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S U M M A R Y
We develop a frequency-based approach to earthquake slip inversion that requires no prior
information on the rupture velocity or slip-rate functions. Because the inversion is linear and
is performed separately at each frequency, it is computationally efficient and suited to imaging
the finest resolvable spatial details of rupture. We demonstrate the approach on synthetic
seismograms based on the Source Inversion Validation Exercise 1 (SIV1) of a crustal Mw 6.6
strike-slip earthquake recorded locally. A robust inversion approach is obtained by applying
a combination of damping, smoothing and forcing zero slip at the edge of the fault model.
This approach achieves reasonable data fits, overall agreement to the SIV1 model, including
slip-rate functions of each subfault, from which its total slip, slip time history and rupture
velocity can be extracted. We demonstrate the method’s robustness by exploring the effects of
noise, random timing errors, and fault geometry errors. The worst effects on the inversion are
seen from errors in the assumed fault geometry.

Key words: Fourier analysis; Inverse theory; Earthquake ground motions; Earthquake source
observations.

1 I N T RO D U C T I O N

Kinematic finite-slip inversion resolves the spatiotemporal be-
haviour of the rupture process during an earthquake. It generally
does not directly require the resolved slip to be physically or dy-
namically plausible, although often constraints inferred from earth-
quake physics are applied to kinematic inversions. Various geophys-
ical data can be used in kinematic studies, including seismic (Yagi
& Fukahata 2011), geodetic (Tong et al. 2010), tsunami (Yokota
et al. 2011) and borehole records (Koketsu et al. 2004). Kinematic
finite-slip models describe the whole rupture process, including
its dimensions and rupture velocity, and help in understanding the
conditions for pulse-like ruptures and super-shear ruptures. They
provide clues regarding spatial variations in stress drop and fault
asperities, while providing real-world constraints on dynamic rup-
ture models and studies of earthquake physics (e.g. Causse et al.
2014). See Ide (2007) for a recent review of finite-slip inversion
methods.

The first heterogeneous finite-slip inversion was Trifunac (1974),
in which the fault plane was divided into several subfaults and the
slip of each subfault was estimated as a Haskell model (Haskell
1969). The key idea was to construct the fault plane as a set of
subfaults and modern finite-slip inversion approaches continue to
adopt this parametrization. Important early work includes Olson
& Apsel (1982) and Hartzell & Heaton (1983), who developed a
linear inversion method with inequality constraints to determine the
spatial and temporal slip distribution of the 1979 Imperial Valley
earthquake. The method and its extension are referred to as the
multi-time-window method, which have been widely applied (e.g.
Yagi 2004; Uchide et al. 2009; Yue et al. 2012). More recently,

Ji et al. (2002) adopted the Meyer–Yamada wavelet transform and
simulated annealing algorithm to determine the finite-fault model
that minimizes an objective function described in terms of wavelet
coefficients, and applied it to the 1999 Hector Mine earthquake.
Other nonlinear approaches, like Bayesian inversion, have been
enabled by rapid improvements of computing power (e.g. Monelli
& Mai 2008; Monelli et al. 2009; Minson et al. 2013, 2014; Dettmer
et al. 2014). Without assumptions about slip rate function shape or
rupture velocity, solving source time functions in the time domain is
a huge inverse problem, a multidimensional deconvolution problem.
It can be simplified and made more computationally tractable by
using source–time functions with idealized shapes.

Because ruptures do not necessarily have simple slip functions or
constant rupture velocities, it is desirable to develop methods that
make few assumptions about the model. For computational reasons,
this is more likely possible in the frequency domain where the mul-
tidimensional deconvolution is replaced with solving a linear set
of equations for each frequency (Olson & Anderson 1988; Mendez
& Anderson 1991; Cotton & Campillo 1995). Here we describe
and further develop a frequency-domain algorithm for finite-slip
inversion. For each frequency, the seismic velocity spectrum is a
linear superposition of the Green’s functions multiplied by the slip-
rate spectra on each subfault. Since this set of equations is solved
independently at each frequency, the complexity of the inverse prob-
lem is greatly reduced. This computational efficiency enables dense
parametrization of the subfaults for good spatial resolution and we
avoid assuming a rupture velocity or specific form for the source–
time function, which might limit the ability to resolve complex
rupture models. To stabilize the inversion, regularization is applied
instead.
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Earthquake rupture inversion 1139

The frequency domain approach follows Olson & Anderson
(1988), but with the following improvements: (1) we derive and
apply Bayesian based regularizations which penalize variations in
the inverted slip-rate functions, including ℓ2 norm, roughness and
ℓ1 norm (i.e. compressive sensing, which produces sparse models),
(2) we consider larger problems (e.g. more fault patches), exploit-
ing improved computer resources and recently developed convex
optimization approaches for solving the inverse problem (Boyd &
Vandenberghe 2004).

Finite slip inversions are now performed routinely and are of-
ten available within a few days after an earthquake. However, un-
derstanding the uniqueness of these solutions remains challenging
(e.g. Vallée & Bouchon 2004; Shao & Ji 2012; Konca et al. 2013;
Razafindrakoto & Mai 2014). Fault geometry parametrization, as-
sumed Earth structure, seismic data type, Green’s function calcula-
tion methods, inversion approaches and regularization constraints
all affect the inversion results. Thus, rupture models often show
substantial variations among different groups, even while fitting the
data equally well. There are no generally accepted criteria to evalu-
ate the available models and their uncertainties, making interpreting
the inverted models inherently subjective. Aiming to quantify the
uncertainty in earthquake source inversion, the source inversion
validation (SIV) project (Mai et al. 2007) provides an online co-
operative platform to test earthquake source inversion approaches
through a series of benchmarks.

To test our frequency-domain method, we apply it to SIV Ex-
ercise 1 (SIV1, near-vertical strike-slip fault, recorded locally).
We do not prescribe the rupture velocity and slip-rate functions,
but apply regularization to stabilize the inversion, as we over-
parametrize the model to avoid bias from too few unknowns. To
provide good spatiotemporal resolution, subfaults are 1 km × 1 km
and the slip-rate spectra are fit up to 1 Hz. We experiment with a vari-
ety of physically plausible regularization constraints to stabilize the
inversion.

In the following sections, we will describe our method and
explore the effects of inversion constraints, regularization strengths,
noise and fault geometry. Our results for the SIV1 show that even
with perfectly known Green’s functions, noise-free data, and a good
station distribution, a wide variety of fault-slip models provide good
fits to the data. The finite-slip inversion problem is inherently non-
unique and regularization is necessary to obtain a stable result.
However, because different regularizations produce different mod-
els, choosing the most appropriate regularization is critical and the
best regularization strategy will vary depending on the details of
each inversion problem.

2 T H E O RY

In the frequency domain, the slip-rate spectra and recorded strong-
motion spectra are linked by a linear Green’s function relationship.
The spatial unknowns for each subfault patch can be inverted in-
dependently for each frequency. The problem can be solved effi-
ciently in this fashion without any rupture time restriction (Olson &
Anderson 1988). The increased efficiency allows finer discretiza-
tion of subfaults, which gives the inverted rupture model greater
resolution to resolve rapid spatial changes. The approach avoids
subjective decisions about the slip-rate function shape and rupture
velocity and eliminates the trade-off between rupture velocity and
rupture front. In this section, we start with a brief review of the
forward modelling approach. Using the same fault geometry as in
forward modelling, we then construct and perform inversions with

various constraints in the frequency domain. Finally, a time-domain
misfit function is applied to comprehensively compare data misfit.

