
Validation of statistical estimation of transmission loss
in the presence of geoacoustic inversion uncertainty

Chen-Fen Huang, Peter Gerstoft, and William S. Hodgkiss
Marine Physical Laboratory, Scripps Institution of Oceanography, La Jolla, California 92093-0238

�Received 21 March 2006; revised 10 July 2006; accepted 10 July 2006�

Often the ocean acoustic environment is not well known and sonar performance prediction will be
affected by this uncertainty. Here, a method for estimating transmission loss �TL� is proposed which
incorporates these environmental uncertainties. Specifically, we derive an approach for the statistical
estimation of TL based on the posterior probability density of environmental parameters obtained
from the geoacoustic inversion process. First, a Markov chain Monte Carlo procedure is employed
in the inversion process to sample the posterior probability density of the geoacoustic parameters.
Then, these sampled parameters are mapped to the transmission loss domain where a full
multidimensional probability distribution of TL as a function of range and depth is obtained. In
addition, TL is also characterized by its summary statistics including the median, percentiles, and
correlation coefficients. The approach is illustrated using a data set obtained from the ASIAEX 2001
East China Sea experiment. Based on the geoacoustic inversion results, the predicted TL and its
variability are estimated and then compared with the measured TL. In general, there is a good
agreement with the percentage of observed number of data points inside the credibility interval.
© 2006 Acoustical Society of America. �DOI: 10.1121/1.2261356�
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I. INTRODUCTION

Statistical estimation of geoacoustic parameters from
acoustic field data has been an active research topic for more
than a decade.1–7 This paper proposes to use the parameter
uncertainties obtained during the geoacoustic inversion pro-
cess to make a statistical estimation of transmission loss
�TL�. The transmission loss domain is important as it can be
used in connection with sonar performance prediction �e.g.,
Ref. 8 and in particular the paper by Abbot and Dyer9�.

Analytical approaches to transfer uncertainties have
been adopted by several authors. Reference 10 derived an
analytical expression for quantifying the uncertainty in pre-
dicted acoustic fields produced by environmental uncertain-
ties. Reference 11 describes how uncertainty can be embed-
ded into ocean acoustic propagation models through
expansions of the input parameter uncertainties in orthogonal
polynomials. The disadvantage of these approaches is that
they are less flexible computationally and so far have only
been used on simple problems.

Monte Carlo methods for sampling the environmental
variability have been studied by several authors �e.g., Refs.
12 and 13�. Random realizations of the acoustic environment
are propagated via the deterministic wave equation to pro-
duce realizations of the acoustic field. Mean and higher mo-
ments are used to characterize the acoustic variability. While
thousands of simulations generally are required, these com-
putations are fast, simple, and thus not seen as a problem.

A Markov chain Monte Carlo �MCMC� method is used
to first sample the probability distributions of the geoacoustic
parameters. Unlike previous research, the results of the geoa-
coustic inversion are only an intermediate goal. Subsampling
of the multidimensional model parameter distribution is then

used to map parameter uncertainties to the TL domain. In
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Ref. 14, exhaustive grid sampling was used to obtain the
geoacoustic uncertainties and map these to the TL domain.
This was feasible because only 4 model parameters were
explored. However, a more realistic inversion will have a
large number of parameters. In this paper we invert for a
total of 13 model parameters and also validate the estimated
transmission loss with at-sea observations.

Figure 1 summarizes the estimation of TL �usage do-
main U� from ocean acoustic data observed on a vertical or
horizontal array �data domain D�.14 The geoacoustic inverse
problem is solved as an intermediate step to obtain the pos-
terior distribution of environmental parameters p�m �d� �en-
vironmental domain M�. We are not directly interested in
the environment itself but rather a statistical estimation of the
TL field �usage domain U�. Based on the posterior distribu-
tion p�m �d�, the probability distribution of the transmission
loss p�u �d� is obtained via Monte Carlo integration. From
this TL probability distribution, all relevant statistics of TL
can be obtained, such as the median, percentiles, and corre-
lation coefficients.

