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Theoretically, the empirical Green’s function between a pair of receivers can be extracted from the cross
correlation of the received diffuse noise. The diffuse noise condition rarely is met in the ocean
and directional sources may bias the Green’s function. Here matrix-based spatial filters are used for
removing unwanted contributions in the cross correlations. Two methods are used for solving the matrix
filter design problem. First a matrix least-square problem is solved with a low-rank approximation of
the pseudo-inverse, here, derived for linear and planar arrays. Second, a convex optimization approach
is used to solve the design problem reformulated with ad hoc constraints. The spatial filter is applied
to real-data cross correlations of elements from a linear array to attenuate the contribution of a
discrete interferer. In the case of a planar array and simulated data, a spatial filter enables a passive
upgoing/downgoing wavefield separation along with an efficient rejection of horizontally propagating
noise. The impact of array size and frequency band on the filtered cross correlations is discussed.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4863658]
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I. INTRODUCTION

In ocean acoustics, surface-generated noise constitutes a
natural source of illumination propagating in all directions1

and covering a large frequency band (10 Hz–50 kHz). It is
well established that the cross correlation of a diffuse noise
field observed by a receiver pair provides an estimate of the
Green’s function between this pair, also called the empiri-
cal Green’s function (EGF), as shown theoretically and
experimentally.2–4 The surface-generated noise can be
recorded using passive arrays of sensors and processed to
estimate the EGF between pairs of receivers.5 In this paper,
we derive data-independent spatial filters for improving
estimates of the EGF for one-dimensional (1D) and two-
dimensional (2D) horizontal arrays.

In practice, EGF extraction from ambient noise is
affected by several artifacts: (i) Surface generated noise usu-
ally is modeled as an infinite 2D plane sheet of sources.
Contrary to a volume noise model, this gives a one-sided
illumination as the noise sources do not surround the
receivers, which leads to spurious events5 or asymmetry6 in
the EGF. (ii) Surface noise anisotropy7,8 and a limited fre-
quency band9 also affect the cross correlations, and thus the
EGF. (iii) Noise in the lower part of the spectrum (up to
300 Hz) usually is dominated by ship noise. If loud localized
sources are present in the environment, the cross correlations
might be dominated by the arrivals coming from these sour-
ces and lead to biases in the travel time estimates.10–12

Array processing methods have been proposed for
correcting bias in source distribution for cross correlation
purposes.13,14 In Ref. 13, horizontally propagating noise
inhomogeneity was compensated by a passive inverse filter.
In Ref. 14, spatio-temporal filters are constructed using the
first singular vectors of a reference cross-spectral density
matrix (CSDM). Their filters were shown to improve the

emergence rate of cross correlation peaks between two verti-
cal arrays, and are data (or model) dependent.

Here, we consider the use of a single horizontal array of
receivers (1D or 2D) and apply spatial filtering to attenuate
unwanted propagating noise contributions in its CSDM. The
spatial filter design is directly related to discrete Fourier
transform and frequency (or wavenumber) sampling. These
topics are discussed extensively in the digital signal process-
ing literature (see, e.g., Ref. 15). The classical formulation
of the filter design leads to a least-square problem. As the
wavelength sampling varies with frequency (for a given re-
ceiver spacing along the array), the least-square inversion
has to be restricted to the degrees of freedom of the array to
remain stable below the design frequency. For this purpose,
a singular value decomposition (SVD) of the frequency-
dependent steering matrix is used, following Refs. 16–18.
Analytic expressions of the SVD spectrum and stable trunca-
tion points are derived mathematically here for 1D and 2D
arrays.

Alternatively, a matrix filter also can be formulated as
the solution to a convex optimization problem.19 In the con-
vex optimization approach, the stability is controlled by the
constraints used in the definition of the optimization problem
so that no SVD truncation is required. Convex optimization
gives more flexibility to the filter designer by providing
more control parameters than a standard least-square inver-
sion. However, the finding of a stable solution depends on
the control parameter values and might require some tuning
steps. Convex optimization already has been applied for
data-independent beampattern optimization20 and for finite
impulse response filter.21 Here, we restrict the use of convex
optimization to 1D array spatial filters to maintain reasona-
ble computational times and discuss differences from the
least-square approach.

A 2D array has the important property of being able to
point in a single direction (azimuth and elevation) without
suffering from cylindrical ambiguity around the (1D) array
axis (the so-called cone angle). Contrary to vertical arrays,
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beamforming with horizontal arrays of hydrophones cannot
separate up- and downgoing waves. However, combining
collocated hydrophones and vertical particle velocity sen-
sors, e.g., with an ocean bottom sensor (OBS) network, ena-
ble an up/down separation scheme22,23 which, combined
with beamforming, provide an acoustic or seismic data mea-
surement system able to point in any direction (not necessar-
ily vertical) or filter unwanted direction of arrival, with a
resolution related to the beampattern. By implementing a
spatial filter that attenuates horizontally propagating noise,
the subsurface reflection peaks in the EGF are enhanced.
The combination of beamforming and cross correlation using
vertical arrays is discussed in Refs. 24 and 25.

2D planar arrays are common in the seismic community,
in land (e.g., USArray stations26) as well as underwater (e.g.,
the permanent ocean-bottom array at the Valhall Field27),
but they are not yet common in ocean acoustics. Keeping in
mind the scale difference (frequency, medium propagation
speed, and receiver spacing), the present results might be of
interest for spatial filtering of identified events or rejection
of specific propagating waves for seismic applications.

