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Abstract—For a sound field observed on a sensor array, perfor-
mance of conventional high-resolution adaptive beamformers is affected
dramatically in the presence of coherent multipath signals, but the
directions-of-arrival (DOAs) and power levels of these arrivals can be
resolved with compressed sensing (CS). When the number of multipath
signals is sufficiently small, a CS approach can be used by formulating the
problem as a sparse signal recovery problem. CS overcomes the difficulty
of resolving coherent arrivals at an array by directly processing the sensor
outputs without first estimating a sensor covariance matrix. CS is com-
pared to the adaptive minimum-variance-distortionless-response (MVDR)
spatial processor with spatial smoothing. Though spatial smoothing
produces improved results by preprocessing the sensor array covariance
matrix to decorrelate the coherent multipath components, it reduces
the effective aperture of the array and hence reduces the resolution. An
empirical study with a uniform linear array (ULA) demonstrates that CS
outperforms MVDR beamformer with spatial smoothing in terms of spatial
resolution and bias and variance of DOA and power estimates. Analysis of
the shallow-water HF97 ocean acoustic experimental data shows that CS
is able to recover the DOAs and power levels of the multipath signals with
superior resolution compared to MVDR with spatial smoothing.

Index Terms—Adaptive filter, beamforming, coherence,
compressed sensing (CS), direction of arrival (DOA), multipath,
sparse Bayesian learning (SBL), spatial smoothing.

I. INTRODUCTION

T HE theory of compressed sensing (CS) has received growing at-
tention due to its remarkable ability to reconstruct a sparse or

compressible signal represented by an overcomplete set of basis func-
tions from the observations or measurements with high probability
[1]–[4]. CS has been applied successfully in medical imaging [5], [6],
channel estimation [7], [8], radar imaging [9], [10], image processing
[11], [12], audio processing [13], [14], geophysics and remote sens-
ing [15]–[17], broadband underwater acoustic source localization [18],
control systems [19], and pattern recognition and machine learning
[20], [21], to name a few.

Among the applications of CS, estimating the directions-of-arrival
(DOAs) of multiple signals using an array of sensors is of particular
interest because if the number of signals is sufficiently small, we can
represent the problem of estimating the DOAs as a sparse signal re-
covery problem in which the theory of CS is directly applicable. For
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the single snapshot case, matching pursuit methods [22]–[24], the basis
pursuit method [25], [26], the iterative reweighted l1 method [27], itera-
tive reweighted l2 methods [28], [29], and Bayesian methods [30]–[33]
can be used to estimate the DOAs of multiple signals. For the multi-
ple snapshot case, matching pursuit methods [34]–[36], basis pursuit
methods [26], [35]–[37], the iterative reweighted l1 method [38], the
iterative reweighted l2 method [35], and Bayesian methods [39], [40]
can be used to solve the problem of estimating DOAs using CS theory.

The DOA estimation application of CS theory has been investigated
in multiple efforts. This particular application of CS theory is especially
attractive due to its higher resolution, robustness to noise, and good
performance with a limited number of snapshots. Malioutov et al.
[41] use the l1 -norm penalty for DOA estimation of multiple signals.
Hyder and Mahata [42] use the l0 -norm penalty to enforce sparsity in
the spatial domain to identify the DOAs of signals. In [40], Bayesian
compressive sensing strategies based on the sparse Bayesian learning
principle [30] have been utilized for estimating the DOAs. Tan and
Nehorai [43] use coprime arrays and matching pursuit methods to locate
the DOAs of signals. A greedy block coordinate descent algorithm
exploiting spatial sparsity also has been used in [44] for the DOA
estimation of multiple signals.

The most interesting observation in the aforementioned methods is
that CS estimates the DOAs by directly processing the sensor outputs
without first estimating a sensor covariance matrix. This important ob-
servation motivates the application of CS in estimating the DOAs of
coherent multipath signals of a source (i.e., the multiple propagation
paths from a single source have a deterministic relationship, thus in
the absence of noise, the multipath arrivals will have a constant phase
difference across snapshots). Coherent multipath propagation can be
present in radar and sonar environments [45], deliberately induced
coherent interferences by smart jammers [46], and cellular communi-
cation systems [47], [48].

The performance of CS in resolving the DOAs of
coherent multipath signals is in contrast to that of conventional high-
resolution adaptive spatial processors whose performance degrades
dramatically when estimating the DOAs and power levels of signals
that are coherent. In the minimum-variance-distortionless-response
(MVDR) adaptive beamformer, the sensor outputs are combined by
a weight vector such that the desired signal can pass with minimum
distortion, while rejecting other interfering signals [49, Ch. 6, 7, and
9]. But in the presence of coherent multipath propagation, the MVDR
beamformer not only fails to form deep nulls in the direction
of coherent interferences, but also the desired signal in a
particular direction can be partially or fully canceled in the out-
put of the beamformer. To overcome the difficulty in estimating DOAs
and power levels in a multipath scenario for a uniform linear array
(ULA), the forward–backward spatial smoothing (FBSS) technique
was proposed [50]–[52]. FBSS progressively decorrelates the multipath
components at a rate that depends on the spacing and arrival directions
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of the coherent signals, thus providing less distortion in the coherent
signal direction estimates and more rejection of them in the adaptive
beamformer output. However, FBSS reduces the effective aperture of
the sensor array, essentially reducing the resolution that would have
been achieved in an incoherent scenario where no spatial smoothing
is necessary and the processing makes use of the full aperture of
the array.

Our objective in this paper is to experimentally demonstrate the re-
covery performance of the DOAs using CS and compare it with the
MVDR beamformer with FBSS. For our CS-based simulations and ex-
perimental data analysis, we use the sparse Bayesian learning based rel-
evance vector machine (SBL-RVM) algorithm for multiple snapshots
or multiple measurement vectors (MMVs) [39] which was originally
proposed for the single snapshot or single measurement vector (SMV)
case [30], [53]. Our findings are as follows.