Both the experimental data d and the usage domain
model u are related to m via forward models D�m� and
U�m�, respectively. Thus formally, if the data were error free
and the mappings were unique, we would have u
=U�D−1�d��. It is assumed that the mappings D�m� and
U�m� are deterministic and all uncertainties �including noise
and modeling errors� are in the data. Due to the uncertainties
in the data, the inverse mapping from d to m is formulated in
a probabilistic framework where one also can include prior
information. The forward mapping could be probabilistic as
in the textbook by Tarantola15 and in the papers by

16 17
Mosegaard and Tarantola and Rogers et al.
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II. BAYESIAN INFERENCE

In the Bayesian paradigm, the solution to estimating pa-
rameters of interest m given an observation d is character-
ized by the posterior probability p�m �d�. First, the prior in-
formation about the model parameter vector is quantified by
the probability density function �pdf� p�m�. Then, this infor-
mation is combined with the likelihood function p�d �m� pro-
vided by the combination of data and the physical model to
give the posterior information of the model parameters
p�m �d�. A complete discussion of inverse theory from a
probabilistic point of view may be found in the recent text-
book by Tarantola.15 The solution to the inverse problem is
then

p�m�d� =
p�d�m�p�m�

p�d�
� L�m�p�m� , �1�

where p�d� is a normalizing factor that makes the posterior
probability density p�m �d� integrate to one. Since p�d� does
not depend on the environmental model m, it typically is
ignored in parameter estimation. Hence, as shown in the sec-
ond representation, the normalization constant p�d� is omit-
ted and a brief notation L�m� is used to denote the likelihood
function p�d �m�.

Understanding and using the posterior distribution
p�m �d� is at the heart of Bayesian inference. Specifically,
one is interested in various features of the posterior distribu-
tion, such as the means, variances, and marginal distribu-
tions. These quantities can be written as expectations of
functions f�m� under p�m �d� as follows:

E�f�m�� = �
M

f�m�p�m�d�dm . �2�

For example, if the desired statistical quantity is the marginal
posterior distribution of the parameter mi, then

p�mi�d� = �
M

��mi� − mi�p�m��d�dm�. �3�

A. Data model

This section derives a likelihood function to be used in

FIG. 1. An observation d ��D� is mapped into a distribution of environ-
mental parameters m ��M� that potentially could have generated it. These
environmental parameters are then mapped into the usage domain U.
the probabilistic inversion following the same approach as

J. Acoust. Soc. Am., Vol. 120, No. 4, October 2006 Huang, Ger
described in Gerstoft and Mecklenbräuker.2,18 At a single fre-
quency, the relation between the observed complex-valued
data vector d sampled at an N-element array and the modeled
data D�m� is described by the model

d = D�m� + e , �4�

where e represents the error term. The modeled data are
given by D�m�=d�m�s, where the complex deterministic
source term s is unknown. The transfer function d�m� is
obtained using an acoustic propagation model for an envi-
ronmental model m.19 For simplicity in the development be-
low, data from only one frequency is assumed.

Assume the errors e to be Gaussian distributed with zero
mean and covariance Ce. The errors represent all features
that are not modeled in the data such as noise, theoretical
errors, and modeling errors.2,7,15 Hence, the likelihood func-
tion is

L�m,Ce,s� =
1

�N�Ce�
exp�− �d − d�m�s�†Ce

−1�d

− d�m�s�� , �5�

where N is the number of data points and superscript † de-
notes the complex conjugate transpose. Although in general
not true, an independent and identically distributed �IID� er-
ror process Ce=�I is assumed to describe the data uncer-
tainty. The source term s can be estimated in closed form by
requiring � log L /�s=0, whereby

sML =
d†�m�d
�d�m��2 . �6�

It is seen that s depends on m but not on �. After substituting
sML back into Eq. �5�, the likelihood function is then

L�m,�� =
1

�N�N exp�−
��m�

�
	 , �7�

where

��m� = �d�2 −
�d†�m�d�2

�d�m��2 �8�

is the objective function. Here, we treat the error variance �
as a nuisance parameter and eliminate it via integrating Eq.
�7� weighted by a noninformative prior of � �p���=1/�� over
its entire range20

L�m� = �
0

�

L�m,��p���d� . �9�

Therefore, the likelihood function can be written as

L�m� =
1

�N

�N − 1�!
��m�N . �10�

It is straightforward to extend the above formula to the mul-
20
tifrequency data set
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L�m� � 
 1

�̄g�m�
�NJ

= ��� j�m��−N, �11�

where J is the number of processed frequencies and �̄g�m�
=�J �� j�m� is the geometric mean of the objective func-
tion over frequency.