The remaining parts of the paper are organized as follows.
Section II starts with the basic principles of EGF extraction
from the CSDM and spatial filtering. Section III describes a
convex optimization approach to solve the spatial filter design
problem. Then, in Sec. IV, the expression for a stable matrix-
based filter with a 1D array is derived in the SVD context,
leading to an identical truncation condition as obtained in
Ref. 17. These results then are extended for 2D planar arrays.
Section V illustrates the effect of spatial filters on EGF extrac-
tion. First, experimental data with a 1D array demonstrates the
attenuation of a discrete interfering source in active cross cor-
relations. Second, an application of upgoing/downgoing noise
separation is proposed with simulated data on a 2D planar
array for the purpose of enhancing the subsurface reflections
and attenuating the spurious arrivals. Requirements and limita-
tions that come with spatial filters and the two presented
design approaches then are discussed in Sec. VI.

II. BACKGROUND

A. Green’s function extraction

The cross correlation CabðsÞ of signals received on two
receivers a and b, respectively located at ra and rb, is related
to the time-domain Green’s function Gðs; ra; rbÞ between
these receivers,2–4

dCabðsÞ
ds

/ #Gðs; ra; rbÞ þ Gð#s; ra; rbÞ; (1)

given that the signals received are due to a random diffuse
white noise field.

In the frequency domain, the cross spectral density is
given by

RabðxÞ ¼ F CabðsÞ½ '; (2)

where F denotes the Fourier transform. Considering a single
array of receivers, the CSDM is the mathematical

expectation of the outer product of the vector pðxÞ of com-
plex pressure on the receivers

RðxÞ ¼ E pðxÞpðxÞH
h i

; (3)

where the superscript H denotes the conjugate transpose. In
practice, the CSDM is approximated by the sample covari-
ance matrix (SCM), defined as the average of J outer-
products of the short-time Fourier transforms of the signals

R̂ðxÞ ¼ 1

J

XJ

j¼1

pjðxÞpjðxÞ
H ¼ 1

J

XJ

j¼1

R̂jðxÞ; (4)

where R̂jðxÞ is referred to as the short-term covariance ma-
trix (STCM) in the following.

B. Spatial filter

Array processing can be used to spatially filter incoming
signals based on their wavenumber or their impinging angle.
Instead of manipulating the beamformer outputs of sub-
arrays, we use matrix-based filters.16–18 The output of a
matrix-based filter has the same dimension as the input, as
we are interested in extracting (or attenuating) a useful (or
unwanted) part of the signal. These filters are data independ-
ent allowing pre-computation of the filter for a given sensor
geometry and frequency band.

Considering signals received on an array of N receivers,
pðxÞ, we want to design a spatial filter SðxÞ of size N ( N
for removing or isolating contributions from a given
direction

~pðxÞ ¼ SðxÞpðxÞ; (5)

where the filtered complex pressure, ~pðxÞ, is a weighted
sum of the original complex pressure over the array.
Contrary to a beamformer, the output is not merged into a
centered signal, removing the need of considering sub-arrays
for the cross correlations. Depending on the application, a
spatial notch filter or spatial bandpass filter can be designed.

We are interested in applying the spatial filters to cross
correlated signals. Spatially filtered STCM are given by the
outer product of spatially filtered short-term signals

~RjðxÞ ¼ ~pjðxÞ~pH
j ðxÞ ¼ SðxÞR̂jðxÞSHðxÞ: (6)

Equivalently, the spatially filtered SCM is obtained as

~RðxÞ ¼ 1

J

XK

j¼1

~pjðxÞ~pH
j ðxÞ ¼ SðxÞR̂ðxÞSHðxÞ: (7)

Matrix-based spatial filters are obtained as follows: A
frequency-dependent plane-wave steering matrix, V, is com-
posed of K replica vectors of length N. These vectors are
defined as the phase advance along the N array elements, as
a function of slowness (or the impinging angle, if the propa-
gation speed is known). The spatial filter, S, is designed
from a constraint, D,
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SV ¼ VD; (8)

where D ¼ diagðdÞ is a diagonal matrix containing the idealized
design coefficients in the beam space, with d ¼ ½d1;…; dK'
defined as

dk ¼
0; if hk 2 HR

1; otherwise:

(

(9)

A value of 1 indicates that we want to pass with a 0-dB gain
arrivals from directions that are not in the rejection band,
HR. The design problem, Eq. (8), is solved using a convex
optimization approach (Sec. III) and a least-square solution
(Sec. IV).

III. CONVEX OPTIMIZATION BASED FILTER DESIGN

Vaccaro and Harrison19 showed that the design of a ma-
trix filter can be formulated as a convex optimization prob-
lem. Convex optimization is an attractive approach as it has
a straightforward formulation, and many efficient solvers
exist,28 even for moderately sized problems (less than 1000
variables).

Instead of solving directly the design problem Eq. (8),
the problem is reformulated as an optimization problem con-
strained with criteria for the matrix filter in the rejection (R),
transition (T), and pass (P) bands (Fig. 1).

