)]. The WNC will be considered using single and mul-

tiple frequencies as well.

This paper compares processor localization performance

using single and multiple frequencies, as well as single and

multiple snapshots to track single and multiple sources. For

the matched field processing application, we demonstrate the

following:

• For a single source, results show that the performances of

CS and the Bartlett processor are equivalent for any num-

ber of snapshots (i.e., the one-sparse solution is equivalent

to the least-squares one, see Sec. IV A and the Appendix);
• Simulations using multiple incoherent sources indicate

that CS offers modest localization performance improve-

ment over the adaptive WNC processor in localizing a

weaker source in the presence of a stronger source (Sec.

IV A, third paragraph);
• Unlike adaptive processors such as WNC, CS can accom-

modate coherent sources in multiple-source scenarios

(Sec. IV A, fourth paragraph);
• CS often displays less ambiguity when compared to the

WNC processor in data scenarios, demonstrating it is

robust to data-replica mismatch (Sec. IV B).

First, we introduce processors in Sec. II followed by an

overview of data selection and processing in Sec. III.

Section IV presents simulations analyzing processor perfor-

mance for both single- and two-source scenarios. We also

investigate processor performance for equivalent scenario

configurations using the SWellEx-96 data set (Booth et al.,
2000; Hursky et al., 2001). This paper concludes with a dis-

cussion and summary in Secs. V and VI, respectively.

II. PROCESSORS

A. Bartlett and WNC processors

CS performance is benchmarked using Bartlett (PB)

and WNC (Pwnc) processors. Bartlett is a spatial matched-

filter processor that matches normalized replica vectors a

(corresponding to the complex wavefield of a source at fre-

quency f and position h received at an array of N elements)

to the data y,

PBðhÞ ¼ aHðhÞKaðhÞ; (1)

where H denotes the Hermitian operator and PBðhÞ denotes

the Bartlett power at position h. The sample covariance

matrix (SCM) K 2 C
N�N

is obtained using L snapshots

K ¼ 1

L

XL

l¼1

yly
H
l : (2)

The snapshot yl 2 C
N

consists of a vector of Fourier coeffi-

cients at a single frequency f obtained via a fast Fourier

transform (FFT) of the lth data segment from each of the

array elements. Averaging over multiple snapshots, gener-

ally, is desirable and sometimes required to improve SNR

and, hence, source localization. However, the number of

available snapshots to obtain K depends on the time a source

remains in a resolution cell (Baggeroer and Cox, 1999; Cox,

2002). While Bartlett does not invert K and thus does not

have a minimum number of required snapshots, it suffers

from high sidelobes. Sidelobe suppression is important if

several sources (or a combination of sources and interferers)

are present.

The WNC processor Pwnc discriminates against side-

lobes (and other sources/interferers) while offering a degree

of robustness in frequently encountered replica-data mis-

match scenarios. The WNC is versatile because of its ability

to adjust its behavior (thus resolution) from Bartlett to MV

(Maksym, 1979; Song et al., 2003b) at the expense of invert-

ing K. To have K invertible, we require L>N (diagonal

loading of K can be used to mitigate this requirement). The

WNC processor is given by

Pwnc hð Þ ¼ aH
w hð ÞKaw hð Þ; where aw ¼

Kþ �Ið Þ�1
a

aH Kþ �Ið Þ�1
a
:

(3)

The adaptive weights aw correspond to diagonally loaded

MV weights and are obtained by solving

min
aw

aH
wðhÞKawðhÞ subject to

aH
w a ¼ 1;

jaH
w awj�1 � d2: (4)

The iterative algorithm finds the diagonal loading e for each

replica vector or position h to satisfy a white noise gain con-

straint Gwng such that

d2 < Gwng ¼ jaH
w awj�1 < N; (5)

which, in practice, is normalized and expressed as

10 log10ðd2=NÞ � 0 dB. Thus, PwncðhÞ denotes the WNC

power at position h for a selected (white noise gain)

constraint.

Similar to the MV, the WNC maintains a distortionaless

response (or gain of 1) for the field component corresponding

to the replica vector a and minimizes the projection of the

weights on directional noise or interferers possibly present in

K. However, in the presence of mismatch (i.e., a misalign-

ment between the actual source field observed at the array

and the modeled replica vector), a source might appear as an

interference to the high-resolution MV and be suppressed by

means of adaptive nulling. The WNC addresses this short-

coming at the expense of reduced resolution by imposing a

gain constraint on the adaptive weights. Depending on the

amount of mismatch encountered, an appropriate constraint

frequently falls within 10 log10ðd2=NÞ 2 ½�6� 2� dB (Booth
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et al., 2000; Song et al., 2003b). The WNC performs closer

to Bartlett when using a constraint of �2 dB and more like

MV when using a constraint of �6 dB.