2.1 Model setup and forward modelling

Using the representation theorem, (e.g. Aki & Richards 2002), the
recorded displacement can be expressed as the convolution of the
Green’s function of the source-receiver pair and the discontinuity
displacement across the fault plane. There is a linear relationship
in the frequency domain between the recorded displacement spec-
trum and the source displacement spectrum. Thus, the recorded
velocity spectrum is linearly linked to the slip-rate spectrum by the
Green’s function. Using this linear relationship, we modify eq. (15)
of Spudich & Archuleta (1987) into a discrete form:

vi (x, f )=
M∑

j

(
T s

i (x, f ; ξ j ) T d
i (x, f ; ξ j )

)
(

[vs(ξ j , f )]

[vd (ξ j , f )]

)

△"(ξ j ),

(1)

where the ith component of ground velocity spectrum vi(x, f) at
the Earth’s surface x and frequency f is expressed as a multiple of
the traction and a slip-rate discontinuity across the fault plane. The
fault plane is modelled as a set of M subfaults. Here [vs(ξ j , f )] and
[vd (ξ j , f )] are the strike-slip and dip-slip slip-rate spectra at the
jth subfault ξ j ; T s

i (x, f ; ξ j ) and T d
i (x, f ; ξ j ) are the strike-slip and

dip-slip tractions exerted with respect to the receiver and subfault
setting; and △"(ξ j ) is the subfault area at ξ j . The synthetic seis-
mogram vi(x, t) is obtained by taking the inverse Fourier transform
of the velocity spectrum vi(x, f).

2.2 Inverse formulation

To set up the inverse problem, we first Fourier transform the ob-
served seismograms and align them into a vector according to sta-
tion index, obtaining do( f ) ∈ C3N, where N is station number and
each station has three components (x, y and z). The problem is thus
expressed as

do( f ) = [Gs Gd ]

[
ms( f )

md ( f )

]

+ n( f ) = Gm + n( f ), (2)

where vectors ms( f ) ∈ CM and md ( f ) ∈ CM are the strike-slip
and dip-slip slip-rate spectral components. Matrices Gs ∈ C3N×M

and Gd ∈ C3N×M are the Green’s function matrices linking the
source spectra and the recording spectra. Gs

i j and Gd
i j are the me-

dia responses of the ith recording due to strike-slip and dip-slip
slip-rate pulses at subfault j, where Gs

i j = T s
i (x, f ; ξ j )△"(ξ j ) and

Gd
i j = T d

i (x, f ; ξ j )△"(ξ j ). Differences between observations and
synthetic seismograms from source models are described as noise n,
which contains both data noise and any errors due to forward mod-
elling. The inversion is performed at each frequency independently,
which greatly reduces the problem size (Olson & Anderson 1988).
Note that the time and frequency parametrizations are physically
equivalent, and thus identical solutions should be possible in either
domain (Spudich & Archuleta 1987).

2.3 Objective functions

We tackle the problem using a Bayesian approach:

p(m|do) = p(do|m)p(m)
p(do)

, (3)
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where p(m) is the prior model probability density function (PDF), do

is the observed data and p(do|m) is the conditional PDF. Maximizing
p(m|do), we obtain the maximum a posteriori (MAP) solution:

m̂ = arg max
m

p(m|do). (4)

2.3.1 Least squares

Assume n in eq. (2) obeys a complex Gaussian distribution,
CN (0, σ 2W−1). Then the likelihood function can be expressed as

p(do|m) = c0 exp
[
− 1

σ 2
(do − Gm)HW(do − Gm)

]
. (5)

The constraints come in via the prior distribution p(m), since the
p(do) is just a normalizing constant. In the following sections, we de-
rive several regularization approaches and other priors can be easily
utilized. The simplest prior model distribution is a non-informative
uniform distribution, in which case, eq. (4) gives the least-squares
solution:

m̂ = arg max
m

c0 exp
[
− 1

σ 2
(do − Gm)HW(do − Gm)

]

= arg min
m

∥do − Gm∥2
W,2, (6)

where c0 is a constant and the covariance matrix is W−1, which can
be treated as a weighting matrix for the recorded data with respect
to site effects and data quality. When n is assumed to be identical
and independent, W is the identity matrix I. The objective function
(6) of the weighted least squares problem is (convex) quadratic,
which is a quadratic program (QP) problem (Boyd & Vandenberghe
2004).

As shown in Section 3.3, least squares without regularization of-
ten produces rough and unrealistic solutions even with noise-free
data. This is because the slip model is typically overparametrized,
such that the data can be fit well with a variety of models, many of
which contain rapid spatial or temporal oscillations between positive
and negative slip. Regularization can be used to avoid these phys-
ically implausible models, and we experiment with both damping
and smoothing, as described in the following.

2.3.2 Damped least squares

When the prior model has a complex Gaussian distribution,
CN (m0, σ

2
mI), the posterior PDF (3) also obeys a Gaussian dis-

tribution:

p(m|d0) = c0 exp
(

− 1
σ 2

[(do − Gm)H(d0 − Gm)

+ σ 2

σ 2
m

(m − m0)H(m − m0)]
)

, (7)

where m0 is the prior model, which can integrate already existing
information of the slip-rate into the inversion. When m0 = 0, the
MAP is given by

m̂ = arg min
m

∥do − Gm∥2
2 + α2∥m∥2

2, (8)

where

α2 = σ 2

σ 2
m

(9)

is the variance ratio of n and the prior model. It is challenging to
find the best value for α2 without information about σ 2

m . Large α2

enforces the model to be close to the prior model m0 = 0. Small
α2 is preferred because it puts more weight on the data. The model
maximizing eq. (7) is the damped least-squares solution of this QP
problem and attempts to find the lowest spectral power consistent
with the data. The degree of damping controlled by the adjustable
parameter α2.

2.3.3 Spatial smoothing

When the complex-valued slip-rate is assumed to be spatially
smooth, the prior model can be expressed as:

p(m) = c0 exp
(

− 1
σ 2

l

mHLHLm
)

, (10)

where L is the Laplacian matrix (Claerbout & Fomel 2008), a 2-D
discrete second order finite difference operator and σ 2

l /(LHL) is the
covariance matrix. Other smoothing matrices, such as the Gaussian
smoothing matrix could also be used. Note that the operator applies
to both the magnitude and phase of the spectra of connecting sub-
faults. The estimation under this assumption has spatial smoothing:

m̂ = arg min
m

∥do − Gm∥2
2 + λ2∥Lm∥2

2, (11)

where the degree of smoothing is controlled by the adjustable
parameter

λ2 = σ 2

σ 2
l

. (12)

As in the damped least-squares approach, this is also a QP problem.

2.3.4 Compressive sensing

If slip is known to be spatially rough, it may be more appropriate to
assume a prior that encourages spatially sparse solutions, such as a
Laplacian distribution:

p(m) = c0 exp

(

−1
b

M∑

i

|mi − µi |
)

, (13)

where µ is the model mean, and b is a scale parameter. The MAP
solution encourages sparsity and is termed compressive sensing
(e.g. Yao et al. 2011; Xenaki et al. 2014), when µ = 0:

m̂ = arg min
m

∥d0 − Gm∥2 + β2∥m∥1. (14)

This is a second-order cone problem (SOCP), and can be efficiently
solved with convex optimization (Boyd & Vandenberghe 2004).
Similar to smoothing, the degree of roughness is controlled by the
adjustable parameter β2.