The above derivation assumes that the errors are inde-
pendent across both spatial samples of the acoustic field and
frequencies. In practice these can be strongly correlated, for
example, when the errors due to frequency-dependent mod-
eling mismatch are the dominant source of error, the model-
ing error may not be independent across the frequencies
used. Therefore, the number of independent samples NJ in
Eq. �11� must be selected with care �see Sec. III B for de-
tails�.

B. Prediction

A related problem is to infer what experimental values
are likely to be observed given our knowledge of the envi-
ronmental parameters. Thus, we are not just interested in the
environment itself but also estimates in the information us-
age domain U �Fig. 1�. In the present application, the usage
domain is transmission loss �TL�. The vector u is used to
denote the transmission loss at I discrete positions, ui

=u�ri ,zi�. For the example in Sec. III, we predicted the TL
field on a 200�100 grid of range-depth cells, I=200�100
=20 000, inferred from a 13-dimensional model m.

Probability density functions that describe yet unob-
served events are referred to as predictive distributions.
Based on the posterior distribution p�m �d�, the posterior pre-
dictive distribution p�u �d� is obtained from the joint poste-
rior pdf of u and m given d,

p�u�d� = �
M

p�u,m�d�dm = �
M

p�u�m,d�p�m�d�dm ,

�12�

where the second equation follows from the definition of
conditional probability. Since all uncertainties are assumed
to be in the data d and all information in d has been mapped
into m �see Fig. 1 and the discussion in the last paragraph of
Sec. I�, conditioning on d adds no information in our predic-
tion of u. Therefore,

p�u�m,d� = p�u�m� . �13�

The conditional probability density p�u �m� is used to de-
scribe uncertainties in the forward mapping due to imperfect
knowledge of the environment �e.g., parametrization�.15–17

Here, the forward mapping is assumed exact: a functional
relationship u=U�m� gives the transmission loss u exactly
for each value of m. Note that u=U�m� is a short notation
for the set of equations ui=Ui�m�, i=1, . . . , I. Therefore, the
probability density is

p�u�m� = ��U�m� − u� , �14�

where the vector delta function is defined as the product of
15,21
the delta functions for the elements as in
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��U�m� − u� = 

i=1

I

��Ui�m� − u�ri,zi�� . �15�

The posterior predictive distribution of u for a set of
discrete ranges and depths given the observed acoustic data d
is obtained by integrating the values of the TL with respect to
the posterior distribution of the model parameters

p�u�d� = �
M

��U�m� − u�p�m�d�dm �16�

which has the same form as Eq. �2�. As shown in the Ap-
pendix, this is a generalization of the transformation of ran-
dom variables using the properties of the Dirac delta func-
tion. However, in the present case, neither the roots nor the
derivatives are known, and thus it is easier to implement Eq.
�16� directly as described in Sec. II C.

The posterior distribution p�u �d� carries all the informa-
tion about the TL in the presence of the geoacoustic inver-
sion uncertainties. As the predictive distributions are not nec-
essarily Gaussian, it is preferable to characterize the
distributions with medians and distance between the 5th and
95th percentiles instead of means and standard deviations.
Note that the median corresponds to the 50th percentile of
the distribution. The 	th percentile of the TL distribution at a
given position, denoted by u	%, is computed by finding the
TL value that satisfies

�
−�

u	%

p�u�d�du = 	/100. �17�

In addition to summarizing the statistics of TL at any
particular point, the covariance structure of the TL at two
points might also be of interest in uncertain acoustic envi-
ronments. From Eq. �16�, the covariance and correlation co-
efficient between the TL at two positions ui and uj can be
computed, respectively, by

cov�ui,uj� = E�uiuj� − E�ui�E�uj� �18�

and

Rij =
cov�ui,uj�

�cov�ui,ui��cov�uj,uj�
. �19�

To compute the above statistical quantities of TL, one
needs to evaluate the high-dimensional integral of Eq. �16�.
The integral can be approximated numerically as described
in the next section.

C. Markov chain Monte Carlo method

Monte Carlo methods can evaluate integrals in high-
dimensional space efficiently.22 In particular, Markov chain
Monte Carlo �MCMC� algorithms have been found to be
well suited for problems of Bayesian inference. The com-
monly used MCMC methods are the Metropolis-Hastings al-
gorithm, which was introduced first in Ref. 23, and Gibbs
sampling which was developed originally in Ref. 24 where it

was applied to image processing. MCMC are extensively
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used in various fields of inverse problems, such as
geophysics,16,25 ocean acoustics,7,26,27 and
electromagnetics.28 MCMC algorithms consist of a random
walk in the parameter space where the next parameter value
depends only on the current value. After an initial “burn-in”
period in which the random walker moves toward the high
posterior probability region, the chain samples a desired pos-
terior pdf, that is, it returns a number of parameter vectors
that are distributed as in the posterior pdf.