The spatial filter is the solution of the following optimi-
zation problem

Ŝ ¼ argSmin
X

r

jjSvðhrÞjj22; hr 2 HR

subject to
maxpjjSvðhpÞ # vðhpÞjj2 < !; hp 2 HP

maxtjjSvðhtÞjj2 ) cT; ht 2 HT;

(

(10)

i.e., a filter that minimizes the contribution of waves imping-
ing on the array with an incident angle in the rejected band,
HR, while keeping good fidelity in the passband, HP (! * 0)
and limiting the amplitude in the transition band (cT * 1).
Equation (10) can be replaced by a minimax criterion

Ŝ ¼ argSmin max
r
jjSvðhrÞjj22; hr 2 HR: (11)

The response of the filter is controlled by the passband
fidelity constraint, !, the transition constraint, cT, and the
width of the transition band, HT . By adjusting ! and cT, the
notch depth can be modified without changing the transition
width. Compared to a more conventional approach based on
a least-square solution of Eq. (8), the convex optimization
approach is more flexible thanks to the additional control pa-
rameters that are the constraint numbers.

IV. TRUNCATED LEAST-SQUARE FILTER

Despite the flexibility and the simplicity of implementa-
tion of the convex optimization approach, its computational
burden is a major obstacle for very large arrays (hundreds of
sensors). A straightforward method to solve the design prob-
lem Eq. (8) is given by the overdetermined least-square
problem,29 considering a number of directions larger than
the number of sensors K > N, as

S ¼ VDVþ; (12)

where Vþ (size K ( N) is the pseudo-inverse of the steering
matrix, V, defined as

Vþ ¼ VHðVVHÞ#1: (13)

The pseudo-inverse is computed from the SVD of the steering
matrix, V. Small singular values make the pseudo-inverse
unstable and thus strongly impact S. Therefore, a low rank
approximation of Vþ is obtained by truncating singular values
in the decomposition to remove the contributions of near-zero
singular values. The steering matrix is of lower rank when the
receiver spacing samples the spatial domain with an interval
shorter than a half wavelength. Note that the opposite situa-
tion (receiver spacing larger than a half wavelength) does not
require a truncation, but is affected by spatial aliasing.

Linear array (1D) or planar array (2D) designs result
in different frequency-dependent truncation conditions.
Using matrix-based filters on receiver arrays, a user-
defined threshold16 and the degrees of freedom of the
array17,18 previously were proposed as truncation condi-
tions for 1D arrays. Here, a similar expression is obtained
for a 1D array through derivation of the singular value
spectrum and its associated truncation point. The results
are further extended for 2D arrays. These two cases are
treated separately in the next two sections. In the follow-
ing, we use the impinging angle as the variable of interest,
assuming a known propagation speed.

A. Linear array

For a 1D array, a frequency-dependent steering matrix,
V, discretizes the angular domain h ¼ ½#p=2; p=2' in K
directions, with h ¼ 0 corresponding to the broadside direc-
tion [Fig. 2(a)],

V ¼ ½vðh1Þ + + +vðhKÞ': (14)

Each column of V is a replica vector, v, defined as

FIG. 1. Schema of a notch filter response [Eq. (32)] based on a convex opti-
mization designed with rejection (R), transition (T), and pass (P) bands. The
values of ! and cT control the filter response outside of the rejection band.
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vðhÞ ¼

exp i
2p
k
ðx1 sin hÞ

! "

!

exp i
2p
k
ðxN sin hÞ

! "

2

666664

3

777775
; (15)

where k is the wavelength. Each replica vector, v, corre-
sponds to a plane-wave impinging on the array with an inci-
dence angle, h.

The first N singular values (K > N) of the steering ma-
trix, V, correspond to the positive square root of the eigen-
values of Q ¼ VVH. The elements of Q are given by

Qij ¼
X

k

VikV,jk ¼
X

k

viðhkÞv,j ðhkÞ: (16)

For a continuous sampling in h, Eq. (16) is approximated by

Qij *
1

p

ðp=2

#p=2

exp i
2p
k

Dxijsin h
$ %

! "
dh

¼ J0ð2pbji# jjÞ; (17)

with Dxij ¼ jxj # xij, and where J0 is the zeroth order Bessel
function.

The parameter b is a dimensionless frequency, defined
as the ratio between receiver spacing, dx, and wavelength, k,

b ¼ dx

k
¼ xdx

2pc
: (18)

A value of b¼ 0.5 corresponds to the design frequency (a
spacing of k=2). For b > 0:5, beamforming introduces spa-
tial aliasing.

Equation (17) corresponds to the cross-spectrum for a
2D isotropic and uncorrelated noise field.30,31 The matrix Q
is a symmetric Toeplitz matrix. Asymptotically, the eigen-
values of a Toeplitz matrix are distributed as the samples of
the Fourier transform of the generating function of this
Toeplitz matrix,32 given by

/ðkxÞ ¼ F J0ð2pbxÞ
& '

¼ 1

pb
rectðkx=4pbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# ðkx=2pbÞ2

q ; (19)

where the spatial frequency kx 2 ½#p; p½ and rectðxÞ is 0 out-
side the interval ½#1=2; 1=2' and unity inside. For b ) 0:5, this

expression is non-zero when jkxj < 2pb. As the N eigenvalues
sample regularly the spatial frequency domain, kx 2 ½#p; p½,
non-zero eigenvalues have an index, n, such that31

n# N þ 1

2
N

))))))

)))))) < b: (20)

For sorted eigenvalues, this condition leads to a truncation
index

nk ¼ 2Nb * L

k=2
: (21)

This truncation reduces the number of eigenvalues to the
number of degrees of freedom at each frequency, i.e., the
number of half wavelengths along the array aperture, L.17

The spectrum of singular values for a linear array
with N ¼ 100 elements is shown in Fig. 3(a) for several val-
ues of b. The asymptotic curve [square root of Eq. (19)] for
b ¼ 0:4 is superimposed. For b < 0:5, i.e., at frequencies
below the design frequency, the steering matrix has singular
values of low amplitude (zero-valued in the asymptotic
expression). For b > 0:5 (aliasing regime), the truncation
index exceeds the number of singular values and therefore
the spectrum does not need to be truncated.