2.3.5 Combined constraints

In general, optimal inversion strategies may involve a combination
of the constraints listed above and we have experimented with this
approach for the SIV1 problem. For example, the model can be
required to be damped, spatially smooth, and with fixed boundary
patches:

m̂ = arg min ∥do − Gm∥2
2 + λ2∥Lm∥2

2 + α2∥m∥2
2

s.t. : W0m = 0, (15)

where W0 is a selecting matrix, where elements corresponding to
boundary patches are 1 and the rest are zero. Both the objective
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Earthquake rupture inversion 1141

function and constraint are convex (Boyd & Vandenberghe 2004),
which assures a unique solution for the inverse problem.

The problem is greatly stabilized with the regularization strategy
described in eq. (15). Fixing the fault boundary patches to zero
while asking the slip-rate to be spatially smooth enforces the slip-
rate to gradually decrease to zero at boundaries. This makes physical
sense and will not introduce errors, since the modelled fault plane is
overparametrized and we can make it larger than the ruptured area.

2.4 Negative slip

Eq. (15) is in the frequency domain, thus to obtain the time-domain
slip function, m must be Fourier transformed. The method assumes
the signal do recorded by the seismic stations is accurately given by
the computed Green’s functions, that is that there is coherent signal
in the frequency-domain to be modelled. However, there are no as-
sumptions of coherence across frequency or time. The slip at each
frequency sample is independent and time slip functions are ob-
tained via the inverse Fourier transform. This is in contrast to other
slip-inversion schemes where time slip is often assumed to consist
of one or more basis rise-time functions. The advantage of basis
rise-time functions is that the number of unknowns can be greatly
reduced, that is typically only a few unknowns are needed per cell
(e.g. starting and ending times, amplitude, and a few more to de-
fine the function shape). However, this limited parametrization may
prevent resolving some of the complexities of real earthquake rup-
tures, such as multiple slip events on the same subfault. In contrast,
eq. (15) has one complex-valued unknown per cell per frequency
(for the SIV1 inversion, 2 × 50 = 100 parameters are used per
cell), giving considerably more freedom in obtaining the true slip
function.

Negative slip is physically unrealistic and can be eliminated by
limiting the search space to only contain positive amplitudes as
is often done for global search methods (e.g. Ji et al. 2002) or in
classical least squares by using a positivity constraint (e.g. Yagi
2004). However, implementing a non-negative slip constraint is
difficult in frequency-domain methods and we do not impose such
a constraint, but the regularization tends to reduce negative slip.
Instead, we use the size of the negative slip patches as a measure
of the quality of the inverse solution. Well-resolved models should
have only small amounts of negative slip and the positive slip patches
have uncertainties similar to the magnitude of the negative slip.
Note, however, that the absence of significant negative slip does not
guarantee an accurate model, as we will show in Section 3.3.

2.5 Misfit measure

The inversion is performed in the frequency domain and includes
regularization, see eq. (15). To quantitatively investigate inverted
solutions, we compute the time-domain misfit parameter for the ith
station:

ϵi =
∑

j=x,y,z

∥do
i, j (t) − d̂i, j (t)∥2

2, (16)

where do
i, j (t) is the jth component at the ith station; d̂i, j (t) =

F−1[Gm̂( f )]i, j is the jth component synthetic seismogram at the
ith station from the inverted rupture model. The misfit reduction is
defined as

Misfit reduction = 1 −

√
E
E0

, (17)

where E =
∑N

i=1 ϵi is the total misfit and we have normalized with
the norm of the data E0 =

∑N
i=1

∑
j=x,y,z ∥do

i, j (t)∥2
2. When noise is

present in the recordings, the signal-to-noise ratio (SNR) is defined
as signal power over noise power

SNR =
∑N

i

∑
j=x,y,z ∥do

i, j (t)∥2
2∑N

i

∑
j=x,y,z ∥ni, j (t)∥2

2

, (18)

where ni, j(t) is the noise added to the corresponding recording
do

i, j (t). In addition to SNR, we construct a normalized noise param-
eter similar to misfit as

Noise level =
( ∑N

i

∑
j=x,y,z ∥ni, j (t)∥2

2∑N
i

∑
j=x,y,z ∥ni, j (t) + do

i, j (t)∥2
2

)1/2

. (19)

3 S Y N T H E T I C T E S T S

3.1 Problem description

Exercise 1 of the SIV (http://equake-rc.info/) is used as a synthetic
test case (Mai et al. 2007; Page et al. 2011; Mai 2013). Right-
lateral strike-slip motion occurs on a fault with dip 80◦ and strike
90◦ (see Fig. 1). The rupture remains buried and does not reach the
surface. The fault plane is 36 km in length and 18 km in downdip
extent with top and bottom depths of 2.046 and 19.772 km. The
seismic moment M0 is 1.06 × 1019 Nm (Mw 6.62). The hypocentre
location is (9.2, 2.5 and 14 km) in a right-lateral Cartesian sys-
tem. The earthquake source model and its corresponding synthetic
seismograms are generated using a spontaneous dynamic rupture
model with heterogeneous initial stress on the fault. While the ini-
tial normal stress varies simply with depth, initial shear-stress is
parametrized in terms of a von-Karman autocorrelation function
(these and other details of the rupture simulation provided by Mar-
tin Mai, personal communication, 2014). The dynamic modelling
assumes a linear slip-weakening friction law, with static and dy-
namic friction of 0.6 and 0.55, respectively. The dynamic rupture
modelling is performed with a 3-D generalized finite-difference
method (Ely et al. 2008, 2009), with 100 m spatial discretization
and 0.008 s time increments. The resulting slip-rate functions on
the fault show Kostrov-type behaviour with local variations due to
the heterogeneous initial shear-stress. The peak final slip on the
fault is smooth with an elliptical shape in the along-strike direction
(Fig. 1a). Rupture propagation over the fault is fairly smooth, with
small variations due to the stress variability (Fig. 1b), while the rise
time distribution within the rupturing area is quite heterogeneous.
Rupture speed averages about 2.8 km s−1, but varies over the fault,
which causes the rupture time, slip and slip-rate to be somewhat
heterogeneous. Total rupture duration is less than 10 s. This as-
sumed rupture model will be the focus of our inversion efforts and
will henceforth be termed the SIV1 model. To compute synthetic
seismograms, a layered velocity structure and station geometry is
assumed (Figs 2 and 3). There are a total of 40 three-component
receivers, providing 120 recordings that can be used for inversion.
Stations are well-distributed on the surface around the fault. Both
the SIV1 model and synthetics are provided as part of the SIV
exercise.