To localize a source, Eqs. (1) and (3) are evaluated at M
range-depth positions or cells h. Processor output is arranged

corresponding to each replica position on a range-depth plot,

conventionally called an ambiguity surface. If the modeled

replica vector is a close match to the acoustic field observed

at the array, then the surface maximum (mainlobe) corre-

sponds to the source position. A robust method to increase

localization performance in the presence of environmental

uncertainty is to sum over multiple ambiguity surfaces corre-

sponding to X processed frequencies

PX
B ðhÞ ¼

XX
i¼1

PBðh; fiÞ;

PX
wncðhÞ ¼

XX
i¼1

Pwncðh; fiÞ: (6)

Localization ambiguity decreases if the mainlobe locations

are consistent across frequency. Ideally, the processed fre-

quencies span at least an octave, which increases the sidelobe

diversity on the surface. For multiple sources, localization

performance improves using multiple frequencies when local-

izing a weaker source in the presence of a stronger source.

The power of the weaker source mainlobe might be below the

power of a sidelobe of the stronger source. Consequently,

using multiple frequencies is beneficial since X corresponds

to a gain factor for the mainlobe of the weaker source. In

most situations, we primarily are interested in identifying

the mainlobe positions on this surface, which is an application

for CS.

B. CS

1. Single snapshot CS

The CS approach reformulates the traditional spatial

matched-filter problem as a convex optimization problem. A

linear model relates the array data y to the complex source

amplitudes x with additive noise n,

y ¼ Axþ n; (7)

where A ¼ ½að1Þ;…; aðMÞ� 2 C
N�M is the dictionary of rep-

licas using an array of N hydrophones, M range-depth repli-

cas a ¼ ½a1;…; aN �T , a single measurement vector yð1Þ
¼ ½y1;…; yN�T and noise n ¼ ½n1;…; nN �T . T denotes the

transpose operator. Localization estimation can be expressed

as a linear underdetermined problem (N � M) with a spar-

sity constraint enforced on its solution

x̂ ¼ arg min
x2C

M

ky� Axk2
2 þ kkxk1: (8)

The ‘1-norm k � k1 promotes sparsity and the regularization

parameter k controls the number of sparse solutions, which

correspond to non-zero entries in x. An approximate value

for k for any number of sparse solutions can be found via the

Lasso path (Tibshirani, 1996; Gerstoft et al., 2015). The ini-

tialization value is set to k0 ¼ k2AHyk1 and marks an upper

bound corresponding to a set of values denoted by k(1) at

which a first non-zero entry in x appears. The transition from

the first to the second solution is observed for kð2Þ < k1

¼ k2AHðy� Ax̂1Þk1. Successive upper bounds for k(i) are

found using ki�1 ¼ kri�1k1 with the residual ri�1 ¼ 2AHðy
�Ax̂i�1Þ, where x̂i�1 contains i – 1 non-zero entries. The

condition kðiÞ < ki�1 is the Lasso path indicator that the ith
solution set is found. The optimization problem in Eq. (8) is

solved for a given k using the CVX toolbox (Grant and

Boyd, 2016) for disciplined convex optimization. It uses

interior point solvers to obtain the global solution of a well-

defined optimization problem.

It is useful to distinguish between two main classes of

methods to implement CS: greedy algorithms (not used here)

such as matching pursuit (Mallat and Zhang, 1993) and non-

greedy algorithms such as basis pursuit [corresponding to

the ‘1-norm minimization problem in Eq. (8)]. Both methods

find the complex source amplitudes and related replica

vectors by subtracting the modeled pressure field for the

determined sparse sources from the observations. In princi-

ple, the algorithms have the ability to discriminate against

sidelobes if they correctly separate each received source

pressure from the data. However, they differ in how multiple

sources are localized.

The term “greedy” implies that the algorithm makes a

“hard” decision based upon some optimal minimization cri-

terion (Eldar and Kutyniok, 2013). These algorithms make

locally optimal choices and here are defined as finding

the active indices one-by-one without revisiting previous

solutions. Note that the definition of greedy can be relaxed to

include more sophisticated (also termed greedy) algorithms,

which revisit previous solutions to perform similarly to the

‘1-norm minimization. Greedy implementations clean the

data sequentially (e.g., in underwater acoustics the CLEAN

algorithm; Song et al., 2003a). A greedy algorithm first

cleans the data with the best estimate of a stronger source 1

pressure, reducing ambiguity for identifying a weaker source

2 at the next iteration. This approach is problematic for sour-

ces of similar power, in scenarios with environmental uncer-

tainty, or with non-orthogonal dictionary entries because an

early false selection cannot be altered. See Chen et al. (1998)

for additional discussion (and references), including an exam-

ple in which matching pursuit does not converge.