In the MCMC, samples are generated from the posterior
distribution p�m �d�. The difficult part is to create a Markov
chain which converges rapidly. As noted by many
authors,7,29,30 parameter coupling frequently is encountered
in ocean acoustics. High correlation between parameters can
slow down the convergence of a MCMC sampler consider-
ably. Thus, a parameter covariance matrix estimated from the
sampled models during the initial “burn in” period7 is used
for determining appropriate coordinate rotations.

MCMC convergence was established by collecting two
independent runs in parallel and periodically comparing the
marginal distributions of the parameters estimated from each
run.7 The procedure is terminated when the maximum differ-
ence between two cumulative marginal distributions for all
parameters is less than 0.05. A good introduction to MCMC
methods is in Ref. 31, which also contains many applications
in statistical data analysis.

The integral in Eq. �16� is the expectation of function
��U�m�−u� with respect to the posterior distribution of the
model parameters. This and other expectations can be ap-
proximated by using the MCMC samples �m�t�� drawn from
the posterior distribution of model parameters p�m �d�

p�u�d� =
1

T
�
t=1

T

��U�m�t�� − u� , �20�

where the superscript t is used to label the sequence of states
in a Markov chain and T denotes the total length of the
sequence. To implement Eq. �20�, a numerical approxima-
tion is made by binning the calculated TL values. The bin
width is selected small enough to have negligible effect on
the distribution. Here a 1 dB bin width is used.

Using all samples from MCMC runs can consume a
large amount of storage to save all m�t� and computation time
to compute p�u �d�. It has been suggested in the statistical
literature31–33 that inferences should be based on a subsam-
pling of each sequence, with a subsampling factor high
enough that successive draws of m are approximately inde-
pendent. The strategy is known as subsampling.33 This can
save a large amount of storage and computation time for
using the MCMC samples in inference. This subsampling
reduces the number of samples needed to calculate p�m �d�
and thus translates into a large saving in computer time for
calculating p�u �d�. Practically, we use a Monte Carlo �ran-
dom� subsampling of the MCMC samples �m�t�� and monitor
the convergence of the maximum difference between the
marginal cumulative distributions estimated from sub-
samples and from all MCMC samples. This maximum dif-

ference should be less than 0.05 for all parameters. Then
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these subsampled model parameter vectors are used to com-
pute p�u �d�.

All results presented in this paper are generated by
SAGA,34 which implements the method described in Ref. 28.

III. RESULTS AND DISCUSSION

Data from the ASIAEX 2001 East China Sea
experiment35 are used to illustrate the approach. Figure 2
shows a map of the region where the acoustic measurements
were taken. On Julian Day �JD� 158, acoustic energy was
transmitted from the J-15 source towed near 48 m depth by
R/V Melville with a speed of about 3 knots. The ship track is
indicated by the line in the figure on which the distances
between the source and the receiver range from 0.5 to 6 km.
The experiment geometry is illustrated schematically in Fig.
2. A 16-element, 75-m aperture, autonomous recording ver-
tical line array �VLA� was moored up from the seafloor at
location 29°38.927� N, 126°48.892� E where the measured
water depth was approximately 105.5 m. The lowermost el-
ement �element 1� was about 6 m above the bottom. Element
4 failed during deployment.

For oceanographic measurements, the current profile in
the water column from 30 to 100 m was obtained by a ship-
mounted ADCP system. During the acoustic transmissions,
there exists a strong tidal current with magnitude greater than
0.5 m/s around the middle of the water column. Three sound
speed profiles were measured by CTDs on JD 158. As shown
in Fig. 2, typical summer sound speed profile characteristics
were observed with significant fluctuations in the ther-
mocline.