B. Planar array

The extension to the 2D case is relatively straightforward
and requires minor changes from the 1D array case. With a
2D array, the frequency-dependent steering matrix, V, now
discretizes the angular domain h ¼ ½0; p=2' [ / ¼ ½0; 2p'

& '

in K ( L directions [Fig. 2(b)]

V ¼ ½vðh1; /1Þ + + +vðhK ; /LÞ' (22)

constructed with 2D replica vectors v defined as

vðh; /Þ ¼

exp i
2p
k
ðx1 sin h cos /þ y1 sin h sin /Þ

* +

!

exp i
2p
k
ðxN sin h cos /þ yM sin h sin /Þ

* +

2

666664

3

777775
:

(23)

For an array of N (M sensors, each vector v is of
dimension NM ( 1. The spatial filter design [Eq. (8)] holds

FIG. 2. (a) Linear (1D) array. (b) Planar (2D) array.
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for the 2D case, with a diagonal matrix D containing the
coefficients d ¼ ½d1;…; dKL' redefined as

dkl ¼
0; if hk 2 HR and /l 2 UR

1; otherwise;

(

(24)

where fHR [ URg defines the rejection band, and the solu-
tion of the design equation is given by a set of NM least-
square optimization problems.

The spectrum of the 2D steering matrix [Fig. 3(b)] differs
from the 1D case. The low-rank approximation of Vþ requires
therefore a different truncation index. Again, we consider the
eigenvalues of the matrix, Q ¼ VVH . For a continuous sam-
pling in h and /, the elements of the matrix Q are

Qij *
1

p=2

1

2p

ðp=2

0

ð2p

0

exp

*
i
2p
k

Dxij sin h cos /
$

þDyij sin h sin /Þ
+

d/ dh; (25)

where Dxij ¼ jxj # xij and Dyij ¼ jyj # yij. Assuming identi-
cal spacing dr in x and y directions, we can use b ¼ dr=k.
Introducing polar coordinates,

qij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2

ij þ Dy2
ij

q

dr
; Uij ¼ arctan

Dyij

Dxij

! "
; (26)

ðDxij; DyijÞT ¼ drqijðcos Uij; sin UijÞT : (27)

We rewrite Eq. (25) using the parameter b,

Qij *
1

p2

ðp=2

0

ð2p

0

exp½i2pbqij sin h

( cos Uijcos /þ sin Uijsin /
$ %

' d/ dh

¼ 1

p2

ðp=2

0

ð2p

0

exp½i2pbqij sin h cosðUij # /Þ' d/ dh

¼ 1

p=2

ðp=2

0

J0 2pbqij sin h
$ %

dh

¼ J2
0 pbqij

$ %
; (28)

where the last line is obtained from a property of Bessel
integrals.33

Because of the folding of the two components, x and y,
the matrix Q has a structure of a Toeplitz block Toeplitz,
i.e., a Toeplitz matrix of blocks which are Toeplitz them-
selves. The theorem linking the eigenvalues of such a matrix
and the Fourier transform of its generating function holds,34

and we thus have to evaluate the 2D Fourier transform of the
right-hand side of Eq. (28).

The 2D Fourier transform of a radially symmetric function
corresponds to its Hankel (or Bessel–Fourier) transform.35 Its
solution is deduced from Hankel transform properties,36

/ðjÞ ¼ F 2D J2
0 pbqð Þ

& '

¼ 2p
ð1

0

J2
0ðpbqÞJ0ðjqÞqdq

¼ 2pH0fJ2
0ðpbqÞg

¼ 2

pb
rectðj=4pbÞ

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1# ðj=2pbÞ2

q ; (29)

where j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
and kx and ky are in the interval

½#p; p½(½#p; p½. For b2 ) 0:5, Eq. (29) is non-zero when
jjj < 2pb. For a finite number of Nx ( Ny receivers, an ap-
proximate distribution of the eigenvalue spectrum thus is
obtained by sampling Eq. (29).34 Similarly to the 1D case, it
follows that the 2D indexes n; m of non-zero eigenvalues
satisfy the condition

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n# Nx þ 1

2
Nx

0

@

1

A
2

þ
m#

Ny þ 1

2
Ny

0

@

1

A
2

vuuut
< b; (30)

with n ¼ 1;…; Nx and m ¼ 1;…; Ny, and the analogy with
Eq. (20) (1D case) is obvious. Equation (30) describes the in-
terior of an ellipse with semi-axes bNx and bNy. The trunca-
tion index of sorted eigenvalues is thus

nk ¼ pb2NxNy *
p
4

A

ðk=2Þ2
; (31)

i.e., proportional to the ratio between the area, A, covered by
the array and the square of half wavelength. Note that the
definition of b used implies that this truncation can be used

FIG. 3. (Color online) Singular value
spectrum of the steering matrix for
varying values of b (a) for a 1D array
with 100 elements, (b) for a 2D array
with 10 by 10 elements. The truncation
index (circles) is given by Eq. (20), 1D
case, and Eq. (30), 2D case, respec-
tively. The corresponding sampling of
the asymptotic expression [Eq. (19) for
1D case, Eq. (29) for 2D case] is
shown for b ¼ 0:4 (thick line).
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up to b ¼ 1=
ffiffiffi
2
p

(instead of b ¼ 1=2 for the 1D case). The
asymptotic expression for the eigenvalue spectrum [2D case,
Eq. (29)] with b ¼ 0:4 is shown in Fig. 3(b).