1) CS can resolve successfully the DOAs of coherent multipath
signals since it processes the data directly without first estimating
the sensor covariance matrix. This is in contrast to the MVDR
beamformer whose performance is affected dramatically due to
coherent multipath propagation.

2) CS is able to recover the DOAs and power levels of the multipath
signals with higher resolution than MVDR with spatial smooth-
ing when multiple snapshots are processed simultaneously.

The rest of the paper is organized as follows. In Section II, we
describe the signal model and assumptions made on the statistics of
signal and noise. In Section III, we formulate the multipath DOA
estimation problem as a sparse signal recovery problem and briefly
describe how it can be solved by using the SBL-RVM algorithm. In
Section IV, extensive simulation study compares and contrasts MVDR
with FBSS and SBL-RVM in resolving multipath signals with specific
importance given to the results for bias and variance of the DOAs and
power estimates of the multipath signals. In Section V, we demonstrate
the high-resolution capability of SBL-RVM for estimating the DOAs
and power levels of the multipath signals with data from the shallow-
water HF97 ocean acoustic experiment. Last, we draw conclusions in
Section VI.

II. SIGNAL MODEL AND ASSUMPTIONS

We consider a ULA consisting of N identical sensors and receiving
far-field plane wave signals from K multipath signals generated from
a single source, i.e., there are K multipath signals in total including
the source. We assume that the N sensors are located on the z-axis
with uniform spacing equal to d and the center of the array is located at
the origin of the coordinate system. Hence, the locations of the sensors
along the z-axis are

zn =
(
n − N − 1

2

)
d, n = 0, 1, . . . , N − 1. (1)

An angular spread [0◦, 180◦] is also assumed with θ = 0◦ denoting the
positive z-axis direction. Hence, θ = 0◦ and θ = 180◦ correspond to
the endfire directions and θ = 90◦ corresponds to the broadside direc-
tion. We assume that we have preprocessed the sensor array data by
taking fast Fourier transforms (FFTs) and hence the source signal and
its multipath components are narrowband. Let λ denote the wavelength
corresponding to the frequency of the source. These K multipath sig-
nals arrive at the array from directions θ1 , θ2 , . . . , θK . At any instant
j, these K signals x1j , x2j , . . . , xK j are complex multiples of one of
them at z = 0—say, the first—and hence

xkj = ck x1j , k = 1, 2, . . . , K (2)

where ck represents the complex attenuation of the kth signal with
respect to the first signal x1j and c1 = 1. Using complex signal rep-
resentation, the measurement at the array at the jth instant can be
represented by

t·j = Ax·j + n·j (3)

where t·j � [t1j , t2j , . . . , tN j ]
T is the N × 1 array output data vector

and

x·j = [x1j , x2j , . . . , xK j ]
T (4)

n·j = [n1j , n2j , . . . , nN j ]
T (5)

and

A = [a (θ1 ) , a (θ2 ) , . . . , a (θK )] . (6)

In (6), a (θk ) represents the direction vector associated with the kth
multipath and given by

a (θk ) =
1√
N

[
e−j

N −1
2 ψ k , e−j

N −3
2 ψ k , . . . , ej

N −1
2 ψ k

]T
(7)

where ψk = 2π (d) / (λ) cos θk and j is the square root of minus one.
Here (·)T denotes the transpose. Note that the direction vectors are l2
normalized, i.e., aH (θk ) a (θk ) = 1 for k = 1, 2, . . . , K where (·)H
denotes the complex conjugate transpose. The N × 1 vector n·j is the
additive noise at the array at the jth instant.

After preprocessing the sensor array data with FFTs, the source
signal [and hence its multipath components by (2)] is assumed to
be a zero-mean, stationary complex Gaussian random process [54].
Furthermore, the source (and hence its multipath components) and
the additive noise are assumed to be independent of each other. Each
noise vector also is assumed to be a zero-mean, stationary complex
Gaussian random process. Furthermore, it is assumed that the noises are
uncorrelated sensor to sensor and across measurements with common
variance σ2 .

III. COHERENT MULTIPATH DOA ESTIMATION

USING THE CS METHOD

To cast the DOA estimation problem in a CS framework, the estima-
tion of the multipath DOAs must be formulated as a problem of sparse
signal recovery in an overcomplete matrix. We first describe the CS
method and then show its performance in an example highlighting the
impact of coherence between multipath signals.

A. CS Method

We discretize the angular spread [0◦, 180◦] of the ULA to result inM
steering vectors having the same formulation as the direction vectors
given in (7). We construct theN ×M matrix Φ which contains theM
steering vectors as its columns. Note that matrix A in (6) contains the
direction vectors of the multipath signals whereas matrix Φ contains
the steering vectors of the DOAs where a multipath may or may not be
present. We construct the M × L matrix W where any particular row
contains the complex amplitudes of a multipath corresponding to the
steering vector in Φ if a multipath is present in that steering direction
or zero otherwise. We make the further assumption that a very few
number of multipath signals are present, i.e., W is row sparse. We
represent the array output vectors t·j as the columns of a matrix T
and the noise vectors n·j as the columns of a matrix EE . Assuming L
snapshots, the set of equations in (3), where j = 1, 2, . . . , L, can be
represented equivalently as

T = ΦW + EE . (8)
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We note that in (8), the objective is to recover the row sparse matrix
W given the observation matrix T and the overcomplete matrix Φ, giv-
ing rise to a noisy sparse signal recovery problem with MMVs. Several
deterministic CS methods [35]–[37], [55]–[57] have been proposed
in literature which can be used to estimate the DOAs of the multi-
path signals. But a few major issues are involved in such deterministic
methods.

1) A good estimation of the regularization parameters (see the ref-
erences for details) balancing sparsity and error is a difficult task
in practice. Often computationally expensive cross-validation
(CV) methods [58]–[60] or Markov chain Monte Carlo (MCMC)
methods [61], [62] are employed to tackle this problem. How-
ever, since these methods are not based on a generalized princi-
ple, efficient estimation of the regularization parameters is dif-
ficult. A large regularization parameter may give a more sparse
and less representative solution of the data resulting in the under-
estimation of the number of multipath signals whereas a small
regularization parameter may result in a less sparse solution giv-
ing a good fitting to the noisy data resulting in the overestimation
of the number of multipath signals.