A general bathymetric and geological survey has indi-
cated that in the neighborhood of the experimental site, the
environment is nearly range independent. Additional details
of the seismic and oceanographic experiments can be found

FIG. 2. Track of R/V Melville during the ASIAEX 2001 East China Sea
experiment. The experimental geometry is shown in the upper right-hand
corner of the figure.
in Ref. 35.
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A. Baseline model

The baseline model is assumed to be range-independent
and consists of an ocean layer overlying a uniform sediment
layer on top of a subbottom. The model parameters were
divided into three subsets: geometrical, geoacoustic, and
ocean sound speed parameters. The geometrical parameters
include source range SR, source depth SD, water depth WD,
and the array shape �array tilt 
 and bow b�. The geoacoustic
parameters include sediment compressional speed csed, den-
sity �sed, attenuation �sed, and thickness d, and increment of
subbottom compressional speed from the top sediment layer

c �subbottom density and attenuation are fixed at 2.4 g/cm3

and 0.01 dB/�, respectively�. The ocean sound speed was
modeled by a linear combination of empirical orthogonal
functions �EOFs�. An empirical orthogonal function �EOF�
analysis at the experimental site shows that the first 3 EOFs
contain about 90% of the energy. Therefore, the number of
representative EOFs was set to three in the inversion.

An environmental domain of 13 parameters with their
search bounds is indicated in Fig. 3, including �from upper to
lower panels� geometrical, geoacoustic, and ocean sound
speed EOF coefficients.

B. Posterior distributions for the model parameters

Matched-field �MF� geoacoustic inversion using the se-
lected frequencies 195, 295, and 395 Hz was carried out with
the measured data obtained at approximately 1.7 km from
the source �the circle in Fig. 2�. The MCMC algorithm along
with the normal-mode propagation model SNAP �Ref. 19� is
employed to sample the posterior probability density in
model domain M.

Figure 3 shows the marginal posterior distributions of
the model parameters using the likelihood function, Eq. �11�
with the number of independent samples, NJ, found as fol-
lows. First, the data error covariance matrix Ce is estimated
using a maximum-likelihood approach. It is based on an en-
semble average of the residual vectors �residual field be-
tween the observed and the modeled field generated from the
optimum values of the parameters� from multiple inversions

36

FIG. 3. 1D marginal posterior probability densities of the model parameters
using the measured data obtained at approximately 1.7 km from the source.
Arrows indicate the estimated optimum values of the parameters.
of vertical array data from a source tow. For each source
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range, the residual vectors of processed frequencies are con-
catenated creating an error vector consisting of 15�3=45
entries �15 hydrophone elements by 3 frequencies�. A total of
98 error vectors are used to estimate Ce. Then, to find the
number of independent samples NJ, the eigenvalue analysis
is performed on the estimated Ce. The result shows there are
30 significant eigenvalues, containing 99.9% of the energy,
in the error covariance matrix. Therefore, the number of in-
dependent samples, NJ, for this analysis, is 30.

Figure 4 shows the MF-derived source position over the
time interval from 19 to 50 min using the estimated opti-
mum values of the parameters found from the above inver-
sion. The source depths measured by the depth sensor are
indicated by the plus signs. Compared with the GPS and the
depth sensor measurements, MF-derived source position is
consistent with the experimental configuration. Source local-
ization based on the best-fit model tracks the actual source
positions well.

C. Predictive distributions of transmission loss

With the posterior probability density of the environ-
mental model parameters obtained from the inversion, we
quantify the uncertainty mapped from the model parameters

FIG. 4. MF-derived �a� source-receiver range and �b� source depth over the
time interval from 19 to 50 min. The contour plots shows the MF output
�dB� where the best match for each time sample is 0 dB. The vertical line on
each plot indicates where the environmental model is estimated. Plus signs
indicate the true measured source depths.
to the predicted transmission loss �TL�. The posterior predic-
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tive distribution of TL for the position �ri ,zi� is obtained by
integrating the predictions of TL with respect to the posterior
distribution of the model parameters, using Eq. �16�.

Figure 5 shows the posterior distribution of the TL ver-
sus range at 295 Hz for array element 7 �at 69.5 m�. Figure
5�a� shows the contour of the predictive distribution of the
TL versus range. Gray levels represent the probability den-
sity. Darker shades mean higher probability of observing the
predicted TL value. It is observed that at some ranges where
the acoustic field is near a null �destructive interference�, the
predictive probabilities show large variations in the result.