We first regenerate the observed data using the provided velocity
structure and source–time functions using the COMPSYN program
(Spudich & Archuleta 1987). Our forward synthetics are similar
to those provided in the SIV1 exercise for frequencies below 1 Hz
(misfit reduction 93.4 per cent, SNR = 229.5). The differences are
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1142 W. Fan, P. M. Shearer and P. Gerstoft

Figure 1. The filtered SIV1 model, (a) integrated total slip; (b) time evo-
lution of slip. For a specific time, only slip-rate functions of the subfaults
that are greater than 0.5 m s−1. are plotted in colours other than grey. Parts
of the grey area do rupture, but the maximum value of the slip-rate func-
tions do not exceed 0.5 m s−1. The coloured area provides a measure of the
rupture front. Because this filtered SIV1 has a wider slip-rate pulse, there
are overlapping areas over the fault plane at different times. To better show
the rupture progress, the older rupture areas are plotted on top of the newer
rupture areas to emphasize the new ruptured areas.

likely related to model assumptions and parameter differences be-
tween the SIV dynamic model and COMPSYN. Validating synthetic
seismograms is an important part of the SIV process, but is not our
focus. To examine the performance of the inversion alone, we use
our own forward synthetics, and use SIV1 provided data as a sen-
sitivity test. We restrict our analysis of the seismograms to 1 Hz
and below, because real slip inversion typically avoid data above
1 Hz where scattering and other effects reduce waveform coherence
(Cormier 2007).

3.2 Inversion strategies

Assuming that the fault-plane geometry and slip rake are specified,
the model unknowns are just ms in eq. (2). The fault plane is the
same as the true solution, 36 km in length and 18 km in downdip
extent. There are M = 72 × 36 = 2592, 0.5 km × 0.5 km patches
used to generate the observed data. We Fourier transform the first
35 s of observed data into the frequency domain to construct do(f),
including all wave types (i.e. P waves, S waves, multiples and sur-
face waves). For all the station-patch pairs, Green’s functions up to
1 Hz are computed to obtain G. At each frequency, we invert for the
spatial distribution of slip-rate via eq. (2). The slip-rate spectra at

Figure 2. The SIV1 model station distribution. There are 40 three-
component stations, providing 120 total records.The rupture remains buried
and does not reach the surface. Hypocentre location is (9.2, 2.5, 14) km in
this (x, y, z) coordinate system.

Figure 3. Velocity (km s−1) and density (g cm−3) profile for SIV1. A layered
isotropic velocity–density structure is provided for the synthetic test. Qs and
Qp are assumed to be infinite.

each point on the fault are then inverse Fourier transformed into the
time domain. For the inverse problem, the subfault size is set to be
1 km × 1 km, which reduces the spatial unknowns to 36 × 18 = 648
for each frequency. When the zero-slip boundary constraint is ap-
plied, as in eq. (15), the spatial unknowns are 34 × 16 = 544 for
each frequency.

For all the station-patch pairs, we compute Green’s functions to
1 Hz to obtain G (δf = 0.024 Hz, 50 frequency bins are used). At each
frequency, we then use convex optimization (Boyd & Vandenberghe
2004) to invert for the spatial distribution of slip-rate via eq. (2) or
the equivalent regularized version using the CVX package (Grant
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Earthquake rupture inversion 1143

Table 1. Regularization parameters and misfit reduction.

Class α2 λ2 Misfit reduction (per cent)a Seismic moment M0 (Nm)

Least squares 99.2 1.11 × 1019

Preferred DLSa 9.0 × 10−10 99.2 1.1 × 1019

DLS1 2.1 × 10−5 97.0 8.8 × 1018

DLS2 2.3 × 10−3 65.7 8.0 × 1017

DLS3 6.7 × 10−3 47.9 2.8 × 1017

Preferred SSa 4.0 × 10−8 99.2 1.1 × 1019

SS1 3.6 × 10−5 97.8 1.3 × 1019

SS2 1.5 × 10−2 66.9 9.7 × 1018

SS3 5.1 × 10−2 47.9 9.5 × 1018

Preferred regularizationa (2 km by 2 km) 9.0 × 10−10 4.0 × 10−8 99.1 1.2 × 1019

Preferred regularization (1 km by 1 km) 9.0 × 10−10 4.0 × 10−8 99.2 1.1 × 1019

Preferred regularization (0.5 km by 0.5 km) 9.0 × 10−10 4.0 × 10−8 99.2 1.1 × 1019

SIV1 DLS1 2.1 × 10−5 95.9 9.1 × 1018

SIV1 DLS2 2.3 × 10−3 66.2 8.3 × 1017

SIV1 DLS3 6.7 × 10−3 48.7 3.0 × 1017

SIV1 SS1 3.6 × 10−5 96.4 1.4 × 1019

SIV1 SS2 1.5 × 10−2 65.0 1.0 × 1019

SIV1 SS3 5.1 × 10−2 46.1 9.9 × 1018

SIV1 provided data 2.3 × 10−8 1.0 × 10−6 93.1 1.2 × 1019

1 per cent Gaussian noise 9.0 × 10−9 4.0 × 10−7 81.8 1.1 × 1019

10 per cent Gaussian noise 9.0 × 10−7 4.0 × 10−5 12.6 8.6 × 1018

70◦ dip1 9.0 × 10−10 4.0 × 10−8 88.7 9.0 × 1018

70◦ dip2 2.6 × 10−8 1.0 × 10−4 75.9 9.4 × 1018

90◦ dip1 9.0 × 10−10 4.0 × 10−8 75.1 1.1 × 1019

90◦ dip2 1.0 × 10−7 1.0 × 10−4 71.1 1.0 × 1019

170◦ rake1 9.0 × 10−10 4.0 × 10−8 94.8 1.0 × 1019

170◦ rake2 4.0 × 10−8 4.0 × 10−6 92.7 1.0 × 1019

190◦ rake1 9.0 × 10−10 4.0 × 10−8 94.0 1.0 × 1019

190◦ rake2 4.0 × 10−8 4.0 × 10−6 91.8 1.0 × 1019

aDLS represents damped least squares (eq. 8); SS represents spatial smoothing (eq. 11); Preferred regularization (eq. 15). Misfit reduction
is calculated by eq. (17). 70◦ dip1, 2 represents Figs 19(b) and (c); 90◦ dip1, 2 represents Figs 19(d) and (e). 170◦ rake1, 2 represents
Figs 20(a)–(d); 190◦ rake1, 2 represents Figs 19(e)–(h).

& Boyd 2008, 2013). The slip-rate spectra at each point on the fault
are then inverse Fourier transformed into the time domain.

Our applied regularization, regularization strength and obtained
misfits are summarized in Table 1. Regularization here is used to
describe the inversion strategies, such as eqs (8) and (15). Reg-
ularization strength refers to eqs (9) and (12). Retrieved seismic
moments (M0) for each case are also listed in the table.

3.3 No regularization

Fig. 4 shows results of a simple least-squares inversion without
regularization. The recovered slip model is much rougher than the
SIV1 model (compare Figs 1 and 4) and contains sharp changes
in slip amplitude at the smallest spatial scales of the model. The
slip-rate function near the hypocentre has a negative-slip precursor
and oscillatory ringing for many seconds after slip has ceased in the
starting model. The frequency domain fit to the slip-rate function
is also poor, with substantially higher power at 0.3–0.8 Hz than
contained in the SIV1 model. Note however that the negative slip
component of this model is relatively small, just 0.53 per cent of
the moment of the positive slip component, Thus, the absence of
substantial negative slip in our inversions does not necessarily imply
a high-quality inverted rupture model.

The SIV1 slip-rate functions contain substantial energy above
1 Hz, which cannot be recovered from analysis of seismic data below

1 Hz. Thus, we apply a 1-Hz low-pass cosine filter with passband
and stopband 0.5 and 1.2 Hz to the SIV1 slip-rate functions. The
filtered SIV1 has seismic moment M0 of 1.05 × 1019 Nm (Mw

6.61). This has little effect on fault maps of total slip (e.g. Fig. 1),
but significantly broadens the slip-rate pulses, as shown in Fig. 4(b).
We will henceforth refer to this 1-Hz low-pass model as the filtered
SIV1 model.