2) Since the deterministic methods use a fixed prior for
inducing sparsity (see the references for details), a good
selection of the fixed prior also is a difficult task in
practice. If a moderately sparse prior is chosen as used
in basis pursuit methods [35]–[37], then the solution is
convergent globally, but the solution may not be suffi-
ciently sparse, whereas, if a highly sparse prior is cho-
sen as used in the iterative reweighted l2 method [35],
then the solution may achieve the desired sparseness, but
there will be several local optima to which the solution may
converge.

An algorithm was proposed in [39] for solving the simultaneous
sparse signal recovery problem and is known as the SBL-RVM algo-
rithm. SBL-RVM overcomes the difficulties of estimating the regular-
ization parameters and the choice of the fixed prior. This is a fully
automated relevance determination algorithm based on the Bayesian
evidence maximization framework originally introduced by MacKay
[63]. The distinctive features of this algorithm are as follows.

1) The use of an empirical prior dependent on a set of unknown hy-
perparameters which are estimated from the data. This increases
the chances of SBL-RVM converging to the global optimum
without getting stuck at one of the local minima.

2) The parameters (σ2 and γ) which control the balance between
sparsity and modeling error in SBL-RVM also are estimated
from the data.

We use the SBL-RVM algorithm proposed in [39] to solve (8). In
[39], the algorithm was derived for the real data case. Here we extend
the real version of SBL-RVM to the complex data case. This can be
done with slight modifications. We describe the major steps involved
in this algorithm and refer the reader to [39] for the theoretical details.

We assume p (T|W; σ2 ) to be complex Gaussian [54] with noise
variance σ2 which is unknown. Thus, for each t·j ,w·j pair, we have
the likelihood of the array output as

p
(
t·j |w·j ; σ2) =

(
πσ2)−N exp

(
− 1
σ2 ‖t·j − Φw·j ‖2

2

)
(9)

and hence

p
(
T|W; σ2) =

L∏
j=1

p
(
t·j |w·j ; σ2) . (10)

We assign to the ith row of W an L-dimensional complex Gaussian
prior

p (wi ·; γi ) � CN (0; γiI) (11)

where γi is an unknown variance parameter. By combining all the row
priors, we arrive at the full weight prior given by

p (W; γ) =
M∏
i=1

p (wi ·; γi ) (12)

whose form is parameterized by the hyperparameter vector γ =
[γ1 , γ2 , . . . , γM ]T ∈ RM

+ . Combining likelihood and prior, the pos-
terior density of the jth column of W then becomes

p(w·j |t·j ; γ, σ2 ) =
p(w·j , t·j ; γ, σ2 )∫
p(w·j , t·j ; γ, σ2 )dw·j

= CN (μ·j ,Σ) (13)

with covariance and mean given, respectively, by

Σ = Γ − ΓΦH Σ−1
t ΦΓ ∀j = 1, . . . , L

M = [μ·1 , . . . ,μ·L ] = ΓΦH Σ−1
t T (14)

where Γ � diag (γ) and Σt � σ2I + ΦΓΦH . Hence, row
sparsity is achieved whenever a γi is equal to zero ensur-
ing that the posterior mean of the ith row, μi ·, is zero as
desired.

We then adopt an empirical Bayesian strategy treating the unknown
weights W as nuisance parameters and integrate them out of the inte-
grand in (15). This results in the following marginal likelihood which
is a function of γ and σ2 :

L (
γ, σ2) � −log

∫
p

(
T|W; σ2) p (W; γ) dW

= −log p (T; γ) ∝ Llog|Σt | +
L∑
j=1

tH·j Σ−1
t t·j . (15)

The factor −log (·) is added to simplify calculations. The marginal
likelihood in (15) also is referred to as the evidence for the parameters
σ2 and γ in [63] and its maximization is known as the evidence max-
imization. The marginal likelihood in (15) can be maximized directly
by taking derivatives with respect to the parameters γi and σ2 [39].
We, however, use the expectation–maximization (EM) algorithm to
maximize (15) by treating the weights W as the hidden variables and
maximize EW |T ;γ ,σ 2 [log p(T|W; σ2 )p(W; γ)]. For γ , ignoring the
terms in the logarithm independent thereof, we equivalently maximize

EW |T ;γ ,σ 2 [log p (W; γ)] (16)

which through differentiation gives the update equations for γi as [39]

γ
(new)
i =

1
L
‖ μi · ‖2

2 + Σii ∀i = 1, . . . ,M. (17)

Following the corresponding procedure for the noise levelσ2 , we equiv-
alently maximize

EW |T ;γ ,σ 2
[
log p

(
T|W; σ2)] (18)

which gives [64]

(
σ2)(new) =

1
L
‖ T − ΦM ‖2

F + (σ2 )(old)
(
M − ∑M

i=1
Σ i i
γ i

)
N

.

(19)
Equations (14), (17), and (19) are the iterative equations for
the SBL-RVM. The algorithm is summarized in Table I. The
EM procedure provided better performance in recovery of the
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TABLE I
SUMMARY OF THE SBL-RVM ALGORITHM

Given the observation data T and the overcomplete matrix Φ containing the steering
vectors, SBL-RVM can be summarized as follows.

(i) Initialize γ and σ 2 .
(ii) Compute the posterior moments Σ and M using (14).
(iii) Update γ using (17) and σ 2 using (19).
(iv) Iterate (ii) and (iii) until convergence. Declare the algorithm to be converged

when the change in γ is less than some predefined threshold.
(v) After convergence, the value of M is the estimate of the desired weight matrix

W . SBL-RVM forces the entries in the rows of W to be zero in which a
multipath component is not present and consequently choosing the most
relevant columns in the matrix Φ which denote the DOAs of the multipath
signals.

weights W than direct differentiation of (15) for our mul-
tipath DOA resolution application. For an analysis of the
complexity and convergence properties of the SBL-RVM algorithm,
see [39].

