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Abstract: Ocean acoustic sound speed profile (SSP) estimation
requires the inversion of acoustic fields using limited observations.
Compressive sensing (CS) asserts that certain underdetermined prob-
lems can be solved in high resolution, provided their solutions are
sparse. Here, CS is used to estimate SSPs in a range-independent shal-
low ocean by inverting a non-linear acoustic propagation model. It is
shown that SSPs can be estimated using CS to resolve fine-scale
structure.
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1. Introduction
Inversion of ocean parameters using acoustic propagation models requires simultane-
ous optimization of water column sound speed profile (SSP) and sediment properties
using limited observations. Such inverse problems are ill-posed, and require regulariza-
tion to ensure physically realistic solutions.1 The water column SSP estimation problem
has been regularized traditionally by minimizing the energy of the solution to a least-
squares cost function, which requires undersampling of complex SSP structure or
explaining the structure using few shape functions.2–4 This reduction in resolution
causes SSP uncertainty, especially when internal waves or currents generate strong,
temporally varying SSP anomalies.5–7 This uncertainty can severely effect the accuracy
of inversion for other parameters.6,7

We show that SSPs in range-independent shallow ocean environments can be
resolved using compressive sensing8,9 (CS). CS asserts that parameters can be recovered
robustly for certain highly underdetermined linear problems via sparse regularization
of a least-squares cost function, provided that the solutions are sparse, i.e., few non-
zero parameters (out of many) explain the observations. Recent applications of CS in
ocean acoustics have demonstrated performance improvements to coherent passive
fathometry10 and beamforming11–13 under sparsity assumptions. Here, the inversion for
ocean acoustic SSPs is formulated as an underdetermined linear problem where SSP
perturbations are parameterized in a sparse domain using shape functions.

Pressure observations from a vertical line array (VLA) of hydrophones in a
shallow ocean are forward-modeled using normal modes. The non-linear response of
the forward model to SSP is linearized using a first order Taylor expansion. The linear-
ized sensitivities of few observations are calculated for many shape functions, which
parameterize SSPs in a sparse domain. Thus, SSP estimation is expressed as an under-
determined linear problem and solved using convex optimization of a least squares
cost function with an ‘1 sparsity constraint.8,9

2. Compressive estimation of water column SSP
A K-point discretized ocean SSP, cðxÞ 2 RK , is modeled as

cðxÞ ¼ c0 þQx; (1)

where c0 2 RK is a reference SSP (e.g., derived from historical statistics or CTD casts),
Q ¼ ½q1; :::; qN & 2 RK'N is a dictionary of N unique shape functions qn discretized into
K points, and x 2 RN is the dictionary coefficient vector. The SSP is modeled by shape
functions1 that describe SSP perturbations with few non-zero coefficients in x. SSP per-
turbations that are isolated to specific depths of the water column are here modeled
using half-sinusoidal shape functions. Larger SSP variation is modeled using EOFs.2,5,7

The pressure pobs 2 CM received at an M element VLA is modeled as

pobs ¼ gðxÞ þ n; (2)
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where gðxÞ 2 CM is the normal mode propagation given cðxÞ and n 2 CM is Gaussian
white noise. Here, the source is known and included in the gðxÞ term.

Assuming the perturbations to the reference SSP are small, the non-linear
response of gðxÞ to SSP perturbations is linearized using the first order Taylor
expansion

g xð Þ ( g 0ð Þ þ @g xð Þ
@x
jx¼0 x ¼ g 0ð Þ þDx: (3)

The matrix D ¼ ½d1; :::; dN & 2 CM'N contains the derivatives of the M pressure obser-
vations relative to the N shape functions in Q. The columns dn are calculated using
two-sided finite differences, by perturbing the reference profile by a fraction of qn.

Provided the columns of D are sufficiently incoherent, a sparse estimate of x is
found using ‘1-norm convex optimization.8,9 The sparse solution to Eq. (2) is formu-
lated as

x̂‘1 lð Þ ¼ argmin
x2RN

g 0ð Þ þDx
jpobsj

) ~pobs

!!!!

!!!!
2

2
þlkxk1; (4)

where (assuming a signal is present) Eq. (2) is scaled by jpobsj as

~pobs ¼
pobs

jpobsj
¼ g 0ð Þ þDxþ n

jpobsj
; (5)

x̂‘1 is the sparse estimate of the SSP perturbation coefficients, and l is the regulariza-
tion parameter which controls the relative importance of sparsity (‘1-norm regulariza-
tion) and measurement fit (‘2-norm). Equation (2) is scaled to improve numerical sta-
bility by reducing the difference in magnitude between the ‘1-norm of x and the ‘2 cost
function.

The sparse solution x̂‘1 selects the coefficients in x that best explain the obser-
vations, but their values are biased.14 The coefficients are optimized using least-squares
criteria by solving the overdetermined problem12,13

x̂CS ¼ DþA ½pobs ) gð0Þ&; (6)

where DA contains only the active columns of D, corresponding to non-zero elements
in x̂‘1 , and DþA is its Moore-Penrose pseudoinverse. Here, x̂CS is the optimal compres-
sive sensing solution to Eq. (2).

The non-sparse (minimum energy) estimate x̂‘2 of x is written as

x̂‘2 lð Þ ¼ argmin
x2RN

g 0ð Þ þDx
jpobsj

) ~pobs

!!!!

!!!!
2

2
þkjjxjj22; (7)

where k controls the relative importance of solution energy (‘2-norm regularization)
and measurement fit (‘2-norm).