In contrast to greedy implementations, the basis pursuit

method has no location-memory of previously selected solu-

tions because it performs a global optimization for a given

regularizer k. The algorithm can either rediscover or alter

previously selected solutions as it descends on the Lasso

path, giving CS (as implemented here) the ability to adapt in

order to best explain the observations.

2. Multiple snapshots CS

The model in Eq. (7) can be extended to include L snap-

shots for an approximately stationary source

Y ¼ AXþ N; (9)
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where Y ¼ ½yð1Þ;…; yðLÞ� 2 C
N�L and N 2 C

N�L. Similarly,

Eq. (8) can be extended to using multiple snapshots

X̂ ¼ arg min
X2C

M�L

kY� AXk2
F þ k

XM

j¼1

kXjk2; (10)

where the Frobenious norm k � kF for a matrix B 2 C
N�L

is

defined as kBkF ¼ ð
P

i;jkbi;jk2Þ1=2
(the norm measures the

misfit for a matrix). In the last term of Eq. (10), the ‘2-norm

acts on the jth row of the matrix X and the ‘1-norm (replaced

by the summation operator) acts on the resulting column

vector. The combination of these two norms (kXk1;2) enfor-

ces row-sparsity in the solution, but does not force the row-

entries to be sparse (Malioutov et al., 2005). Since X is row

sparse (i.e., for each sparse solution, most of its row is non-

zero), multiple snapshots should be taken with the source in

the same resolution cell.

Both Bartlett and WNC yield a power for every replica

vector, while for CS every solution in X̂ corresponds to a

biased estimate of the complex amplitude of the source. This

bias is intrinsic to CS due to the additive sparsity constraint.

Additional uncertainty arises since the number of solutions

are constant over the interval ki < kðiÞ < ki�1. In this band,

the complex amplitude alone varies.

The unbiased complex source amplitudes are estimated as

X̂CS ¼ AþS Y; (11)

where X̂CS 2 C
S�L and AS 2 C

N�S contain only the active

replicas associated with S non-zero solutions and AþS
¼ ðAH

S ASÞ�1
AH

S is its Moore-Penrose pseudoinverse. The

adjoint AH
S reverses the medium’s phase shift and the

“denominator” corrects for the numerator’s array response.

For generating a range-depth surface for comparing the CS

results with Bartlett and WNC ambiguity surfaces, we com-

puted the ‘2-norm over the rows of X̂CS. Since the range-depth

surface generated by CS might include erroneous source loca-

tions, we will refer to this surface as an ambiguity surface.

Incorporating additional snapshots for sparse processing

is beneficial to aid in source localization since data corre-

sponding to the same resolution cell share the same replica

vector in the dictionary. Imposing this dependency with

kXk1;2 [the last term in Eq. (10)] is called a collaborative or

a multitask sparse coding problem (Eldar and Kutyniok,

2013) or group Lasso. Adding noisy snapshots to high SNR

snapshots does not result in incorrect support because the

worst case performance of using multiple snapshots with

kXk1;2 is equivalent to the worst case bounds of the single

snapshot case (Davies and Eldar, 2012).

3. Extension to multiple frequencies: Incoherent
processor

One MFP approach to improving source localization

performance is to average incoherently over multiple ambi-

guity surfaces, whereas each surface corresponds to a differ-

ent source frequency [see Eq. (6) in Sec. II A]. Localization

performance improves when mainlobe locations are

approximately in the same range-depth cell and sidelobes

are in different cells. For CS, averaging over independently

computed surfaces generally is not desirable since there are

no mainlobes or sidelobes—only sparse solutions.

Therefore, we must minimize one multi-frequency cost func-

tion and enforce a sparsity constraint for all frequencies

simultaneously

X̂
X ¼ arg min

XX2C
M�ðLXÞ

XX
i¼1

kYfi � Afi Xfik
2
F þ k

XM

j¼1

kXX
j k2:

(12)

In Eq. (12), X is the number of frequencies and XX

¼ ½Xf1 ;…;XfX � 2 C
M�LX is the multi-snapshot multi-fre-

quency solution. The ith term in the cost function’s sum only

uses a subset of XX corresponding to one frequency. The

second term in Eq. (12) enforces the row-sparsity constraint

for all frequencies simultaneously in X
X. The dimension of

XX is such that every frequency uses the same number of

snapshots. For a single sparse solution, the mostly non-zero

row in X̂
X

maps to a unique range-depth cell and its entries

correspond to the biased complex amplitude estimate of the

source at each frequency. Unbiased results are estimated for

each frequency separately (X̂
X
CS 2 C

S�LX
) as in Eq. (11) and

plotted using the ‘2-norm over the rows of X̂
X
CS. Note that if

X¼ 1, Eq. (12) reduces to Eq. (10).