V. APPLICATION EXAMPLES

Two applications illustrate the use of spatial filtering in
interferometric processing. First, a notch spatial filter is used
with a 1D array to mitigate the contribution of an interferer in
cross correlations of active shot data. The second application
with simulated data demonstrates that a spatial filter focusing
a 2D array toward the vertical enables an upgoing/downgoing
wavefield separation scheme for ambient noise, thereby
improving subsurface imaging.

A. Interference removal from active cross correlations
with 1D array

In April 2011, 15 OBS provided by Woods Hole
Oceanographic Institution were deployed at the Woolsey
Mound (Northern Gulf of Mexico) at 900-m water depth.
Subsurface imaging based on active interferometric processing
of this data set was presented in Ref. 12. A subset of these
OBS formed a short line array with 11 OBS spaced -26-m
apart [Fig. 4(a)]. A gas-injection gun was towed near the sur-
face above the OBS line, from south to north, shooting approx-
imately every 25 m covering a 5500 m range. The sampling
rate of the OBS is 200 Hz, limiting the useful frequency band
to a maximum of 100 Hz. The active OBS survey was per-
formed on April 7, from 10:01–11:03 UTC, resulting in a new
shot triggered manually every 10–15 s. One-minute moving
averages of broadband beamforming (implemented in the fre-
quency domain using 2-s segments) identifies the active survey

as the strong feature that goes from þ70. to #70. [Fig. 4(b)].
A second feature revealed by the beamformer output is a dis-
tant seismic survey present during the whole deployment that
impinges on the array with a constant angle of þ40. and sig-
nificant power over the whole frequency band of interest.

1. Truncated least-square filter

To mitigate the contamination of this interferer in the
cross correlations, a spatial filter, S1D, is designed to null out
arrivals impinging on the array at 35.–45.. This spatial filter
is obtained using Eq. (12), where the pseudo-inverse uses the
1D truncation condition [Eq. (21)], with b defined with the
average OBS spacing along the array. When spacing varia-
tions are too large, thresholding of the singular value spec-
trum might be required to deduce a stable truncation.17

Using the replica vectors vðhÞ defined in Eq. (15), the angu-
lar response AðhÞ of a filter, S, will be defined as

AðhÞ ¼ jjSvðhÞjj2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

jSijvjðhÞj2
vuut : (32)

The response of the spatial filter, S1D, is shown in Fig. 4(d)
for the band 10–40 Hz.

The value of b above which spatial aliasing appears
depends on the grating lobe (Ref. 15, p. 54)

b ¼ 1

1þ jsin hj
; (33)

where h is the notch angle. For a notch filter with a null at
h ¼ 90., aliasing starts at the design frequency (b ¼ 0:5).
Here the average spacing is-26 m, therefore aliasing perturbs

FIG. 4. (Color online) (a) Geometry of Gulf of Mexico active survey. The OBS 6 and 11 used in cross correlations are marked. (b) Broadband (11–33 Hz)
plane-wave beamforming power output (dB) around the period of the active survey from 10:00 UTC. (c) Broadband (11–33 Hz) plane-wave beamforming
power output (dB) when the STCM are spatially filtered [Eq. (6)] before beamforming. (d) Response (dB) of (truncated least-square) spatial filter with a stop-
band 10. wide centered on 40.. The frequency band 11–33 Hz considered in beamforming and crossc orrelations is within the dashed lines. (e) Time-domain
cross correlations for OBS pair 6-11, zoomed in on the cross correlated direct arrivals from the active survey, between 10:21 and 10:48 UTC [dashed lines in
(b) and (c)]. (f) Spatially filtered time-domain cross correlations for OBS pair 6-11, zoomed in on the cross correlated direct arrivals from the active survey,
between 10:21 and 10:48 UTC [dashed lines in (b) and (c)]. The nearly constant power at about 40. [beamforming, (b)] and #0:06 s [cross correlations, (e)] is
from the distant seismic survey that lasted the whole deployment (arrow).

J. Acoust. Soc. Am., Vol. 135, No. 3, March 2014 Carrière et al.: Spatial filtering and interferometry 1191

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  137.110.8.48 On: Mon, 10 Mar 2014 03:47:55



significantly the filter response above 1514=ð1þ sin 40.Þ
26 * 35 Hz [Eq. (33), with a sound speed of 1514 m/s, as
measured in situ].

To obtain a notch deep enough (<# 30 dB) to filter out
the interferer, the filter was designed with the largest transi-
tion band possible that does not exceed the visible space
boundary (90.). The discontinuity in the filter response is a
side effect of the use of an integer index in the SVD trunca-
tion. Numerical tests show that choosing the integer above
the rounded value leads to a smoother response without get-
ting a positive gain (>0 dB) in the passband.