3. Simulation and results
The acoustic field in a 160 m constant-depth ocean was simulated using the Kraken
normal mode model.15 The field, generated by a 100 Hz acoustic source at 30 m depth,
was sampled at 2 km range by M¼ 10 evenly spaced VLA elements spanning 10 to
150 m depth. The reference SSP was the mean SSP from the SWellEx-96 experiment.
The bottom sound speed was 1800 m/s, density 2.0 g/cm3, and attenuation 0.1 dB/k. A
diagram of the environment is shown in Fig. 1(a).

The sparse problems were solved using the CVX toolbox, which specifies and
solves convex optimization problems.16 Sparsity of x̂‘1 , Eq. (4), was enhanced using
reweighted ‘1-norm minimization method; for details see Refs. 12 and 17. For compar-
ison, the minimum energy estimate x̂‘2 of the parameters, Eq. (7), was solved with
k ¼ 5' 10)5.

3.1 Compressive estimation of half-sinusoidal SSP perturbations

To simulate SSP anomalies confined to narrow depth ranges, two half-sinusoidal pertur-
bations [Fig. 1(b)] were added to the reference SSP at depths of 63.3 and 126.7 m with
magnitudes of 62 m/s and 20 m widths. Equation (3) was formulated with Q containing
N¼ 100 half-sinusoid shape functions having the same widths as the perturbations.

Figures 2(a) and 2(b) shows the sparse solution x̂CS, Eq. (6) after solving Eqs.
(4) and (5), for the half-sinusoidal perturbations with 30 dB SNR for l ¼ 5' 10)4. It
can be seen that for one realization of Gaussian white noise, the sparse magnitudes
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and locations of the perturbations were estimated accurately. With 10 observations
and 100 potential shape functions, this problem was underdetermined by a factor of 10
and CS still gave an accurate result. The minimum energy solution x̂‘2 , Eq. (7), shown
in Figs. 2(c) and 2(d), did not provide the true parameters. Instead the solution was
non-sparse, having many small perturbations.

3.2 Compressive estimation of SSP using EOFs

A set of EOFs was calculated using 26 CTD casts spanning depths * 160 m from the
SWellEx-96 experiment, resulting in a dictionary Q with N¼ 26 EOFs. The first three
EOFs are shown in Fig. 1(c). Synthetic SSPs and SWellEx-96 profiles were estimated
using CS.

The robustness of the CS EOF inversion was tested by finding sparse estimates
x̂CS for 1000 synthetic SSPs, having randomly selected active EOF components with
coefficients of 66 m/s. The active EOF components were selected randomly from a
half-Gaussian distribution, with the peak located at the first EOF, to simulate the rela-
tive importance of the EOFs. Each of the synthetic SSPs were compressively inverted
without observation noise with l ¼ 5' 10)5 (corresponding to three sparse EOF

Fig. 1. (Color online) (a) Ocean environment and measurement configuration. (b) Half-sinusoid shape function.
(c) First three EOFs derived from the SWellEx-96 data.

Fig. 2. (Color online) Sparse x̂CS [(a) and (b)] and minimum energy x̂‘2 [(c) and (d)] estimates for half-
sinusoidal ocean SSP perturbations from noisy observations (SNR ¼ 30 dB). [(a) and (c)] Depth and magnitude
of perturbations, and [(b) and (d)] the corresponding SSPs.
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coefficients for most cases). The SSP estimation error [standard deviation (STD)] ver-
sus depth in Fig. 3(a) shows that SSP error increases toward shallow depths. This is
likely due to downward refraction of the acoustic waves by the warmer surface water,
which makes the inversion insensitive to near-surface variability. For deeper SSP vari-
ability, 1 STD of error is within 60.2 m/s. In Figs. 3(b) and 3(c) a CS EOF inversion
result is shown for one random trial. Considering a SSP from the SWellEx-96 experi-
ment, Figs. 3(d) and 3(e) shows CS inversion of three EOF components with
l ¼ 1:5' 10)4.

Figures 4(a) and 4(b) shows the CS estimation of the three EOF SSPs used in
Fig. 3 with a 30 dB SNR for l ¼ 2' 10)4 (l increases due to noise). With one realiza-
tion of Gaussian white noise, the EOF components are estimated. As shown in Figs.
4(c) and 4(d) the x̂‘2 solution was non-sparse and provided inaccurate estimates of the
true (sparse) parameters.

Fig. 3. (Color online) (a) SSP estimation error versus depth of the sparse solution x̂CS (without noise) for 1000
randomly generated synthetic SSPs with three EOF components. For one randomly generated SSP, x̂CS esti-
mate (b) of the EOF coefficients and (c) the corresponding SSP. For one SWellEx-96 SSP, x̂CS estimate for (d)
EOF coefficients and (e) corresponding SSP.

Fig. 4. (Color online) Sparse x̂CS [(a) and (b)] and minimum energy x̂‘2 [(c) and (d)] estimates of three SSP EOF
coefficients from noisy observations (SNR ¼ 30 dB). [(a) and (c)] EOF coefficients and [(b) and (d)] the corre-
sponding SSPs.
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4. Conclusion
A method for compressive inversion of ocean acoustic SSPs was developed and demon-
strated. With medium SNR, a priori knowledge of the ocean sound speed statistics,
and a dictionary of shape functions that sparsely represent the SSPs, fine-scale SSP
structure is well estimated using CS. Robust recovery of sparse SSP perturbations was
shown using dictionaries containing either half-sinusoidal shape functions or EOFs.
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