III. DATA SELECTION

A. SWellEx-96 data

To compare processors, we use the relatively range-

independent SWellEx-96 Event S5 data set (Booth et al.,
2000; Orris et al., 2000; Hursky et al., 2001) recorded on a

64 element vertical line array (VLA) with N¼ 21 of those

elements used for processing. The surface ship R/V Sproul

traveled with a radial velocity of 2.5 m/s toward the VLA

(Fig. 1) and towed a deep and a shallow source, both projec-

ting different multi-tonal sets. Data are sampled at 1500 Hz

and we use the deep source at frequencies 94, 112, 130, 148,

166, 235 Hz for processing. The first 53 min of the Event S5

are split into 160 segments with 50% overlap, resulting in a

single segment length of 40 s. An FFT length of 4096 sam-

ples (	2.7 s) with 50% overlap results in 28 snapshots for

each segment with a FFT bin width of 0.37 Hz. Our algorithm

searches the adjacent 61 FFT bins and extracts the FFT

value corresponding to the maximum bin power to accommo-

date Doppler shift. Each snapshot is windowed with a nor-

malized Kaiser window (Kaiser, 1974) with b¼ 2.5.

For the range-independent waveguide geoacoustic

model (Fig. 2), the water depth is assumed to be the water

depth at the array (216 m). The VLA spans the lower half of

the water column and the inter-element spacing is 5.6 m,

which corresponds to a k/2 spacing at 133 Hz using a sound

speed of 1488 m/s. The seafloor is composed of a 23.5 m

thick sediment layer, overlaying an 800 m thick mudstone

layer (Booth et al., 2000). Replica vectors are computed

using the Range-dependent Acoustic Model (RAM) para-

bolic equation code (Collins, 1993, 1994) with a range and
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depth discretization of 50 m and 10 m on a 10 km � 200 m

grid, respectively.

B. Simulations

To explore processor performance in a controlled envi-

ronment, we use the SWellEx-96 replica vectors to simulate

both single- and two-source scenarios. In the two-source sce-

nario, source magnitudes are selected such that the source 1

to source 2 ratio (SSR) is 3 dB. Source 2 is the weaker source

and is farther in range relative to source 1 by 1 km. To simu-

late L snapshots while ensuring that both sources are inco-

herent, each source phase is selected independently from a

uniform distribution [0,2p) for each snapshot. The simulated

received data vectors are added

Y ¼ aðh1ÞxT
1 þ aðh2ÞxT

2 þ N; (13)

where each xi 2 C
L contains L complex amplitudes for the

ith source. To construct coherent sources, the phase for sour-

ces 1 and 2 is the same for the lth snapshot. For both coher-

ent and incoherent scenarios, the source level is constant and

sources are stationary across snapshots. CS operates on the

observations Y ¼ ½yð1Þ;…; yðLÞ� directly, while Bartlett and

WNC use the same SCM averaged over L snapshots [Eq.

(2)].

Processor performance for a particular frequency is

evaluated for additive noise (SNR discretization is 0.5 dB).

Here, array (or average single element) SNR is defined as

the ratio of the power of the weakest signal present to inde-

pendent and identically distributed (i.i.d.) complex Gaussian

noise n,

SNR ¼ 10 log10

Efkaxk2
2g

Efknk2
2g

dBð Þ: (14)

Equation (14) corresponds to the single snapshot SNR,

where a is the source replica and x its complex amplitude.

When simulating L snapshots, the signals are added to i.i.d.

complex Gaussian noise. When processing multiple frequen-

cies, each frequency has the same SNR.

Processor performance is measured using root-mean-

square error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Q

XQ

q¼1

Dh2
q

vuut ; (15)

where the statistics are approximated using Q¼ 1000 real-

izations at each SNR and Dh denotes the range error

between true and estimated source location. For the single

source scenario, the estimated location corresponds to the

peak of the ambiguity surface. For the two source scenario,

the estimated location corresponds to the location of the

weaker source. In particular, we extract the two largest

peaks on the ambiguity surface and assign the appropriate

source number to those peaks by comparing the found loca-

tions to the true locations. If the stronger source is found

correctly but the weaker source is not, the error can be com-

puted directly. If both locations do not correspond to the

true locations, we use the minimum error of all possible

combinations. Note that the latter metric is not too impor-

tant because source 2 dominates early RMSE behavior (see

Table I for a RMSE comparison between sources 1 and 2).

Since RMSE is sensitive to outliers, the computed RMSE

curves are smoothed with a zero-phase forward and reverse

FIG. 1. (Color online) SWellEx-96 Event S5 showing the path of the surface

ship R/V Sproul. The ship towed a deep source at 	60 m depth along

roughly a 200 m isobath during the 75 min VLA recording. The source track

used for processing is indicated by the black arrows.