SBL-RVM directly performs processing of the data T without any
sensor covariance matrix estimation and hence overcomes the diffi-
culty of coherent arrivals in the case of multipath signals which is the
primary source of performance degradation for adaptive beamformers
such as MVDR. In [65], it was shown empirically that SBL-RVM is in-
dependent of correlation among the signals. This feature of SBL-RVM
makes it highly attractive for use in applications that involve estimating
DOAs and power levels of multipath signals. Though we have consid-
ered a linear array for our simulations (Section IV) and experimental
data analysis (Section V), SBL-RVM is applicable to arrays of arbitrary
geometry.

SBL-RVM can estimate the DOAs of the multipath signals with a
single snapshot. Performance of CS in the DOA estimation problem
with a single snapshot already has been evaluated [55]–[57]. In con-
trast, DOA estimation in MVDR with FBSS with a single snapshot,
in general, is difficult. This feature of CS makes it very attractive in
applications where a limited number of snapshots are available. Per-
formance of SBL-RVM improves as more snapshots are available. CS
methods for the multiple snapshot case have better performance than
those of the single snapshot case since considering multiple snapshots
altogether significantly decreases the error in DOA estimates which is
due to the effect of noise (see the references for the CS methods for the
multiple snapshot case for more details).

The most salient feature of CS is its higher resolution as compared to
MVDR with FBSS. Theoretical results for the probability of resolution
of CS have been discussed in [55] whereas the analysis of the same
for the MVDR beamformer is done in [66]. Our analysis, however, is
empirical (see Section IV). For our analysis, we define a resolution
criterion as done in [67]. Let θ1 and θ2 denote the true angles of
arrivals of two multipath signals and let θ′ = (θ1 + θ2 ) /2 denote the
mid-angle between them. Let P̂ (θ1 ) , P̂ (θ2 ), and P̂ (θ′) denote the
estimated power levels at the angles θ1 , θ2 , and θ′ respectively. We
define a resolution event as

ξ (θ1 , θ2 ) � 1
2

{
P̂ (θ1 ) + P̂ (θ2 )

}
− P̂ (θ′) . (20)

We say that two multipath signals are resolvable if the average of the
power levels at the angles of arrivals of the two multipath signals is
greater than the power level at the mid-angle and irresolvable otherwise.
Hence, the probability of resolution can be written as

Pres = Pr {ξ > 0} . (21)

SBL-RVM suffers from grid bias due to discretization of angular
spread. If the discretization of the angular spread is too coarse, then
grid bias will be present in SBL-RVM DOA estimation due to the
fact that the true scenario DOAs will not be exactly aligned with the
steering vectors in the overcomplete dictionary Φ. This is known as
basis mismatch in CS literature. As a result, the weight matrix W
will not be sparse in the assumed basis Φ, rather it is sparse in the
true underlying basis Φ′. The effect of grid bias may result in large
error in the recovery of sparse W. The effect of grid bias or basis
mismatch on the recovery performance of CS already has been stud-
ied in [68] and [69]. At the other extreme, if the discretization of
the angular spread is too fine, then adjacent steering vectors
in the overcomplete dictionary Φ will be heavily correlated and the
spatial spectral power will spread over the adjacent steering vectors
which may result in grid bias [70]. The grid bias is expected to appear
in any CS based DOA estimation approach that involves a discretization
of the continuous angular domain.

Grid refinement methods [41], [70], [71] have been proposed in
the CS literature to mitigate the effect of grid bias. To get rid of the
problems due to grid bias altogether, off-the-grid CS methods [72], [73]
also have been proposed. We, however, restrict ourselves to on-grid CS
and assume that the DOAs are aligned with the steering vectors for our
simulations (Section IV) and experimental data analysis (Section V).

SBL-RVM suffers from inherent bias [71] due to the inaccuracy in
the estimation of the noise level σ2 and the variance parameter γi .
The noise parameter σ2 and the variance parameter γi determine the
tradeoff between sparsity in the solution and fitting of the model to the
noisy data [74]. Inaccuracy in the estimation of these two parameters
may result in the overestimation or underestimation of the number of
signals.

It is well known that CS underestimates the power levels due to
the regularization parameter resulting in a large bias in the power
estimates. SBL-RVM underestimates the power levels mainly due to
the noise parameter σ2 and the variance parameter γi both of which
determine the balance bewteen sparsity and model fitting. Hence a least
squares (LS) estimate of the power levels of the multipath signals can
be obtained [35], [75]–[77] after the DOAs have been identified in
SBL-RVM.

B. Demonstration of DOA and Power Level Estimation

As a demonstration of the high-resolution capability of SBL-
RVM for estimating multipath DOAs and power levels, we
give an example in Fig. 1. We consider three multipath sig-
nals of equal power impinging on an array of 12 sensors
(i.e., N = 12) with half-wavelength spacing between the array
elements from directions θ1 = 45◦, θ2 = 60◦, and θ3 = 67◦. The
power of the kth multipath is defined as σ2

s � E [|xkj |2 ]. In this
example, the power of each multipath is taken to be −40 dB, i.e.,
10 log10 (σ2

s ) = −40. For each individual multipath at each sensor
the input signal-to-noise ratio (SNR) is defined to be

SNR = 10 log10

(
σ2
s

σ2

)
(22)

where σ2 is the variance of the ith sensor noise sequence defined
as σ2 � E [|nij |2 ]. We take SNR = 25 dB in this example. We
consider a total of 50 snapshots, i.e., L = 50. To plot the spa-
tial power spectrum, a 0.2◦ discretization on the angular spread
[0◦, 180◦] is taken.

For SBL-RVM, we first estimated the spatial power spectrum and
rejected all the peaks in the power spectrum whose power levels were
more than 15 dB below the highest peak and then reestimated the power
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Fig. 1. Demonstration of estimating DOAs and power levels with SBL-RVM.
Signal arrivals of equal power levels (−40 dB) at angles of θ1 = 45◦, θ2 = 60◦,
and θ3 = 67◦ and SNR = 25 dB are considered. For comparison, we have
included the DOA and power estimates for MVDR, MVDR with FBSS, and
CBF. (a) Coherent signals (multipath signals). (b) Uncorrelated signals.

levels of the remaining peaks by using LS. The total number of these
remaining peaks is selected as the total number of multipath signals in
SBL-RVM.