Above -35 Hz, the stopband is aliased and the notch
depth therefore is strongly reduced. Moreover, the use of the
spatial filter in the aliasing regime is sensitive as it might
attenuate preferred directions of arrival as well. At low fre-
quencies (below 10 Hz), the array aperture in wavelengths is
too small (less than 2) to provide good resolution. For these
reasons, the processing here is restricted to the band 11–33 Hz.

Figure 4(c) illustrates broadband beamforming of the
spatially filtered STCM averaged over this band. The inter-
ferer signal is completely nulled out. Although the active
survey source and the interferer are not co-located, the spa-
tial filter also attenuates the survey signal when the angle
from the vertical is close to the rejection band, due to the
cone ambiguity that is inherent with a 1D array.

The cross correlation processing was carried out as fol-
lows. The 1-h signals were segmented using a sliding time
window of 15 s with 66% overlap. These short-term signals
were Fourier transformed and multiplied in the spectral do-
main for all possible OBS pair combinations, leading to an
ensemble of STCM. These STCM were spatially filtered
[Eq. (7)] and then inverse Fourier transformed to go back to
the time domain yielding the short-term cross correlations.
Figures 4(e) and 4(f) illustrate the short-term cross correlations
without and with spatial filtering, respectively, focusing on the
direct arrival for OBS pair 6-11. This direct arrival goes from
negative to positive times as the survey source progressively
passes above the receiver pair. The peaks at -0:06 s (arrow)
are due to the distant seismic survey. These peaks are well
attenuated by the spatial filter. Before 10.3 h, the interferer and
active survey have comparable arrival angles and their associ-
ated peaks in the cross correlations are simultaneous.
Therefore, the spatial filter also attenuates the direct arrivals
from the active source of interest. A larger number of receivers
and a more dense array would enable a narrower notch with
similar depth, but would not avoid filtering out the survey
source when vertical angle corresponds to interferer azimuth.

Similar to Eq. (1), an estimate of the EGF would be
obtained by averaging the short-term cross correlations over
the whole recording time.37 The averaging process also can
be made in the frequency domain [Eq. (4)] before inverse
Fourier transform. Therefore, if no specific signal processing
is carried out on the short-term cross correlations, the spatial
filter can be applied to the ensemble averaged SCM [Eq. (7)].

2. Convex optimization based filter

The spatial filter can be obtained by solving a convex
optimization problem; see Sec. III. Figure 5 shows the

variation of the average notch depth over the notch interval
(4065.) at 28 Hz as a function of the transition width and
the passband fidelity constraint ! (b - 0:5 considering the
average OBS spacing). The figure shows that a reduced tran-
sition width can be compensated by increasing !.

This feature is illustrated further by three different spa-
tial filters with a similar notch design, but with different tran-
sition width and passband constraints. The transition width is
defined relative to the half-power beamwidth (HPBW),
where15

HPBW * 0:891
1

bN
: (34)

First, a wide transition width is allowed (1:85( HPBW on
each side of the rejection band) and a strong constraint on the
passband fidelity is imposed (! ¼ 0:005); see Fig. 6(a). Note
that the transition width exceeds 90. below 28 Hz. Second, a
narrower transition width is imposed (0:5( HPBW on each
side of the rejection band), but the constraint on passband fi-
delity is weaker (! ¼ 0:1), so that the filter response still
exhibits a deep notch; see Fig. 6(b). As a matter of compari-
son, the least-square solution for such reduced transition width
has a maximum notch depth limited to #15 dB. The
third case illustrates a frequency-independent transition band
½1( HPBW at b ¼ 0:5 on each side of the rejection band,
i.e., 10. (15.) on the left (right) side of the notch.]; see
Fig. 6(c). To compensate for the progressive decrease of the
transition width relative to the HPBW when decreasing the
frequency, a frequency variable constraint is used in the con-
vex optimization. The resulting spatial filter response exhibits
a deep, well-focused notch over the rejection band across the
whole frequency band, but with a reduced passband fidelity at
low frequencies. In all cases, the constraint cT was kept to
1:1. Varying this constraint has no significant effect on the
solutions for these specific examples.

B. Upgoing/downgoing noise separation with a 2D
array

The EGF between two receivers contains not only the
direct path and water multiples, but also the reflections from

FIG. 5. (Color online) Average notch depth at 28 Hz obtained by convex
optimization as a function of the transition width and the passband fidelity
constraint !, for the 11-element array in the Gulf of Mexico active survey.
The constraint cT is 1:1.
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bottom and subbottom layers. Spatial filters are here used to
enhance reflected arrivals in the EGF in order to improve the
estimates of the shallow subsurface reflectivity.

1. Simulation parameters

The use of a spatial filter with a 2D array is demon-
strated here with simulated data. The environment is mod-
eled as a water column of 200-m depth, with a constant
sound speed of 1500 m/s, a first soft sediment layer of 50 m
(c ¼ 1515 m=s, q ¼ 1500 kg=m3, a ¼ 0:2 dB=k), a second
sediment layer of 75 m (c ¼ 1650 m=s, q ¼ 1900 kg=m3,
a ¼ 0:8 dB=k) and a hard halfspace (c ¼ 2200 m=s,
q ¼ 2000 kg=m3, a ¼ 0:1 dB=k). Shear waves are neglected.
The frequency band is 50–250 Hz, the latter frequency is the
design frequency of the array for 3-m spacing and a wave
propagation speed of 1500 m/s. The receivers are on the
bottom.