FIG. 2. Waveguide with sound speed profile, VLA, and geo-acoustic param-

eters for range-independent SWellEx-96 Event S5. A single element out of

the 22 element subset is excluded from processing.
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two-point moving average filter to avoid a potential biased

representation of processor performance. For plotting, surfa-

ces for all processors are normalized by their respective

peak values.

IV. RESULTS

A. Simulation results

Processor localization performance is investigated first

for a single source. Source 1 is placed in the SWellEx-96

environment at 2.5 km range and 60 m depth. Figure 3 shows

the ambiguity surfaces for each of the three processors.

Array SNR is 0 dB and all processors use L¼ 28 snapshots

at 166 Hz. Bartlett exhibits a strong sidelobe behavior, the

highest sidelobe is �2.5 dB below the mainlobe. The WNC

is able to suppress ambiguous source positions, and the high-

est sidelobe is �9 dB below the mainlobe. The single sparse

CS solution is clearly visible.

Figure 4(a) shows processor localization performance at

different SNRs. Localization curves are only shown for non-

zero RMSE. In agreement with theory (see the Appendix),

both CS and Bartlett perform identically for a single and for

28 snapshots in localizing the source and additional snap-

shots help to localize the source at lower SNRs. The WNC

performs worse than the Bartlett processor. As the constraint

is decreased from �2 to �6 dB, localization performance

decreases by roughly 2 dB in SNR. The scenario is extended

to include additional frequencies in Fig. 4(c). Similar to Fig.

4(a), the performance for Bartlett and CS is identical using

two and three incoherent frequency combinations with one

and two snapshots each, respectively.

For the two-source scenario, we add a second source to

the single source scenario at 3.5 km range and 60 m depth

(see Fig. 5). The SSR is 3 dB and source 2 is the weaker

source. The array SNR for source 2 is 0 dB and all processors

use 28 snapshots at 166 Hz. The Bartlett processor exhibits a

strong sidelobe behavior. Several sidelobes at about �2 dB

are higher than the level at the true position of source 2 at

�2.5 dB. Both WNC and CS correctly locate each source.

For WNC, source 2 is at �2.8 dB and the highest sidelobe is

at �9 dB. For CS, source 2 is at �2.6 dB.

Processor ambiguity surfaces corresponding to two fully

coherent sources are displayed in Fig. 6 (same configuration

as in Fig. 5). Neither Bartlett nor the WNC exhibit a domi-

nant peak corresponding to source 2. Only CS localizes both

sources. While it is possible to decorrelate sources (e.g.,

Pillai and Kwon, 1989) for adaptive processing, we imple-

ment incoherent sources for all of the following scenarios

because there is little reason to assume that source signatures

will be coherent in practice.

Figure 4(b) compares processor localization perfor-

mance for two-sources (same range-depth cells and SSR as

shown in Fig. 5) versus SNR. Bartlett results are not plotted

because the power of the second highest peak is not in the

vicinity of source 2, resulting in a RMSE> 1 km. To sup-

press sidelobes and identify the position of source 2, adap-

tive processing is required. For the WNC, we selected two

constraints: �2 and �6 dB. The WNC curves roughly are

between the curves corresponding to CS solutions computed

with 14 and 28 snapshots. A WNC constraint of �2 dB

performs better than a constraint of �6 dB.

We investigate processor performance using two fre-

quencies for the two-source scenario in Fig. 4(d). Bartlett

now can localize the weaker source until a SNR of �4.5 dB.

Similar to Figs. 4(a) and 4(b), a WNC constraint of �2 dB is

preferred. WNC �2 dB has non-zero RMSE at SNR greater

than �6.5 dB. CS has non-zero RMSE at SNR greater than

�7.5 dB using 28 snapshots. The number of realizations is

decreased from 1000 to 100 in order to reduce computation

time for Fig. 4(d). Note that the SNR curves for a multi-

source scenario depend on the relative position of the two

sources. A different configuration changes the sidelobe

structure and can shift the localization performance with

respect to SNR, whereas relative processor performance

largely is invariant to the actual source positions.

RMSE in Fig. 4 has been plotted using range error for

the weakest source present. Table I shows a typical RMSE

breakdown for the two source scenario split separately into

range and depth. The processor has non-zero RMSE for the

weaker source 2 (S2) at a higher SNR than the stronger

source 1 (S1), and the source 2 range error is the dominant

error.

Results in Figs. 3–5 compare processor performance for

sources simulated with a dictionary replica (i.e., the simu-

lated source is identical to a dictionary entry). To illustrate

processor performance when the source field does not corre-

spond exactly to a dictionary entry, we simulate the sources

[Eq. (13)] on a more finely spaced grid of replica vectors

(2 m in depth and 10 m in range). The denser replica set

allows the source to be placed in 24 different positions in

each of the 10 m depth and 50 m range discretization grid

cells [i.e., the replica dictionary A in Eq. (10)] used to local-

ize sources. Figures 7(a)–7(c) shows processor output when

TABLE I. RMSE for CS using 28 snapshots in Fig. 4(b). Units: m.