For comparison, we also have included the results for the MVDR
beamformer and the MVDR beamformer with FBSS. The estimated
power P̂SS (θ) at the output of the filter for MVDR with FBSS, for a
particular angle θ is [49, Ch. 6, 7, and 9].

P̂SS (θ) =
1

aH (θ) R̂−1
SS a (θ)

(23)

where the smoothed array covariance matrix is estimated as

R̂SS =
1

2DL

L∑
j=1

D∑
g=1

[
t(N 0 )
·j g

[
t(N 0 )
·j g

]H
+ J

[
t(N 0 )
·j g

]∗[
t(N 0 )
·j g

]T
J
]
.

(24)
In FBSS, we divide the ULA of size N into uniformly overlap-
ping forward and backward subarrays of size N0 giving rise to
D (= N −N0 + 1) forward subarrays and D backward subarrays.
A subarray size of N0 = 9 is considered for the FBSS case. In (24),
t(N 0 )
·j g denotes the gth forward subarray at the jth instant, J denotes the

N0 ×N0 exchange matrix, and (·)∗ denotes the complex conjugate.

Note that, in (23), the definition of a (θ) is modified from (7) by sub-
stituting N0 for N with θ corresponding to an arbitrary arrival angle.
The DOAs of the K multipath signals are estimated as the DOAs cor-
responding to the K largest peaks in the spatial power spectrum given
in (23). We define a peak as the point in the spatial power spectrum
whose power level is greater than the power levels both at its left and
right neighboring angles. Also note that to calculate the power for just
the MVDR beamformer, we have to replace R̂−1

SS in (23) with R̂−1

where R̂ is the estimated array covariance matrix. Similar to SBL-
RVM, an LS estimate of the power levels in MVDR with FBSS [78] is
obtained since FBSS may not perfectly decorrelate the coherent mul-
tipath signals [49, Ch. 6, 7, and 9] and hence signals can be partially
cancelled.

Last, for comparison, we also have shown in Fig. 1 the
estimated power of the nonadaptive conventional beamformer
(CBF). The CBF spatial power spectrum P̂CBF is defined
as [49, Ch. 2]

P̂CBF (θ) = aH (θ) R̂a (θ) (25)

where θ denotes an arbitrary arrival angle. Note that the CBF spectrum
in (25) does not require spatial smoothing and hence the processing
takes advantage of the entire array aperture. However, typically a spatial
window function is used for sidelobe control. For the simulation shown
in Fig. 1 and experimental data results shown later in Fig. 8, a Dolph–
Chebyshev spatial window is used with a uniform sidelobe level of 28
dB below the mainlobe peak.

In Fig. 1(a), we note substantial signal cancellation with the MVDR
beamformer in the unsmoothed case due to coherent multipath arrivals.
Due to signal cancellation, not only do we obtain more inaccurate
estimate of the DOAs than in the FBSS case, but we also are not able to
resolve the closely spaced multipath signals at θ2 = 60◦ and θ3 = 67◦.
The two DOAs estimated by MVDR were 43◦ and 61.2◦. With FBSS,
we obtain an estimate of the DOAs (45◦, 60.8◦, and 66.6◦) and the
power levels for all three arrivals in the MVDR beamformer. We also
note that even though there is a difference in the DOA estimates in
the unsmoothed and FBSS cases for the multipath signals at θ1 = 45◦

and θ3 = 60◦, the LS power estimates at each of these DOAs are very
close to each other. We note that SBL-RVM overcomes the problem
of coherent multipath arrivals and gives the most accurate estimates
of DOAs (45.2◦, 59.8◦, and 67◦) and power levels. Also, even though
there is a difference in the DOA estimates in SBL-RVM and MVDR
with FBSS for all three arrivals of the multipath signals, the LS power
estimates are very close to each other. The low-resolution CBF was
not able to resolve the three signals with DOA estimates at 42.4◦ and
63.6◦. However, the overall spatial structure of the simulated field is
indicated.

For comparison, we also have shown the estimated DOAs and power
levels for SBL-RVM, MVDR and CBF in Fig. 1(b) when the signals
are uncorrelated. Note that in this case, the MVDR beamformer is able
to resolve the DOAs (the estimated DOAs are 45◦, 60.2◦, and 67◦) of
the three signals with good resolution and there is no signal cancel-
lation. The estimated DOAs by SBL-RVM did not change indicating
the robustness of SBL-RVM algorithm with respect to the correlation
between the signals. As before, CBF could not resolve the signals with
DOA estimates at 45.2◦ and 62.6◦. Also note that there is no advantage
of using MVDR with FBSS in the case of uncorrelated signals. These
results are included to underscore that when using MVDR with FBSS
there is a reduction in resolution.

Since the focus of the paper is on coherent multipath signals, we
exclude the MVDR beamformer and low-resolution CBF from our
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Fig. 2. Probability of resolution analysis for SBL-RVM and MVDR with
FBSS. (a) Probability of resolution versus SNR for two multipath signals at 60◦
and 66◦. (b) Probability of resolution versus separation between two multipath
signals at SNR = 4 dB.

analysis in Section IV and only focus on SBL-RVM and MVDR with
FBSS.

IV. SIMULATIONS

Before we proceed to the analysis of experimental data, we first
evaluate the performance of SBL-RVM and MVDR with FBSS in
simulation. In this section, we first carry out a probability of resolution
analysis. Next, we provide an empirical analysis of bias and standard
deviation in the DOA estimates of SBL-RVM and MVDR with FBSS.
Last, an empirical analysis of bias and standard deviation in the power
estimates (using LS) at the estimated DOAs (which may be biased) is
provided.

For all the simulations, we consider a 12-element ULA with half-
wavelength spacing between the array elements. A 0.2◦ discretization
on the angular spread and L = 50 snapshots are assumed. For MVDR
with FBSS, a subarray size ofN0 = 9 is used giving a degree of spatial
smoothing D = 4.