Predictive distributions at two different ranges are
shown in Figs. 5�b� and 5�c�, which correspond to the points
of constructive and destructive interferences, respectively. At
the range of constructive interference �Fig. 5�b��, less varia-
tion of TL is observed. Therefore, the probability density
concentrates in a smaller area. However, near the range of
destructive interference �Fig. 5�c��, the probability density
spreads in a larger area which indicates the acoustic field is
more difficult to predict. Since the distribution of TL is often
poorly approximated by a normal distribution, particularly
near destructive interferences, the central tendency and
spread of the TL distribution are indicated, respectively, by
the median �heavy vertical line� and the distance between the
5th and 95th percentiles �gray area; referred to as the 90%

FIG. 5. �Color online� Posterior distribution of TL versus range for 295 Hz
for array element 7 �at 69.5 m�: �a� Contour of posterior distribution for TL
versus range. �b� and �c� Posterior distributions of TL at two different ranges
�2.75 km and 2.85 km�. These corresponds to cuts �vertical dashed lines�
through the contour. �d� Statistics of the predicted TL versus range. The
solid line with gray area around shows the median and the 90% interval of
posterior distribution.
Credibility Interval�. Figure 5�d� summarizes the predictive
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distributions by the median �heavy line� and the 90% CI
�gray area�. This is a practical way to convey the uncertainty
in TL.

Figure 6 shows the posterior distribution of TL versus
depth for 295 Hz at 2.85-km range. Figure 6�a� shows the
contour of posterior probability distribution for TL versus
depth. We see a similar constructive/destructive interference
pattern as observed in the range contour of the TL distribu-
tion. The vertical covariance structure of the TL is examined
in Fig. 6�b�. Due to the interference of the normal modes, a
chessboardlike correlation structure of the TL is observed.
For regions near the constructive interference �for example,
at a depth of 50 m�, the TL is correlated more at neighboring
depths. For regions near destructive interference �at 81 m
depth�, the correlation drops rapidly.

To demonstrate the correlation structure in detail, Fig. 7
shows the 2D posterior probability distributions between TL

FIG. 6. Posterior probability distribution of TL versus depth for 295 Hz at
the 2.85 km range: �a� Contour of posterior probability distribution for TL
versus depth. �b� Magnitude of the correlation coefficient matrix for TL at
all depths.

FIG. 7. 2D posterior probability distribution of TL versus depth for 295 Hz
at the 2.85 km range. The vertical and horizontal axes indicate, respectively,
the TL field at 69.5 m depth and that at the depth indicated on each panel.
The gray-scale coloring from darkest to lightest represents 50%, 75%, and
95% highest posterior density �HPD� �Ref. 20�. 1D posterior probability

distribution of TL at that depth is also shown on the bottom of each panel.

stoft, and Hodgkiss: Validation of transmission loss prediction 1937



at 69.5 m depth �vertical axis� and TL at selected depths
�horizontal�. Gray levels represent the probability density;
darker shade means higher probability density. The line plot
on the bottom of each panel is the marginal distribution of
TL at the corresponding depth, which corresponds a cut
through Fig. 6�a� at that corresponding depth.

As discussed in Sec. II C, significant saving in both stor-
age and computation time can be obtained by subsampling
MCMC samples. Note that about 480 000 samples were re-
quired for the MCMC to converge. Figure 8�a� shows the
convergence of the Monte Carlo subsampling for each model
parameter. We find that about 10 000 samples are sufficient
to characterize the marginal distributions of model param-
eters.

As an indication of convergence for TL distribution, we
computed the marginal distributions of TL for the sub-
sampled model parameter vectors. Figure 8�b� shows conver-
gence for the marginal probability distributions of TL at
69.5 m depth and 2.85 km range, which corresponds to a
long tail distribution as shown in Fig. 5�c�. Similar to sam-
pling the marginal distributions of model parameters, 10 000
samples can capture accurately the predictive distribution of
the TL at this chosen position �with maximum error 0.025�.

D. Experimental comparisons

We have demonstrated how to estimate the statistical
properties of the TL in the presence of uncertainty embedded
in the environmental model parameters. To further illustrate
the versatility and usefulness of the predictive distributions
of the TL, the resulting statistics are compared with actual

FIG. 8. Convergence of �a� the posterior probability distribution of each
model parameter and �b� the predictive probability distribution of the TL at
69.5 m depth and 2.85 km range �see Fig. 5�c� for the distribution�. The
vertical axis indicates the maximum difference between the cumulative dis-
tributions of k-length subsamples and the cumulative distribution of the full
MCMC samples �the length of 480 000�.
TL observations.