More physically realistic models can be obtained by applying
regularization. It is important, however, to realize that these models
are not required by the data. The model shown in Fig. 4 achieves
a nearly perfect fit to all 120 components of the data seismograms.
The misfit reduction is 99.2 per cent according to eq. (17) (Table 1).
The model is not unique; there are many models that will produce
equivalent fits.

3.4 Regularized inversions

Regularization can help stabilize the inverse problem and produce
more physically plausible models. There is a trade-off between how
well the model fits the data and satisfies the regularization con-
straints. This trade-off is controlled by the adjustable regularization
parameters that assign relative weights to the regularization con-
straints and the data fit. This is often illustrated using an L-curve
of misfit versus regularization norm. For the SIV1 problem, Fig. 5
shows time-domain data misfit reduction (eq. 17) versus model
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1144 W. Fan, P. M. Shearer and P. Gerstoft

Figure 4. Inverted source model from least squares without any regulariza-
tions. (a) Total slip (m), white star indicates hypocentre; (b) Slip-rate function
at hypocentre; (c) Power spectrum of the slip-rate function at hypocentre.
The misfit reduction of the least-squares model is 99.2 per cent. In (b) and
(c), grey lines are from the unfiltered SIV1 model (dynamic simulation);
black lines are filtered SIV1 model and red ones are inverted least-squares
model.

norm for both damping and smoothness constraints. Increasing the
regularization strength produces larger misfit and smaller, smoother
models. An example of the fit to a seismogram is plotted in Fig. 5,
both in the time and frequency domains. The Y component of Sta-
tion 23 is used, which has the largest absolute peak. In principle,
the regularization parameters should be frequency dependent, since
we are performing the inversions independently at each frequency.
However, for simplicity we use the same regularization parameters
at all frequencies.

Ideally, choosing regularization strength would be informed by
the expected level of data misfit, that is to avoid fitting the data
better than their noise level. However, data uncertainties can be dif-
ficult to quantify, so the process of setting regularization strength
can be somewhat subjective. Because our SIV1 synthetics have
no noise, we initially apply very weak regularization, enough to
provide a more physically realistic solution, but not enough to
cause more than a tiny increase in data misfit. For real data sets
or synthetic data with errors (Section 5), stronger regularization is
required.

The inverted source model with the preferred regularization (eq.
15) is plotted in Fig. 6. It achieves a 99.2 per cent data misfit re-
duction and a good overall fit to the filtered SIV1 model, both in
terms of total slip and slip-rate functions at selected points on the

fault (Fig. 6). The total moment of this model is 1.10 × 1019N · m
(Mw = 6.62), compared to 1.05 × 1019N · m (Mw = 6.61) for fil-
tered SIV1. Note that these numbers are integrated moments, com-
puted by subtracting the negative slip patches from the positive slip
patches. However, the negative slip moment is small compared to
the positive slip, just 0.63 per cent of the moment of the positive slip.
Synthetic seismograms from the inverted rupture model and previ-
ous cases are shown in Fig. 7. Differences with the synthetic seis-
mograms are indistinguishable. These differences between inverted
slip models are a clear demonstration of the non-uniqueness of the
problem. Even setting the negative slip patches to zero, the result-
ing model predictions still fit the data reasonably well (91.5 per cent
misfit reduction).

This, and other regularized inversions we have tried, locate the
correct hypocentre and resolve the rupture velocity and direction,
none of which were prescribed. The colours in Fig. 6(b) give the
areas that have slip-rates larger than 0.5 km s−1 at discrete specified
timings, which provides a measure of the rupture front. Because this
filtered SIV1 has a wider slip-rate pulse, there are overlapping areas
over the fault plane at different times. To better show the rupture
progress, the older rupture areas are plotted on top of the newer
rupture areas in Fig. 6(b), which emphasizes the new ruptured area.
Fig. 8 shows the wavefront snapshots (no time smoothing or aver-
aging) of the original unfiltered SIV1, the filtered SIV1, the least-
squares solution, and the inverted source model with our preferred
regularization. Smeared rupture fronts are obtained compared to
sharp images of SIV1, which is expected given the spatial smooth-
ing regularization. Negative slip patches are scattered over the fault
plane in the least-squares solution, see Fig. 8(c). Regularization
tends to reduce negative slip rate as seen in Fig. 8(d).

Arrival times of the peak of the slip-rate function with respect to
distance from the hypocentre are plotted in Fig. 9. Rupture velocity
can be estimated with wavenumber filtering (Olson & Anderson
1988). Here, for simplicity, the slope of the curve is inferred as
inverse rupture velocity. Inverted versus model rupture velocities
along AA′ are compared in Fig. 9. Spatial changes like the fast
rupture velocity near the hypocentre (a result of the assumed 1-km-
wide slip initiation zone in the SIV1 model) and a nearly constant
rupture velocity on the left fault plane are well resolved. The shaded
zone shows the 90 per cent-peak zone of the inverted slip-rate func-
tions. Note that the smoothing constraint introduces some small
differences between the inversion result and SIV1, for example the
inverted source model has earlier rupture at shallower depth (see
1 s in Fig. 8), earlier initial slip and later peak slip in the slip-rate
functions (Fig. 6), causing a timing offset between the preferred
model and SIV1 (see Fig. 9).

4 D I S C U S S I O N

These results represent a best-case scenario for rupture inversion
from near-field data because they result from a good station distri-
bution, noise-free seismograms, perfectly known Green’s functions
and exact knowledge of the true fault geometry. We will explore
the effect of relaxing some of these advantages in Section 5, but
first we consider the resolution limits. The maximum frequency is
1 Hz, which gives a minimum S-wavelength of about 3.5 km over
the fault. This provides an estimate of the spatial resolution, as
evidenced by the smearing of the sharp wavefronts in the starting
model into broader features in the recovered model (see Fig. 8). This
agrees with Fukahata et al. (2014), who explored the resolution lim-
its of slip inversions with good data coverage and exact Green’s
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Earthquake rupture inversion 1145

Figure 5. Trade-off (‘L’) curves of data misfit versus model norm (top row) and example data fits for station 23 in the time domain (second row), the frequency
magnitude (third row) and frequency phase (fourth row). The left-hand column shows results of damped least squares, the right-hand column for spatial
smoothing. The L curve is computed in the time domain using the entire model and all of the data fits. The Y-component of station 23 is shown because it
has the largest peak value of all the recorded data. The three plotted misfit curves correspond to the three labelled points on the L curves. Horizontal dashed
lines in (a) and (e) represent 1 per cent misfit level; red square represents the values we used for the preferred regularization; blue square is the model norm
[∥m(t)∥2] and zero misfit of the filtered SIV1 model.
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1146 W. Fan, P. M. Shearer and P. Gerstoft

Figure 6. Preferred ruptured model from combined regularization (see text),
(a) total slip; (b) slip history; (c) slip-rate functions at given points; (d) power
spectrum of the slip-rate functions at given points.

functions. We also experimented with 2 km × 2 km and
0.5 km × 0.5 km model subfault sizes (see Fig. 10, Table 1). A large
patch size intrinsically enforces a simple smoothness constraint
(0.5 km × 0.5 km patches within each large patch have the same
spectrum). Although this model is coarser, it nonetheless achieves a
99.1 per cent misfit reduction. However, it has abrupt changes in slip
across the 2-km cell boundaries. The smaller patch size of 0.5 km
is more computationally expensive than our 1-km-patch preferred
model, but yields little improvement in model resolution or data fit,
due to the spatial resolution limit.