A. Probability of Resolution Analysis of SBL-RVM and MVDR
With FBSS

We next demonstrate the ability of SBL-RVM to resolve mul-
tipath signals with higher resolution as compared to MVDR
with FBSS by using the probability of resolution criterion given
in (20).

First, in Fig. 2(a), we calculate the probability of resolution in terms
of the input SNR in 2-dB increments starting at 2 dB. For this we
consider two multipath signals impinging on the ULA from DOAs
60◦ and 66◦ and the input SNR for each multipath at each sensor is
assumed to be the same. For each input SNR, in total 200 trials are
taken and the probability of resolution is calculated as the number of
times an algorithm (SBL-RVM or MVDR with FBSS) is able to resolve
the multipath signals using the criterion given in (20) divided by the
total number of trials. We observe that SBL-RVM exhibits significantly
higher resolution at low SNRs compared to MVDR with FBSS.

Next, in Fig. 2(b), we calculate the probability of resolution in terms
of the separation between two multipath signals. For this we fix the
DOA of one multipath at 60◦ and the second multipath is gradually
separated from the first multipath with an increment of 0.8◦ starting
from a DOA of 62◦. The input SNR for each multipath at each sensor
is equal and taken to be 4 dB. For each separation, in total 200 trials are
taken and the probability of resolution is calculated as done in Fig. 2(a).
We observe that the resolution of SBL-RVM is comparable to that of

Fig. 3. Bias and standard deviation in DOA estimate versus SNR for SBL-
RVM and MVDR with FBSS for the multipath at 60◦. (a) Bias versus SNR.
(b) Standard deviation versus SNR.

MVDR with FBSS. However, the significant advantage of SBL-RVM
in terms of spatial resolution is very clear in Fig. 2(a).

B. Bias and Standard Deviation Analysis in DOA Estimates in
SBL-RVM and MVDR With FBSS

First, we define the bias as E[θ̂] − θ and the standard deviation as√
E[θ̂ − E[θ̂]]

2
. Here θ̂ denotes the estimated DOA of a particular

multipath by SBL-RVM or MVDR with FBSS and θ denotes the true
DOA of the multipath.

We now proceed to the bias and standard deviation analysis in the
DOA estimates for SBL-RVM and MVDR with FBSS. We consider
two multipath signals impinging on the ULA from DOAs 60◦ and
75◦ having equal input SNR. A separation of 15◦ is chosen such that
both SBL-RVM and MVDR with FBSS are able to resolve the two
multipath signals. For each input SNR, we consider in total 200 trials
and calculate the bias and the standard deviation for the multipath at
60◦ for both methods. The bias is shown in Fig. 3(a) and the standard
deviation is shown in Fig. 3(b). From the bias curve, we observe that
on, an average, SBL-RVM has much better performance than MVDR
with FBSS, whereas, from the standard deviation curve, we note that
the variability in SBL-RVM and the variability in MVDR with FBSS
are comparable to each other.

We then study the bias and standard deviation in the DOA estimates
for SBL-RVM and MVDR with FBSS when multipath signals with
unequal power levels are present. We consider three multipath signals
impinging on the ULA from DOAs 45◦, 60◦, and 75◦. Once again a
separation of 15◦ is considered so that both methods are able to resolve
the multipath signals. The input SNR for the multipath signals at 45◦

and 75◦ is kept equal and fixed at 8 dB. The power level for the multipath
at 60◦ initially is taken to be equal to the power level of the other two
multipath signals and then gradually decreased relative to the other two
multipath signals in increments of 0.5 dB. In other words, the middle
multipath is gradually buried in more noise keeping the power levels
of the other two multipath signals fixed. For each relative decrease
of the power level of the multipath at 60◦, we take in total 200 trials
and calculate the bias and the standard deviation for both methods.
The bias is shown in Fig. 4(a) and the standard deviation is shown in
Fig. 4(b). We observe from both curves that as the middle multipath
power level is gradually lowered, performance of MVDR with FBSS
gets progressively worse whereas SBL-RVM remains relatively stable
showing the robustness of SBL-RVM in estimating the DOAs in the
presence of multipath signals with unequal power levels.
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Fig. 4. Bias and standard deviation in DOA estimate versus relative de-
crease in power level for a middle multipath for SBL-RVM and MVDR with
FBSS. (a) Bias versus relative decrease of power level for the multipath at 60◦.
(b) Standard deviation versus relative decrease of power level for the multipath
at 60◦.

Fig. 5. Bias and standard deviation of the power estimate for SBL-RVM and
MVDR with FBSS for the multipath at 60◦. For comparison, also shown is the
LS power estimate plot for the true DOA of 60◦. (a) Bias of the power estimate
versus SNR. (b) Standard deviation of the power estimate versus SNR.

C. Bias and Standard Deviation Analysis in Power Level
Estimates in SBL-RVM and MVDR With FBSS

First, we define the normalized bias (NB) as (E[P̂ (θ̂)] −
σ2
s )/σ

2
s and the normalized standard deviation (NSD) as√

(E[P̂ (θ̂) − E[P̂ (θ̂)]]
2
)/σ4

s . Here P̂ (θ̂) denotes the estimated power

level at the estimated DOA θ̂ of a particular multipath by SBL-RVM
or MVDR with FBSS and σ2

s denotes the true power level of the mul-
tipath. The objective here is to study the bias and standard deviation of
the estimated power level at the estimated DOA (which may or may
not be biased) for a multipath for a method.