SNR (dB) �4 �5 �6 �7 �8 �9 �10

S1 range 0 0 0 0 0 42 280

S1 depth 0 0 0 0 0 1 3

S2 range 9 36 72 180 355 607 865

S2 depth 0 1 2 6 12 23 33

FIG. 3. (Color online) Single source localization simulation at SNR 0 dB

and 166 Hz: (a) Bartlett, (b) WNC �2 dB, and (c) CS. True source locations

are marked by white squares, and all processors localize the single source.
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28 snapshots are selected randomly from the finely spaced

replicas. Both sources remain stationary in their respective

discretization cells. To simulate non-stationary sources, 28

snapshots are split into 2 sets of 14 and drawn from locations

between two adjacent dictionary entries in Figs. 7(d)–7(f).

Both mismatch simulations increase localization ambi-

guity for all processors when compared to results in Fig. 5.

In particular, mismatch and source movement across discre-

tization cells increases the processor output power in cells

adjacent to the true source positions, which easily can be

observed in the WNC and CS panels. Note that in Fig. 7(c)

there are two solutions in the vicinity of source 1 (one above

and one below the true position) at �17 dB. CS computes

eight sparse solutions in Figs. 7(c) and 7(f), some with power

below �15 dB. The highest WNC sidelobes in Figs. 7(b) and

7(e) are at �5 and �3.3 dB, respectivley (both located at

approximately 60 m depth and 8.5 km range).

FIG. 4. (Color online) Range RMSE localization performance for single and multiple snapshots (SS). Single frequency 166 Hz top panels show (a) source 1

only and (b) sources 1 and 2. Multi-frequency bottom panels show (c) source 1 only and (d) sources 1 and 2. The two sets of frequencies are 2f¼ {148,166}

Hz and 3f¼ {148,166,235} Hz. In (b) and (d), SNR and RMSE correspond to the weaker source 2.

FIG. 5. (Color online) Two-source localization simulation at SNR 0 dB and

166 Hz: (a) Bartlett, (b) WNC �2 dB, and (c) CS. Bartlett has several com-

peting sidelobes at higher levels than source 2. WNC and CS localize both

sources.
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B. SWellEx-96 results

CS performance first is illustrated by comparing it to the

Bartlett processor for the single SWellEx-96 source at

166 Hz traveling toward the VLA. Figures 8(a)–8(e) show

PB output with 1, 2, 7, 14, and 28 snapshots, respectively, to

calculate K. Replica vector depth discretization is changed

from 10 m to 2 m to improve visualization. Only the maxi-

mum value of each Bartlett ambiguity surface is plotted.

Using the Lasso path, the first sparse solution for CS is plot-

ted in Figs. 8(f)–8(j) with the same number of snapshots in

Y to allow for a direct comparison. Increasing the number of

snapshots results in fewer false localizations for both pro-

cessors and tracks using the same number of snapshots are

comparable in the presence of environmental uncertainty.

To illustrate the adaptive capabilities of CS, we con-

struct several two-source scenarios. A copy of the SWellEx-

96 data is added to the original SWellEx-96 data, resulting

in a source separation of 1 km. Similar to the simulation,

source 2 is the weaker source and located further in range

than source 1 (with respect to the VLA). Each snapshot is

multiplied by a random phase to ensure the sources are not

coherent. The snapshots of source 2 subsequently are added

to the snapshots of source 1: Y ¼ Y1 þ nY2. The SSR scale

factor n ¼ 10�3=20kY1kF=kY2kF, hence, source 2 is 3 dB

below the power of source 1. CS operates on Y directly. For

Bartlett and WNC, Y is used to construct the SCM. For all

processors, 28 snapshots are used in the processing.

Ambiguity surfaces in Fig. 9 show scenario 1 as indi-

cated by the arrows in Figs. 8(e) and 8(j). Single frequency

(166 Hz) left panels show that the level of the weaker source

is competitive to other positions. The Bartlett processor [Fig.

9(a)] exhibits the most ambiguity. The WNC �6 dB (not

shown) is too sensitive and misses source 1, which is found

using a constraint of �2 dB [Fig. 9(b)]. While WNC �2 dB

is able to reduce localization ambiguity in comparison to

Bartlett, the adaptive processor displays many ambiguous

positions for the weaker source. The CS performance [Fig.

9(c)] is comparable to the WNC performance in the number

and positions of ambiguous locations.

To improve localization performance for source 2, we

process additional frequencies and sum the corresponding

Bartlett and WNC ambiguity surfaces incoherently, and simi-

larly combine frequencies via Eq. (12) with CS. Increasing the

number of processed frequencies from one to six [Figs.