Similarly, the temporal resolution is limited by the 1 Hz maximum
frequency, as illustrated by a comparison of the original and filtered
source–time function (see Fig. 6). For this synthetic example, the
spatial and temporal resolution could be improved by including
higher frequencies. However, this is difficult for fault inversions
of real earthquakes because of incoherence in the high-frequency
waveforms and the lack of earth models detailed enough to compute
accurate synthetic seismograms above 1 Hz (e.g. Cormier 2007; Ide
2007).

In addition to resolution limits, the inverted models suffer other
problems: they have some negative slip, they underpredict max-
imum slip amplitudes and they perform relatively poorly in the
low-slip areas of the fault. The low-pass filtering introduces small
sidelobes and some negative slip in the time domain. This negative
slip is most visible just before the rupture initiation at each point
(see Fig. 6). The magnitude of the inverted spectra at each subfault
is smaller than the SIV1 model due to the regularizations. The in-
version is able to resolve the source–time function and its spectrum
better in the high-slip regions near the hypocentre (#1 to #3 and #5
to #8 of Fig. 6) but poorly images the low-amplitude source–time
functions at the rupture boundary (#4 of Fig. 6). The rupture front
can only be partially resolved after 6 s and the slip-rate quickly
diminishes to zero after 7 s (Fig. 8).

Because the inversion is performed in the frequency domain,
constraints on the rupture timing and direction are difficult to apply
directly. For example, causality suggests there should be no slip on
fault patches at times before the arrival of a P-wave radiated from
the hypocentre at the origin time. Slip timing is part of the spectrum
phase and direct constraints on the phase has not been developed
and requires further investigation. Similarly, physical considerations
suggest that negative slip is unlikely, but as mentioned in Section
2.4, there is no direct way to implement positivity in our inversion
scheme unless we decompose the slip-rate functions into a sum-
mation of a group of non-negative functions. This decomposition
is intrinsically the same as multi-time-window methods, in which
case we lose the flexibilities of the frequency domain approach.

The smoothness regularization worked in large part because the
SIV1 model is in fact fairly spatially smooth. Thus, imposing a
smoothness constraint helped in recovering the true model, even
though rougher models could produce equally good data fits. How-
ever, ruptures may not always be spatially smooth. Recent results
for several earthquakes have suggested complicated rupture scenar-
ios in which models of multiple discrete subevents may provide a
more realistic description of the earthquake than smooth, continu-
ous rupture models (e.g. Koketsu et al. 2011; Maercklin et al. 2012).
In these cases, other regularizations will produce better results, for
example compressive sensing (Yao et al. 2011), which forces the
rupture into a sparse set of subevents. As an example, Fig. 11 shows
results for a synthetic model with just two isolated sub faults, with
#1 rupturing once and #2 rupturing twice at different times.

Compressive sensing (eq. 14) can precisely locate the rupturing
locations and times, showing how a frequency domain method can
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Earthquake rupture inversion 1147

Figure 7. Synthetic seismograms (0–1 Hz) from input and inverted rupture models for least squares, damped least squares, spatial smoothing, preferred
regularization combination. The seismograms are indistinguishable.

resolve a complicated multi-subevent earthquake without a well-
defined continuous rupture velocity (see Fig. 11a). However, if the
same damping and smoothing regularization (eq. 15) is applied
as our optimal results for the SIV1 model, the result is an over-
damped and smeared version of the true model (see Fig. 11b),
which nonetheless fits the data well. In this case, compressive sens-
ing yields effective point sources. However, it cannot resolve the
slip versus rupture area trade-off when subfaults are inaccurately
parametrized. Thus, no method is guaranteed to be optimal in every
case. One advantage in applying a smoothness constraint is that any
imaged heterogeneity (e.g. subevents, or multiple slip concentra-
tions) is likely real, as the smoothness regularization attempts to
minimize these features.

5 S E N S I T I V I T Y T O N O I S E O R M O D E L
A S S U M P T I O N S

The inverted source models in Section 3 achieve good spatial and
temporal resolution, but are derived from an idealized model with
noise-free data, and perfectly known Green’s functions. These ad-
vantages are not present for inversions of real earthquakes, so it
is useful to test how more realistic scenarios affect the resolution.
We now explore how the solutions vary with respect to noise and
assumed fault geometry.

5.1 Noise and error influence

Noise and errors are inevitable in real slip inversions. Both back-
ground microseism noise and signal-generated noise from scattering
will contribute to observed seismograms. In addition, Green’s func-
tions for the forward problem will never be known perfectly because
of unresolved 3-D seismic velocity structure. Thus, it is important
to understand the sensitivity of inversion methods to these effects.
A method that works for an idealized, noise-free synthetic experi-

ment will be of little practical use if it is overly sensitive to noise
and errors. Here we investigate the effects of Gaussian background
noise and Green’s function or station timing errors. When noise is
added into the data, according to eq. (9), the regularization strength
should increase to avoid ‘overfitting’ the data beyond its noise level.
The slip-rate magnitude and data fit will decrease as a consequence.

5.1.1 SIV1 provided data

Seismic data provided by SIV1 were generated from the dynamic
model described in Section 3.1. As discussed earlier, our computed
synthetic seismograms are a close, but not perfect match, to the
synthetics provided in SIV1. If we define noise as the difference be-
tween our forward synthetics and those from SIV1 (1 Hz low-pass
filtered), the misfit reduction is 93.4 per cent. To test the robustness
of our approach to small errors in the Green’s functions, we per-
formed a source inversion with our preferred regularization, using
the filtered SIV1-provided data. The inverted source model is plot-
ted in Fig. 12. The misfit reduction is 93.1 per cent, which is in good
agreement with 93.4 per cent as we do not expect to overfit the data.
The inverted source model is nearly identical to that of Fig. 6, which
is inverted from our synthetic seismograms, and all the key features
of the SIV model are recovered, including the slip-rate functions.
The total moment of this model is 1.17 × 1019N · m (Mw = 6.64)
and the negative/positive slip moment ratio is 0.53 per cent, even
less than the 0.63 per cent for the Fig. 6 model. Regularization
strength is chosen by an L-curve analysis (see Fig. 13).

A comparison of Fig. 12 to total slip from other SIV EX1 inver-
sion models from the SIV database is shown in Fig. 14. All models
used the same data, but the model parametrizations and inversion
techniques were different (Gallovič & Zahradnı́k 2012; Razafind-
rakoto & Mai 2014). We define the misfit as the sum of the absolute
differences between the inverted source model and SIV1, normal-
ized by the sum of the total slip of SIV1. Our model yields the
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1148 W. Fan, P. M. Shearer and P. Gerstoft

Figure 8. Wavefront snapshots of (a) unfiltered SIV1 model, (b) filtered SIV1 model, (c) least squares (no regularization) and (d) preferred inverted source
model with regularization.

smallest misfit, but of course we had the advantage of knowing the
true model while optimizing our inversion approach.