1938 J. Acoust. Soc. Am., Vol. 120, No. 4, October 2006 Hua
Bayesian inference gives us the posterior distribution of
the full parameter vector. To estimate the statistical proper-
ties of the TL, only the posterior distribution of geoacoustic
parameters and ocean sound speed EOFs is required, but not
the distribution of the geometric parameters. The environ-
mental parameters are the geoacoustic parameters, ocean
sound speed EOF coefficients, and water depth �water depth
is included since it affects the number of propagating modes
in the waveguide�. Uncertainties in these parameters can be
obtained easily by integration over the remaining geometric
parameters, that is, simply removing these variables �SD,
SR, b, and 
� from the parameter vector.

Source depth is an important parameter for predicting
TL fields accurately. In this data set, the depth sensor mea-
surement indicates that the source varied between 48 and
52 m. Since the measured and MF estimated source depths
�as shown in Fig. 4� are virtually the same, the MF-derived
time-varying source position is included in the TL prediction,
referred to as the MFSD model.

Figure 9 compares the observed TL �dots� with the pre-
dicted TL statistics of the MFSD model �solid line with gray
area� for the frequencies 195, 295, and 395 Hz �left to right�
and for array elements 1, 7, and 16 �bottom to top; depths at
99.5, 69.5, and 24.5 m�. We see that for 195 Hz the TL un-
certainty band is about 5 dB near the ranges of constructive
interference and is widened near the ranges of destructive
interference. As frequency increases, larger spreads in TL
predictions are observed. This is most pronounced near re-
gions of destructive interference. In general, the predicted TL
patterns using the MFSD model follow the trends of the
measured TL well. Table I summarizes comparisons of mea-
sured and predicted TL from Fig. 9. As frequency increases,
the uncertainty band of the predicted TL �number in dB�
increases by approximately 3 dB and more of the observed
TL points are within the 90% CI.

To investigate the effect of the source depth uncertainty,
we have estimated the TL distributions for 295 Hz for the
following three additional cases:

�1� The marginal posterior distribution of source depth ob-
tained from the 1.7 km inversion is assumed for all
ranges, referred to as the SD@1.7 km model.

�2� The range-dependent source depth variability is ac-
counted for by the statistics of the measured source
depth. The parameter SD is treated as a random variable
having the mean value of 50.2 m and standard deviation
of 1.5 m, estimated from the measured source depths. At
each range, the source depth is a Gaussian distribution
centered at 50.2 m with uncertainty band of 1.5 m, re-
ferred to as the MEAN+STD model.

�3� The uncertainty band in the MEAN+STD model is ap-
plied to the MFSD model. At each range, the source
depth is assumed to be a Gaussian distribution centered
at the MF-derived source depth with standard deviation
of 1.5 m, referred to as the MEAN+STD model.

Figure 10 shows comparisons of predicted and measured

TL for the above described source depth distribution models
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for a frequency of 295 Hz. The prediction quality is summa-
rized in Table I. The results using the marginal posterior
distribution of the source depth obtained at the 1.7 km range
�left column� show that the prediction quality is rather poor.
For instance, for array element 7 �middle row� the construc-
tive interference region near 1.6 km and the destructive in-
terference region near 2.2 km are not captured by the predic-
tions. This is expected since the source depth at each range
differs substantially from the estimated source depth at the
range of 1.7 km. For the MEAN+STD model �middle col-
umn�, we see that the fine scale features of the observed TL
are matched by the predictions. Compared with the MFSD
model �middle column in Fig. 9�, the addition of source
depth uncertainty results in the TL uncertainty band being
much wider. The predicted TL patterns follow the trends of
the measured TL well. For the MFSD+STD model �right
column�, it shows the highest percentage of the observed TL
inside the CI. Table I shows that the median value of pre-
dicted TL spread increases by approximately 3 dB more than
the MFSD alone, and about 7%–11% more of the observed
TL points fall within the gray area.

We found that, in general, about 80% of the observed TL

FIG. 9. �Color online� Predicted and measured TL �dots� for array elemen
predicted TL �solid line� is shown together with the 90% CI �gray area�. Th

TABLE I. Summary of TL prediction performance. N
TL spread over all range, while numbers in % represe
the 90% CI.

Element
number �depth�

MFSD �Fig. 9�

195 Hz 295 Hz 3

16 �99.5 m� 4.9 dB/73% 6.2 dB/80% 7.7
7 �69.5 m� 4.3 dB/73% 6.1 dB/85% 8.2
1 �24.5 m� 4.6 dB/69% 5.4 dB/80% 7.8
J. Acoust. Soc. Am., Vol. 120, No. 4, October 2006 Huang, Ger
data falls within the predicted 90% CI. Since the predicted
TL statistics are derived from uncertainty in geoacoustic pa-
rameters p�m �d� for the given environmental parameteriza-
tion only �we assume a range-independent environment�.
Complicated environments, such as spatial and temporal
fluctuations in the water column, sediment, sea surface, and
water-sediment interface, are not modeled and this will in-
crease the error. Further, all noise sources have not been
taken into account. Therefore, the percentage of observed
data points inside the computed CI is less than the predicted.