Acoustic propagation simulations are performed with
the noise module of OASES.38 The frequency domain
CSDMs obtained from OASES are inverse Fourier trans-
formed to estimate the EGF, according to Eqs. (1) and (2).
The time series are gathered according to the distance
between corresponding pair of receivers.

2. Upgoing/downgoing noise separation

When both pressure and vertical particle velocity meas-
urements are available at the same location, e.g., as meas-
ured by OBS, the wavefield can be separated into upgoing
(U) and downgoing (D) parts. Upgoing/downgoing (UD)
separation is a standard seismic processing method used for
removing the downgoing signals (typically the source signa-
ture) from the reflections (the upgoing signals).22,23 UD sep-
aration applied to active cross correlation processing
improves the quality of EGF estimates.39

The acoustic wavefield separation is obtained from the
combination of the hydrophone and vertical particle velocity
sensor in the frequency-wavenumber domain as40

pUðz; x; krÞ ¼
1

2
pðz; x; krÞ #

qx
kz

vzðz; x; krÞ
! "

; (35)

pDðz; x; krÞ ¼
1

2
pðz; x; krÞ þ

qx
kz

vzðz; x; krÞ
! "

; (36)

where the vertical wavenumber is kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2=c2Þ # k2

r

p
and

vz is the vertical particle velocity. With active survey data,
the UD separation is approximated by considering the inci-
dent angle, h, for each shot, deduced from the source and re-
ceiver positions (e.g., Ref. 41)

kz ¼ cosðhÞx
c
: (37)

In a “passive” configuration, the source is diffuse. However, for
noise from near vertical incidence (h - 0), kz * x=c. Equations
(35) are thus (omitting depth-dependence and frequency)

pU * 1

2
p# qcvzð Þ; (38)

pD * 1

2
pþ qcvzð Þ: (39)

We consider an array of receivers capable of measuring the
pressure and the vertical particle velocity. Assuming that arrivals
far from near vertical incidence are reduced by a spatial band-
pass filter, S2D, using Eq. (5), we then can apply the approximate
UD separation Eqs. (38) and (39) on each array receiver,

~pU * 1

2
~p # qc~vzð Þ ¼ 1

2
S2D p# qcvzð Þ; (40)

~pD * 1

2
~p þ qc~vzð Þ ¼ 1

2
S2D pþ qcvzð Þ: (41)

The approximated upgoing/downgoing CSDM is then

~R
UD ¼ E ~pU~pDH

, -

¼ 1

4
S2D Rpp # ðqcÞ2Rvzvz þ qcðRpvz # RvzpÞ
h i

SH
2D;

(42)

FIG. 6. (Color online) Response (dB) of the convex optimization designed spatial filters with a stopband 10. wide centered on 40. (dotted lines) and a total
transition width (dashed lines) (a) equal to 3:7(HPBW (frequency dependent), with the constraint ! ¼ 0:005; (b) equal to 1( HPBW (frequency dependent),
with the constraint ! ¼ 0:1; (c) equal to 25. (frequency-independent), with a frequency variable passband constraint (! varies from 0.15 to 0.05). The constraint
cT is 1:1. The apparent asymmetry of the transition widths comes from their symmetric definition in sinðhÞ space.
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where the superscript on each CSDM indicates the cross cor-
related components.

In the following example, a spatial filter, S2D, is designed
for a square array of 10 by 10 elements. The element spacing
is 3 m in both the x and y directions. The filter is designed to
attenuate any contribution coming from an incident angle
larger than h ¼ 25. [see Fig. 2(b)]. Since cosð25.Þ * 0:9, the
approximate UD separation Eqs. (38) and (39) is valid. The
spatial filter is obtained using Eq. (12), where the pseudo-
inverse uses the 2D truncation condition [Eq. (31)].

The angular response of S2D is shown in Fig. 7. This fil-
ter is applied to the CSDMs to obtain the upgoing/down-
going CSDM [Eq. (42)].

On a single receiver, the arrivals are the direct arrival
(no reflections in the source-receiver path), the primary
reflected arrivals (each reflector), and the associated surface
multiples. The cross correlation process between two
receivers will give a peak for each combination of arrivals.
Nevertheless, some of these peaks are not related to physical
propagation of a wavefield through one receiver to the other,
although a stationary-phase path exists. Compared to the
actual Green’s function between the two receivers, these
spurious arrivals are artifacts coming from the cross correla-
tion processing and are a characteristic of a surface noise
sheet,6,42 i.e., when noise sources do not completely sur-
round the receivers. Such spurious arrivals should not be
confused with peaks due to a discrete source, sometimes also
referred to as spurious in the literature. Figure 8(a) illustrates
the stationary-phase paths that lead to the EGF for two
receivers on the seafloor with two subsurface reflectors. An
example of a spurious stationary-phase path is shown in Fig.
8(b). Other types of spurious combinations exist, in particu-
lar, the spurious multiples,42 arising from the cross correla-
tion of the reflected wavefield from different interfaces on
each receiver.