5.1.2 Gaussian noise

We simulate both low-noise and high-noise problems by adding to
the data white Gaussian noise with zero mean and a standard devi-
ation set to be 1 and 10 per cent, respectively of the peak amplitude
of 32 cm s−1 of all observed data. Note that 39 per cent (47/120) of
the recordings have absolute peak values less than 3.2 cm s−1, so the

high-noise model severely affects these records. For the 1 per cent
peak amplitude case, SNR1 = 2.3 and SNR10 = 0.023 for the
10 per cent case.

Inversion results are plotted in Figs 15 and 16. Regularization
strength and misfit reduction are shown in Table 1. For the SNR1

case, we recover the starting model almost as well as the zero-noise
case, while achieving a 81.8 per cent misfit reduction (as much as
can be expected given the noise level is 18.8 per cent). We found
that an increase in regularization strength of 10× was required to
achieve this level of misfit.
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Earthquake rupture inversion 1149

Figure 9. Arrival times of the peak of the slip-rate function with respect to
distance from the hypocentre along AA′ on the fault plane. The star shows
the zero location of the horizontal axis. Rupture velocity can be inferred
from the inverse slope of the time versus distance line. Shaded zone indicate
90 per cent-peak zone of the inverted slip-rate functions.

In contrast, the SNR10 noise case introduces considerable error
into the inverted source model (see Fig. 16). Following eqs (15) and
(12), the strong regularization is 100 times stronger than the SNR1

case. Although the inverted source model in this case has smeared
and small total slip due to the strong regularization (Fig. 16a),
the rupture direction and slip history is recovered reasonably well
(Fig. 16b). The misfit reduction is 12.6 per cent, which is in good
agreement with the noise level, 88.6 per cent. The slip-rate functions
are recovered with small oscillations (Figs 16c and d). Synthetic
seismograms generated by the inverted source model (Figs 16e–h)
fit the noise-free observations data fairly well. Thus the inversion
method is robust with respect to even strong Gaussian noise, at least
when 40 stations are available to average out its effects.

However, noise may not be Gaussian and it should be recog-
nized that least-squares methods can be severely damaged by non-
Gaussian noise (e.g. spikes, clipped data, or other outliers). In these
cases, more robust results should be obtainable by using ℓ1, Huber
penalty function or other norms, but we have not yet experimented
with these approaches.

5.1.3 Time-shift errors

Another possible source of noise is time-shift errors in the Green’s
functions caused by unmodelled velocity structure or station timing
errors. To simulate this, we randomly time-shift the data, using the
same shift for all three components of a station. This time-shift is
assumed Gaussian, N (0, σ 2

s ). When the standard deviation σ s ≥ 1,
the inversion scheme (eq. 15) fails to recover a reasonable model
(see Fig. 17). This is because when the time-shifts are too large, the
resulting phase lags in the frequency domain are difficult to resolve.
In this case, regularization alone does not work to recover the true
model.

Figure 10. Inverted slip from different subfault sizes. (a) with subfault size
as 2 km × 2 km with misfit reduction 99.1 per cent; (b) 1 km × 1 km, as Fig. 6
with misfit reduction 99.2 per cent; (c) 0.5 km × 0.5 km with misfit reduction
99.2 per cent, the finest subfault size as the Green’s function calculation.

In real slip inversion problems, static time-shifts are often applied
to improve the phase alignment between data and synthetics (e.g.
Allmann & Shearer 2007). For our problem with random time-
shifts, we find that an iterative approach to estimating these time-
shifts is effective. We invert for a starting model from the data
assuming all the time-shift terms are zero. We then estimate the
time-shift for each station by cross-correlating data and synthetics
and apply these empirical time-shifts to the data before inverting
again for the slip model. We repeat this until the process converges
to a stable slip model and set of time-shifts. For σ s = 1, complete
convergence is achieved after 15 iterations (see Fig. 18), although
the bulk of the model improvement occurs in the first few iterations.
Initially, the regularization parameters are set to be α2 = 6.4 × 10−6

and λ2 = 4 × 10−8, and then set to be the same as the preferred
regularization (Fig. 6) during subsequent iterations.

We find that this iterative approach succeeds for our synthetic
problem even for quite large σ s (e.g. σ s = 5 s, much longer than
most data pulse widths ∼2 s). However, it should be noted that the
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1150 W. Fan, P. M. Shearer and P. Gerstoft

Figure 11. Inverted slip for a sparse rupture model in which only two
subfaults ruptured. #1 ruptured once and #2 ruptured twice. The rupture
locations and times are well resolved with compressive sensing. Black lines
show the true model, red lines are inverted slip-rate functions of compressive
sensing and blue lines are inverted slip-rate of damping and smoothing.
(a) Inverted slip of compressive sensing, that is eq. (14); (b) Inverted slip
with damping and smoothing regularization, that is eq. (15). These models
yield data variation reductions of 94.98 per cent for compressive sensing
and 94.97 per cent for damping and smoothing. The horizontal dashed line
indicates the zero axis.

only source of error is the time-shifts; once these are determined,
the slip inversion itself is exactly the same as before. Of course, in
reality 3-D velocity structure will distort the shape and amplitude
of the Green’s functions and may also cause correlated time-shifts
among nearby stations rather than the independent random time-
shifts assumed here. However, in some cases timing errors may be
caused mainly by unmodelled local velocity structure below each
station, in which case the shifts may be largely uncorrelated and
the iterative empirical approach described here may be effective
in recovering a relatively robust rupture image.

Figure 12. Inverted rupture model by preferred regularization with SIV1
provided data (see text), (a) total slip; (b) slip history; (c) slip-rate functions
at given points; (d) power spectrum of the slip-rate functions at given points.
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Earthquake rupture inversion 1151

Figure 13. Regularization strength trade-off (‘L’) curves for inversion with SIV1 provided data (see text). Panel layout is similar to Fig. 5, only the grey dashed
line represents 7 per cent misfit level.
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1152 W. Fan, P. M. Shearer and P. Gerstoft

Figure 14. Inverted rupture models by different groups. Misfit is the sum of absolute differences between the inverted model and SIV1 that are normalized
by the sum of total slip of SIV1. (a) Parametrization of the fault plane of different groups; (b) filtered SIV1 model; (c) inverted ruptured model by preferred
regularization with SIV1 provided data (Fig. 12); (d)–(h) inverted slips by other groups (Gallovič & Zahradnı́k 2012; Razafindrakoto & Mai 2014). (d), (f) and
(h) are inverted slips of Razafindrakoto & Mai (2014) using a triangular source–time function, or a Yoffe function with acceleration time Tacc of 0.1 and 0.3 s,
respectively.