We now proceed to the analysis of NB and NSD in the power esti-
mates for SBL-RVM and MVDR with FBSS. We consider two multi-
path signals impinging on the array from DOAs 60◦ and 75◦ so that both
methods are able to resolve them. The input SNR for each multipath
at each sensor is assumed to be equal. After estimating the DOAs for
the multipath signals, we apply LS to reestimate the power levels. For
each input SNR we consider a total of 200 trials and calculate the NB
and the NSD in the power estimate for the multipath at 60◦. The NB
is shown in Fig. 5(a) and the NSD is shown in Fig. 5(b). In Fig. 5(a)
and (b), we also have plotted the NB and the NSD curves for the LS
estimate (denoted simply as LS in the plots) which is the NB and the
NSD in the estimated power level of the true DOA (unbiased) of the
multipath. From Fig. 5(a) and (b), we note that SBL-RVM, MVDR

Fig. 6. Bias and standard deviation of the power estimate versus relative
decrease of power level for a middle multipath for SBL-RVM and MVDR with
FBSS. (a) Bias of the power estimate versus relative decrease of power level
for the multipath at 60◦. (b) Standard deviation of the power estimate versus
relative decrease of power level for the multipath at 60◦.

with FBSS, and LS produce almost identical curves for NB and NSD
in the power estimate denoting that even if there is a difference in bias
and standard deviation in the DOAs [see Fig. 3(a) and (b)] in SBL-
RVM and MVDR with FBSS, the power levels for both of the methods
estimated by LS are the same and also equal to the true DOA LS power
estimate. Comparing Figs. 3(a) and 5(a), we observe that a bias of 1◦

or less is not enough to have a significant impact on the estimate of the
power levels. Rather the NB and NSD in the power estimate in Fig. 5(a)
and (b) can be attributed to the effect of noise.

We then study the NB and NSD in the power estimates for SBL-RVM
and MVDR with FBSS when multipath signals with unequal power
levels are present. We consider three multipath signals impinging on
the ULA from DOAs 45◦, 60◦, and 75◦. The input SNR for the multipath
signals at 45◦ and 75◦ is kept equal and fixed at 8 dB. The power level
for the multipath at 60◦ initially is taken to be equal to the power
level of the other two multipath signals and then gradually decreased
relative to the other two multipath signals in increments of 0.5 dB as
done in Fig. 4. For each relative decrease of the power level of the
multipath at 60◦, we take a total of 200 trials and calculate the NB and
NSD in the power estimate for both methods. The NB plot is shown
in Fig. 6(a) and the NSD plot is shown in Fig. 6(b). From Fig. 6(a),
we observe that as the middle multipath is buried under more noise,
the NB for both SBL-RVM and MVDR with FBSS increases and also
is comparable for both methods. Comparing Figs. 4(a) and 6(a), we
note that, for SBL-RVM, though the bias in the DOA estimate remains
almost the same, the NB in the power estimate increases, suggesting
that the power estimate does not affect the DOA estimate. Comparing
Figs. 4(b) and 6(b), we observe that the variability for both the DOA
and power estimates in SBL-RVM is less than the variability for the
same in MVDR with FBSS in the presence of multipath signals with
unequal power levels.

V. THE HF97 OCEAN ACOUSTIC EXPERIMENT

A. Overview of the Experiment

The HF97 experiment [79], [80] was carried out in shallow water
off the coast of Point Loma, CA, USA, in October 1997. An overview
of this experiment showing the source and receiver array (R/P FLIP)
positions is shown in Fig. 7. The water depth was approximately 100 m
and the source and the receiver were fixed to the bottom. The receiver
consisted of a 64-element vertical linear array (VLA) and was deployed
approximately 6 km away from the source. The interelement spacing
of the VLA was d = 0.1875 m and the hydrophone elements of the
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Fig. 7. Experiment overview showing the source mooring and receiving array locations in the HF97 experiment.

VLA were sampled at fs = 48 kHz. The source transmitted several
waveforms. Of interest here was the sinusoidal transmission at 1.9
kHz. The interelement spacing of the VLA is equivalent to 0.2375λ.
We note that there is no spatial aliasing since at this frequency the
interelement spacing is less than 0.5λ.

B. Data Processing

The start time of our data from the HF97 experiment is Julian Day
301 2210 UTC. First, we extract the 1.9-kHz tonal by using nonwin-
dowed, nonoverlapping FFTs of length 212 = 4096. For the tonal, we
process a total of 800 snapshots from the start time, divide the 800
snapshots into four blocks of 200 snapshots each, and resolve the
multipath signals for each of the blocks of 200 snapshots using SBL-
RVM and MVDR with FBSS. The 200 snapshots are approximately
(4096 × 200) / (48000) = 17 s duration and hence all 800 snapshots
are approximately 68-s duration. In addition, the processing is repeated
on the first 200 snapshots breaking them into four blocks of 50 snap-
shots each (approximately 4.25-s duration per block).

We use all 64 sensor elements of the VLA for processing. For MVDR
with FBSS, a 47-element subarray is used for spatial smoothing. As
before, a 0.2◦ discretization on the angular spread also is assumed.

C. Multipath DOA Resolution Results and Discussion

Here we demonstrate resolution of the multipath signals
using SBL-RVM by processing 200 snapshots at a time for
all 800 snapshots. Fig. 8 shows the resolved multipath signals
for each of the 200 snapshots for the 1.9-kHz tonal for both
SBL-RVM and MVDR with FBSS. For SBL-RVM, we first es-
timated the spatial power spectrum and rejected all the peaks
in the power spectrum whose power levels were more than
15 dB below the highest peak and then reestimated the power
levels of the remaining peaks by using LS as done before. The
total number of these remaining peaks is selected as the to-
tal number of multipath signals. The choice of the value 15 dB
was arbitrary.

There were no ground truth DOAs for this experiment. The non-
adaptive CBF provides a reasonable (though not high-resolution) rep-
resentation of the acoustic field observed by the array and hence was
used as indicative of ground truth. Therefore, for comparison, we also
have shown the estimated power of the nonadaptive CBF for all panels
in Fig. 8. For estimating the spatial power spectrum of CBF we used
a Dolph–Chebyshev spatial window whose sidelobe level was 28 dB
below the mainlobe peak.
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Fig. 8. Multipath resolution for the 1.9-kHz frequency in the HF97 experiment. Panels (a), (b), (c), and (d) correspond to the first, second, third, and fourth
blocks of 200 snapshots (∼17 s each), respectively.