The noise cross correlations for pressure and vertical
particle velocity (not filtered) are gathered in Figs. 9(a) and
9(b). The pressure cross correlations show weak reflection
peaks, especially for the second reflector. On the other hand,
particle velocity cross correlations exhibit higher amplitudes

for reflection-related peaks, but are accompanied by higher
amplitudes for the spurious arrivals, resulting in traces that
are difficult to interpret as many arrival times cannot be
directly associated with a reflector. Note also the decreasing
amplitude of direct arrivals [forming the “V” in Figs. 9(a)
and 9(b)] with the receiver separation which is related to the
vertical sensitivity of vertical particle velocity sensors. The
filtered upgoing/downgoing cross correlations obtained from
the inverse Fourier transform of Eq. (42) are shown in Fig.
9(c). The direct arrivals (close to horizontal) are removed by
the filtering process. The spurious arrivals are eliminated
from one side of the cross correlations so that only the “real”
arrivals that can be associated with reflectors remain, here on
the positive time side [shaded area in Fig. 9(c)]. Surface mul-
tiples are attenuated but not removed as part of the down-
going energy reaching the second receiver of the cross
correlated pair is reflected by the seafloor. Even in the case
of a uniform noise source distribution, the EGF extracted
from the upgoing/downgoing CSDM is not an antisymmetric
function with respect to time.

VI. DISCUSSION

The feasibility of spatial filtering depends strongly on
the array aperture and the number of receivers (or, equiva-
lently, the receiver spacing). These parameters limit the fre-
quency band that can be filtered effectively. The response at
lower frequencies is poor due to the limited aperture in
wavelengths. Increasing the array aperture improves the
angular resolution. Above the design frequency, spatial alias-
ing is introduced, so that arrivals expected to pass might be
filtered out due to grating lobes.

The formulation of matrix spatial filters for 2D arrays is
similar to the 1D case16–18 and only differs in the steering ma-
trix definition and its associated SVD. However, 1D beamform-
ing suffers from azimuthal ambiguity around the array axis;
therefore, a horizontal array steered vertically still will receive
horizontally propagating noise. Thus, the UD separation pro-
cess Eqs. (38) and (39) cannot be applied to a 1D array.

The truncation of the singular values in the pseudo-
inverse [Eq. (13)] is critical for obtaining a useful filter
response. If singular values that are too small are kept, the
filter is unstable and can result in a gain that is too large in
the passband. However, the truncation index is less critical
for 2D arrays as the spectrum exhibits slower decay

FIG. 7. (Color online) (a) Ideal spatial filter. Angular response (dB) of trun-
cated least-square spatial filters at (b) 50, (c) 100, (d) 150, (e) 200, and (f)
250 Hz [Eq. (32), with N being equal to the total number of sensors]. The
polar angle corresponds to the azimuth /, from 0–360.. The radial axis cor-
responds to elevation h [see Fig. 2(b)], from 0–90. (dashed circles).

FIG. 8. Schematic representation of stationary-phase paths for two receivers
on the seafloor and source at the sea surface, neglecting refraction.
(a) Stationary-phase paths given by the cross correlation of direct arrivals on
receiver 1 and all other types of arrivals on receiver 2 (reflected or multiples).
(b) Example of a spurious arrival, here corresponding to the cross correlation
of a reflected arrival on receiver 1 and a surface multiple on receiver 2.
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compared to 1D arrays. On the other hand, if the singular
value spectrum is truncated too much, the filter response typ-
ically shows unwanted notches because some of the singular
vectors corresponding to the visible space are missing.

The flexibility of the convex optimization approach is
attractive, especially because it might lead to deeper notch
depths and smoother dependence on frequency than in the
least-square solution. Given the availability of efficient solv-
ers that readily can be used, the simplicity of its implementa-
tion clearly is an advantage. However, the computational
burden is significantly larger which makes the use of a con-
vex optimization approach for larger arrays and a wide band
difficult to implement (e.g., arrays with hundreds of sensors
such as the USArray). For instance, the central processing
unit time required to obtain the spatial filters illustrated in
Fig. 6 by convex optimization (30 min on a dual-core
2.4 GHz computer) is 3 orders of magnitude longer than for
an equivalent least-square design.

Finding good values for the constraints and the transition
width is based on a trial-and-error approach. Passband con-
straint values that are too small or a transition width that is too
narrow might inhibit the solver finding an optimal solution.

When stable truncation indices are used for the least-
square inversion, the filter response does not exhibit positive
gain. This is not the case with the convex optimization result
because the passband constraint formulation only restricts
the amplitude of the oscillations around 0 dB. Thus, it is im-
portant to maintain good fidelity in the passband (! * 0) to
prevent artificial amplification of some directions of arrival.

VII. CONCLUSION

The extraction of Green’s functions from noise cross
correlations is often biased by interferers from arbitrary
directions. Matrix-based spatial filters are used here for fil-
tering the cross correlations between receivers using a data
and model independent approach. Stable broadband filters
are obtained by analytically deriving the frequency-
dependent low-rank approximation of the pseudo-inverse
involved in the filter design procedure for linear (1D) and
planar (2D) regularly spaced arrays.

Matrix filters can be designed with flexibility in the
selection of the performance criteria in the rejection band,
transition band, and passband. Using this approach the filter
easily can be found using convex optimization.

A spatial filter was shown to attenuate effectively inter-
ference from a discrete source in a linear array case. With
planar arrays, spatial filters enable focusing the array verti-
cally. When pressure and vertical particle velocity signals
are both measured at each receiver, an approximate
upgoing/downgoing wavefield separation procedure sepa-
rates efficiently real and spurious arrivals.

Although the results presented here are in the context of
underwater acoustics, similar spatial filters might be used for
seismic arrays for focusing on specific directions of arrival.
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