5.2 Unknown fault geometry

5.2.1 Unknown dip

The inversions so far have used exactly the same fault geometry as
the true model. However, the exact position of the fault is often im-
precisely known, so it is important to explore the erroneous effects

on the slip model of using an inaccurate fault geometry. One of the
least well-constrained fault parameters is the fault dip, so this is the
parameter we focus on here. We assume the fault surface trace (i.e.
position and strike) is the same as the true model, but vary the dip
of the assumed fault plane. Deviations of ±10◦ from the true dip
of 80◦ are tested, δ1 = 70◦ and δ2 = 90◦. In each case, we compute
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Earthquake rupture inversion 1153

Figure 15. Inverted source model from data with Gaussian noise (SNR1). (a) Total slip; (b) slip history; (c) slip-rate function at hypocentre; (d) spectrum of
the slip-rate function; (e) seismograms with the largest peak amplitude; (f) spectra of the seismograms (e); (g) seismogram with the median peak amplitude;
(h) spectra of the seismograms (g).
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1154 W. Fan, P. M. Shearer and P. Gerstoft

Figure 16. Inverted source model from data with Gaussian noise (SNR10). (a) Total slip; (b) slip history; (c) slip-rate function at hypocentre; (d) spectrum
of the slip-rate function; (e) seismograms with the largest peak amplitude; (f) spectra of the seismograms from (e); (g) seismogram with the median peak
amplitude; (h) spectra of the seismograms from (g).
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Earthquake rupture inversion 1155

Figure 17. Inverted source model from data with time-shift errors (σ s = 1 s), solved by regularization without iteration. (a) Total slip; (b) slip history; (c)
slip-rate function at hypocentre; (d) spectrum of the slip-rate function; (e) seismograms with the largest peak amplitude; (f) spectra of the seismograms from
(e); (g) seismogram with the median peak amplitude; (h) spectra of the seismograms from (g).
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Figure 18. Inverted source model from data with time-shift errors (σ s = 1 s) after 15 iterations to correct for time-shift errors. (a) Total slip; (b) slip history;
(c) slip-rate function at hypocentre; (d) spectrum of the slip-rate function; (e) seismograms with the largest peak amplitude; (f) spectra of the seismograms
from (e); (g) seismogram with the median peak amplitude; (h) spectra of the seismograms from (g).
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Earthquake rupture inversion 1157

Figure 19. Inverted source models with assumed fault dips. (a) Assumed fault geometry; (b) total slip and slip history for δ1 = 70◦ with the same regularization
strength as the preferred model. (c) Total slip and slip history for δ1 = 70◦ with strong regularization strength. (d) Total slip and slip history for δ2 = 90◦ with
the same regularization strength as the preferred model. (e) Total slip and slip history for δ2 = 90◦ with strong regularization strength.
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Figure 20. Inverted source models with assumed rakes, true rake λ = 180◦. Panels (a)–(d), assumed rake λ1 = 170◦, (a) and (b) show total slip and slip history
with the same regularization strength as the preferred model. Panels (c) and (d) show total slip and slip history with strong regularization strength. Panels
(e)–(h) assumed rake λ2 = 190◦; (e) and (f) show total slip and slip history with the same regularization strength as the preferred model. Panels (g) and (h)
show total slip and slip history with strong regularization strength.

Green’s functions for the erroneous fault location for the inversion,
while using data generated using the true 80◦ dipping fault.

For unchanged regularization, using the wrong fault dip severely
affects our solutions, generally having much worse effects than the
random Gaussian noise or time-shift errors. The models obtained
using the same relatively weak regularization as before are quite
heterogeneous and bear little resemblance to the true models, par-
ticularly for the slip time histories (see Fig. 19), while achieving
relatively poor data fits of 88.7 and 75.1 per cent misfit reduction
for the 70◦ and 90◦ models, respectively (Table 1). For the same
σ 2

m , taking the unknown fault geometry into account, σ 2 will in-
crease, which will lead to an increase in α2 and λ2 (eqs 9 and 12).
Increasing the regularization strength can produce more plausible
appearing models and slip histories. Of course, for real problems,
where we do not know the true model, it would be difficult to deter-
mine the optimal level of regularization.

A likely reason that errors in the assumed fault dip have such
a large impact is that they introduce correlated errors, that is they
cause arrivals to be systematically early on one side of the fault
compared to the other. This same kind of error may also occur from
unmodelled large-scale velocity variations, for example if velocities
were faster on one side of the fault and this was not taken into
account (e.g. Gallovič et al. 2010). Another more serious problem
is the rotation of the radiation pattern from its correct orientation
causing the amplitude and even the polarity of some arrivals to
be incorrect. To address these difficulties it might make sense to
include the fault orientation as part of the inversion. However, this
would make the problem non-linear and we not yet experimented
with the feasibility of this approach.

5.2.2 Unknown rake

Rake can be taken as an unknown parameter in source inversion (e.g.
Ji et al. 2002). To stabilize the inversion, it can also be specified

for each subfault (e.g. Yue et al. 2012). Until now we have used the
true rake for all our inversions. To analyse the errors introduced by
possible inaccurately known rake, we perform inversions with two
specified rakes (±10◦ of the true one), while dip is fixed to be the
same as SIV1 (see Fig. 20).

For unchanged regularization, the wrong fault rake strongly af-
fects our solutions. The effects are similar to those from using the
wrong dip. The models obtained using the same relatively weak
regularization as before have large negative slip areas, and no clear
pattern can be observed from slip-time histories (see Fig. 19), while
fitting data with 94.8 and 94.0 per cent misfit reduction for the 170◦

and 190◦ models, respectively (Table 1). Similar to the unknown
dip situation, the wrong rake will lead to an increase in α2 and
λ2 (eqs 9 and 12). Increasing the regularization strength can pro-
duce more plausible appearing models and slip histories, but with
poor data fit (Table 1). It is difficult to decide on the appropriate
regularization strength based on the L-curve for the unknown fault
geometry cases, because subjective evaluation is needed to pick the
right model besides considering the data misfit and model size.

6 C O N C LU S I O N S

We have developed a frequency-based source-inversion method that
makes fewer assumptions than most current methods and applied
it to SIV Exercise 1. We find that various physically plausible
regularizations obtain robust inversion results. We spatially over-
parametrize the model (1 km × 1 km) to avoid errors from too
few unknowns. The linear relationship between slip-rate spectra
and recorded spectra guarantees finding the global misfit minimum
when convex optimization is applied to solve the inversion. Many
details of the rupture process can be recovered reasonably well by
the method, including rupture velocity and slip-rate functions.

Advantages of the frequency domain approach compared to time
domain slip inversion algorithms are: (1) it is fundamentally linear
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and does not require any limits on the rupture velocity or duration
of the slip function. Thus in principle, it should be able to resolve
complicated ruptures, including variable rupture speeds, and even
reversals of rupture direction, although these complexities were not
analysed. (2) Because it operates on each frequency separately, the
complexity is relatively small and the algorithm is computationally
efficient enough to permit a very fine spatial sampling of the fault
and testing different regularizations.

The main disadvantage of the frequency domain method is that
it is less direct than the time domain methods, which makes it more
difficult to impose physically plausible constraints on slip direction
and timing. In particular, we do not apply a positivity constraint on
fault slip or prohibit slip at times earlier than the P-wave arrival from
the hypocentre. However, static corrections, as shown in Section
5.1.3. can obtain coherent solutions around the hypocentre near
the origin time. For the synthetic examples, regularization reduces
negative slip and acausal slip to almost negligible amplitude and
physically plausible constrains are not needed. However, physically
unrealistic slip may well prove a bigger problem for inversions of
real earthquakes.

Aiming to provide an improved understanding of the resolution
limits and uncertainties in kinematic source inversions, we explored
the robustness of the method with respect to noise, timing errors
and unknown fault geometry. Random Gaussian noise does not
have a severe effect on the inverted source model, provided enough
stations are available to effectively average it out. Random time-
shifts caused by station timing errors or poorly known Green’s
functions can strongly damage the inversion, but can effectively be
removed using an iterative approach that involves cross-correlation
of data and synthetics, provided the time-shifts are random and
uncorrelated. A more severe problem is uncertainties in the assumed
fault geometry. Errors in the fault dip and rake angle of 10◦ requires
stronger regularization strength to produce more reasonable models,
which are still relatively poorly resolved.
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