IV. CONCLUSION

This paper investigates the statistical estimation of TL
based on the posterior probability density of environmental
parameters obtained from the geoacoustic inversion process.
First, a Markov chain Monte Carlo procedure is employed to
sample the posterior probability density of the geoacoustic
parameters. Then, these parameter uncertainties are mapped
to the transmission loss domain where a full multidimen-
sional probability distribution of the TL as a function of

7, and 16 and for frequencies 195, 295, and 395 Hz. The median of the
rce depth is estimated from MF processing.

ers in dB indicate the median value of the predicted
percentage of the measured TL points that lie inside

F=295 Hz �Fig. 10�

z SD@1.7 km MEAN+STD MESD+STD

2% 7.2 dB/61% 11 dB/88% 9.6 dB/91%
9% 7.3 dB/69% 9.6 dB/93% 9.3 dB/92%
1% 4.9 dB/67% 6.9 dB/85% 7.4 dB/91%
ts 1,
umb
nt the

95 H

dB/8
dB/7
dB/8
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range and depth is obtained. The summary statistics of pre-
dicted TL including the median, percentiles, and correlation
coefficients are considered.

A Monte Carlo subsampling technique is applied to sub-
sample the full MCMC model parameter samples. A signifi-
cant saving in both storage and computation time �a factor of
50� was observed using this technique.

The predicted TL statistics are compared with actual TL
observations from the ASIAEX 2001 East China Sea experi-
ment. In general, about 80% of the observed TL data falls
within 90% of the range-varying predicted TL probability
distribution. Thus, the geoacoustic inversion has captured
most of the uncertainty in the environment.
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FIG. 11. Model-utility relationship: many-to-one transformations. In the
center panel, horizontal axis represents the model domain, vertical axis rep-
resents the utility domain. The bottom and left panels indicate p�m �d� and

FIG. 10. �Color online� Predicted and measured TL for 295 Hz for various s
inferred from the inversion at 1.7 km; Middle column �MEAN+STD�: fi
�MFSD+STD�: MF-derived source depth with 1.5-m standard deviation.
p�u �d�, respectively.
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APPENDIX: TRANSFORMATION OF RANDOM
VARIABLES

Given that u=U�m� and assuming that U�m� is a mono-
tonic function of m �monotonic assumption only true in this
paragraph�, the posterior pdf of m is related to the posterior
pdf of u by the transformation of random variables

p�u�d� = p�m�d�� �m

�U�m�
� , �A1�

where ��m /�U�m�� is the absolute value of the Jacobian de-
terminant, whose reciprocal represents the hypervolume in
the U domain mapped out by the small hypercube region in
the M domain.

Propagation of parameter uncertainties to the TL predic-
tions by integration in the sense of Eq. �16� can be related to
the transformation of random variables as in Eq. �A1� using
the properties of the Dirac delta function. Suppose that f�x�
=0 has N zeros �xn� and df�xn� /dx�0, then ��f�x�� equals a
sequence of impulses at x=xn of area �df�xn� /dx�−1,37 i.e.,

��f�x�� = �
n

��x − xn��df�xn�
dx

�−1

. �A2�

Using Eq. �A2�, Eq. �16� can be rewritten as

p�u�d� = �
M

��U�m� − u�p�m�d�dm = �
n=1

N

p�mn�d�

�� �U�mn�
�m

�−1

, �A3�

depth distribution models. Left column �SD@1.7 km�: the source depth is
ource depth �50.2 m� with the standard deviation �1.5 m�; Right column
ource
xed s
where �mn� are the roots of the equation U�m�−u=0. Equa-
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tion �16� is the generalization of Eq. �A1� to many-to-one
transformations.

Equation �A3� can be explained intuitively using Fig. 11.
For a nonmonotonic function U�m�, the probability mass of
any specific value u0 can be found by first solving for the
roots of the equation u0=U�m�, then calculating the inverse
of ��U�m� /�m� at the roots mn weighted according to
p�mn �d�, and finally summing all probability masses.
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