Ray tracing results are shown in [79] using a CTD cast taken two
hours after the data discussed here. These results suggest that a number
of arrivals are expected approximately ±10◦ of broadside (broadside
corresponds to 90◦ in Fig. 8). Similar ray tracing results are shown in
[80] including the observed arrival angle versus travel time structure
of the channel impulse response (obtained from processing LFM chirp
waveforms that were transmitted simultaneously) at the same time
the data discussed here was recorded. These also show a number of
arrivals approximately ±10◦ of broadside. Thus, the DOA estimates of
the multipath signals shown here are consistent with the propagation
physics and modeling.

To check the validity of our multipath model in (2), we calculated the
eigenvalue spectrum for each panel in Fig. 8. For each panel, the eigen-
value spectrum clearly showed one dominant eigenvalue (at least 15 dB
higher than the others) indicating that the multipath signals are coherent
and hence the coherent multipath propagation model in (2) is a good
approximation.

From Fig. 8(a) and (d), we observe that MVDR with FBSS
cannot resolve the DOAs of all of the multipath signals since
it processes the data effectively using only 47 sensor ele-
ments and hence results in a reduced aperture implying reduced
resolution. The subarray size 47 was chosen to obtain a good bal-
ance between resolution and degree of spatial smoothing. Other values
for subarray size did not result in significant improvement in per-
formance. The SBL-RVM algorithm, however, is able to identify the
DOAs and power levels of the multipath signals with higher resolu-
tion than MVDR with FBSS and the results also are more consistent
with the CBF spatial power spectrum than that of MVDR with FBSS
in Fig. 8(a) and (d). In Fig. 8(a), we observe that SBL-RVM finds a

multipath at 92.8◦ which is consistent with the CBF spectrum whereas
MVDR with FBSS fails to form a peak. In Fig. 8(d), SBL-RVM finds
two multipath signals at 89◦ and 93.2◦ and these results also are consis-
tent with the unusually broadened spectrum by CBF near those angles
(note that those angles are around broadside), but MVDR with FBSS is
not able to resolve the DOAs of those multipath signals. Furthermore,
in Fig. 8(d), SBL-RVM finds a multipath at 101.2◦ which is consis-
tent with the CBF spectrum, but MVDR with FBSS fails to resolve
it due to reduced effective array aperture and hence reduced resolu-
tion. The rest of the angles estimated by SBL-RVM and MVDR with
FBSS were consistent with each other and also were consistent with the
nonadaptive CBF.

Since one of the features of SBL-RVM is its capability to resolve
the DOAs of multipath signals with a very few number of snapshots,
we divided the first 200 snapshots corresponding to Fig. 8(a) into four
consecutive blocks of 50 snapshots and estimated the DOAs using
CBF, MVDR with FBSS and SBL-RVM. Note that in this case, the
number of snapshots used in each block is just slightly larger than the
subarray size (47) used for spatial smoothing in MVDR with FBSS.
These results are shown in Fig. 9. While the three major arrivals at
approximately 80.4◦, 86.0◦, and 100.6◦ seen in Fig. 8(a) continue to be
identified in Fig. 9(a)–(d), there are some variations in both the DOAs
and power levels of these arrivals between the blocks [in particular, the
arrival at approximately 100.6◦ drops significantly in level in Fig. 9(b)].
In addition, a few fluctuating lower level arrivals are identified with the
persistent arrival at approximately 92.8◦ being consistent with the ar-
rival seen in Fig. 8(a). Fluctuations in the arrival levels evident in both
Figs. 8 and 9 are a natural consequence of the time-evolving propaga-
tion conditions in this coastal shallow-water waveguide and the con-
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Fig. 9. Resolving multipath signals for the 1.9-kHz frequency in the HF97 experiment for the first 200 snapshots in blocks of 50 snapshots. Panels (a), (b), (c),
and (d) correspond to the first, second, third, and fourth blocks of 50 snapshots (∼4.25 s each), respectively.

structive/destructive interference between closely spaced (unresolved)
multipath arrivals. Fig. 8(a) is representative of the persistent arrival
structure seen across all four blocks in Fig. 9(a)–(d).

In Fig. 9(a)–(c), we note that MVDR with FBSS is not able to
resolve the DOAs of all the coherent multipath signals due to reduced
resolution in contrast to SBL-RVM. In all four panels in Fig. 9, SBL-
RVM consistently estimated a DOA at approximately 92.8◦ which is
consistent with the CBF spatial spectrum, but MVDR with FBSS is not
able to identify this multipath in Fig. 9(b)–(c). Moreover, SBL-RVM
estimated another DOA at approximately 97.0◦ in Fig. 9(a)–(c). This
multipath is identified by MVDR with FBSS and CBF in Fig. 9(b),
but they fail to identify this multipath in Fig. 9(a) and (c) due to its
relatively low power level in these blocks compared to the 100.6◦

arrival and their poor resolution. Similarly, another arrival is estimated
at approximately 104.6◦ by SBL-RVM in Fig. 9(b) and (c) while this
is identified by MVDR with FBSS and CBF only in Fig. 9(b). These
results demonstrate the superior performance of SBL-RVM with a
small number of snapshots as compared to MVDR with FBSS.

VI. CONCLUSION

CS directly processed the signal from an array of sensors without
first estimating the sensor covariance matrix and thus its performance
did not deteriorate when resolving DOAs and power levels of coherent
multipath signals in contrast to the MVDR beamformer. Though spatial
smoothing helped in decorrelating the multipath signals, the MVDR
processor lost resolution due to a reduction in effective aperture.

Empirical results of bias and variance showed that the performance
of CS is comparable to the MVDR processor with spatial smoothing and
sometimes outperforms the MVDR processor with spatial smoothing,
giving better estimates of both the DOAs and the power levels with
higher resolution and can be extremely useful for resolving multipath
signals.

Finally, the successful application of CS in resolving multipath sig-
nals in the HF97 ocean acoustic experiment was demonstrated. CS
resolved the DOAs of the multipath signals with higher resolution than
MVDR with spatial smoothing and yields consistent results with the
nonadaptive CBF.
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