9(d)–9(f)] increases the processor output power of source 2.

While many ambiguous positions with similar or higher power

than source 2 remain for Bartlett, both WNC and CS offer a

degree of robustness and are able to discriminate against some

of the false peaks. The solutions offered by WNC and CS are

similar for true and ambiguous source locations.

Figure 10 presents two additional multi-frequency

results. Panels on the left show scenario 2 and panels on the

right show scenario 3 [see arrows in Figs. 8(e) and 8(j)].

While Bartlett exhibits a large number of ambiguous posi-

tions with similar or greater power than source 2, both WNC

and CS offer solutions with fewer false localizations. CS dis-

plays the least number of ambiguous peaks.

V. DISCUSSION

CS and Bartlett yield the same localization results for a

single source as demonstrated analytically (see the

FIG. 6. (Color online) Same scenario as Fig. 5, but the two sources are

coherent.

FIG. 7. (Color online) Localization simulation with replica mismatch at SNR 0 dB and 166 Hz showing (a),(d) Bartlett, (b),(e) WNC �2 dB, and (c),(f) CS. True

positions are indicated by white squares. Left panels: sources are stationary. Right panels: source snapshots are drawn from two adjacent discretization cells.
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Appendix) with simulated and SWellEx-96 data. Figure 4(a)

shows that Bartlett and CS performance is identical.

Processor performance degrades at the same SNR threshold

and at higher SNRs, the localization error is quantized within

one discretization cell. These results extend to multiple fre-

quencies in Fig. 4(c). Figure 8 shows that both processors

exhibit comparable performance for any number of snap-

shots in scenarios with environmental uncertainty. CS yields

the same localization result as the Bartlett processor at an

increased computational cost.

The two-source scenarios demonstrate that CS and

WNC performance is similar and CS often displays less

ambiguous peaks than WNC. Forero and Baxley (2014)

showed that a theoretical connection can be established

between the elastic-net regularized CS framework and the

WNC processor. Simulation and data results here suggest

that there exists a connection even without the additional

elastic-net regularizer [Forero and Baxley (2014) also

observed good results when setting the elastic net regularizer

close to zero]. In our simulations [Fig. 4(b)], CS and WNC

locate the weaker source while Bartlett has a RMSE greater

than 1 km. Figures 4(b) and 4(d) further indicate that CS has

a SNR advantage over the WNC. The WNC performance

depends on the selected constraint: decreasing the constraint

from �2 to �6 dB reduces localization performance by

about 2 dB. CS possesses properties similar to an adaptive

processor without being subjected to the constraint-

dependent SNR penalty encountered by the WNC.

The ‘1 minimization has been extensively applied to

approximate the ‘0-norm for signal recovery and variable

FIG. 8. Localization results for depth vs range of the 	60 m deep SWellEx-96 source at 166 Hz for (left) Bartlett and (right) CS using (a),(f) 1, (b),(g) 2,

(c),(h) 7, (d),(i) 14, and (e),(j) 28 snapshots. Only the maxima of the Bartlett ambiguity surfaces are used to construct the left panels. The source briefly stopped

transmitting tonals at ranges 2.4, 3.5, 5.8, and 6.3 km. Arrows indicate data combinations used for three two-source scenarios.

FIG. 9. (Color online) Localization for two SWellEx-96 sources (scenario 1). True positions are indicated by white squares. Panels on the left use a single

frequency (166 Hz), panels on the right use six frequencies (94, 112, 130, 148, 166, 235 Hz): (a),(d) Bartlett, (b),(e) WNC �2 dB, and (c),(f) CS.

Incorporating multiple frequencies reduces ambiguity and helps localize source 2.
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selection in regression (Eldar and Kutyniok, 2013). Results

in Gerstoft et al. (2015) indicate that CS performs closely to

an ‘0-norm (demonstrated by means of an exhaustive search)

on similar SNR curves (for plane wave beamforming).

Results in this paper complement their MV results (which

the WNC �6 dB approximates, see Sec. II A) and further

illustrate why these adaptive processors exhibit a threshold

in localization error performance at higher SNR than CS.

The selected WNC constraint essentially is a sidelobe sup-

pression tuning parameter. The constraint should be selected

small enough to suppress sidelobes and large enough to

maintain localization performance at low SNR. For the pre-

sented simulation and data scenarios, a constraint of �2 dB

yielded good results. For CS the regularization parameter k
controls the number of sparse solutions which is selected to

localize source 2 for the two-source scenarios. In data cases

where some degree of mismatch is present, the number of

sparse solutions might be difficult to set ahead of time if

some solutions are due to ambiguous localizations.

Figure 9(a)–9(c) displays single frequency data scenario

1, which include ambiguous localizations. Bartlett exhibits

numerous sidelobes with greater power than the weaker

source. Both WNC �2 dB and CS localize source 2 along

with many other false peaks. Processing multiple frequencies

[Figs. 9(d)–9(f)] helps to localize the weaker source, and

both WNC and CS are able to reduce the number of ambigu-

ous peaks. Data results and mismatch simulation Fig. 7

show that the solutions offered by WNC and CS are similar,

demonstrating that CS is able to discriminate against side-

lobes. Unlike WNC, CS yields a complex source amplitude

for every snapshot vector that might be useful for further

processing [see Eq. (11)].

Extending the row-sparsity constraint to include snap-

shots corresponding to multiple frequencies with a single reg-

ularizer [Eq. (12)] yields good results in realistic scenarios.

Data results indicate that the CS solutions [Fig. 10(c)] still

coincide with those of the WNC [Fig. 10(b)] even if the source

power is split between range-depth cells. Multi-frequency sol-

utions in Fig. 9(f) are adjacent to each other, which might indi-

cate that the source position is at the boundary between

adjacent range cells. CS finds significant energy in the adja-

cent cell and treats it as a new sparse solution. This also might

be due to a slight misalignment of the mainlobe of each fre-

quency. The peaks of both sources extend over adjacent range

cells for multi-frequency Figs. 9(d)–9(f) compared to the

single frequency Figs. 9(a)–9(c).

This behavior also is evident in Fig. 10, displaying pro-

cessor comparison for two additional scenarios when the

sources are separated 1 km in range. Source 1 in Fig. 10 is

localized in two depth cells on most panels, while both sour-

ces exclusively are in a deeper depth cell in Fig. 9. The tran-

sition to a deeper depth cell might be an artifact of using a

range-independent environmental model (D’Spain et al.,
1999).

Incorporating multiple realizations and multiple fre-

quencies using a row-sparsity constraint improves source

localization as demonstrated with the simulations and proc-

essing the SWellEx-96 data. Lacking required spatial and

temporal parameter knowledge for a detailed environmental

model, it is likely that the source pressure field will not

exactly match the corresponding range-depth cell replica.

While replica mismatch may cause unexpected behavior, CS

yields reasonable results for the processed data set.

VI. SUMMARY

For the matched field processing application, we demon-

strate that CS has characteristics similar to an adaptive pro-

cessor. CS performs slightly better than the WNC processor

under ideal conditions and often displays less ambiguity

using data for two incoherent sources. CS performance is

equivalent to the Bartlett processor for a single source

scenario for any number of snapshots and frequencies at an

increased computational burden. The row-sparsity constraint

combines multiple temporal snapshots in order to increase

FIG. 10. (Color online) Localization for two SWellEx-96 sources using six frequencies (94, 112, 130, 148, 166, 235 Hz). True positions are indicated by white

squares. Left panels show scenario 2 and right panels show scenario 3 for: (a),(d) Bartlett, (b),(e) WNC �2 dB, and (c),(f) CS. Bartlett displays the most ambi-

guity while both WNC and CS exhibit good performance with fewer false localizations.
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localization performance at low SNR. This formalism has

been extended to combine snapshots corresponding to multi-

ple frequencies, which reduces ambiguous peaks and further

increases localization performance of a weaker source. In

addition, CS appears robust to modest data-replica mismatch

and situations when multiple snapshots correspond to the

source(s) occupying adjacent range-depth cells at the

expense of possible additional solutions.
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APPENDIX: ONE SOURCE FOR CS AND BARTLETT

Consider an arbitrary data matrix Y, consisting of sour-

ces and additive noise. For locating the strongest source,

only one row in X is active, row j, and this row vector is

denoted Xj. Then the data fit is minimized for CS,

U ¼ kY� ajXjk2
F ¼ Tr½ðY� ajXjÞHðY� ajXjÞ�

¼ Tr½YHYþXH
j aH

j ajXj �XH
j aHY�YHajXj�: (A1)

Solving

@U

@XH
j

¼ aH
j ajXj � aH

j Y ¼ 0 (A2)

gives the sparse estimate

! Xj ¼
aH

j Y

aH
j aj
¼ aH

j Y; (A3)

since we have assumed aj is normalized kajk ¼ 1. Thus, the

CS solution seeks the replica vector that is best aligned with

the data Y and gives the solution hj. The average power per

snapshot is then

PCS ¼ kXjk2
2=L ¼ kaH

j Yk2
2=L: (A4)

For the Bartlett processor evaluated at hj,

PB hjð Þ ¼
aH

j Kaj

aH
j aj

� �2
¼

aH
j YYHaj

L

¼ kaH
j Yk2

2=L: (A5)

Comparing this to the CS solution, the Bartlett processor

also is maximum at hj and has an identical power estimate

for one source. However, for multiple sources their solution

will differ.
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