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Self-noise geoacoustic inversion involves the estimation of bottom parameters such as sound speeds
and densities by analyzing towed-array signals whose origin is the tow platform itself. As well as
forming inputs to more detailed assessments of seabed geology, these parameters enable
performance predictions for sonar systems operating in shallow-water environments. In this paper,
Gibbs sampling is used to obtain joint and marginal posterior probability distributions for seabed
parameters. The advantages of viewing parameter estimation problems from such a probabilistic
perspective include better quantified uncertainties for inverted parameters as well as the ability to
compute Bayesian evidence for a range of competing geoacoustic models in order to judge which
model explains the data most efficiently. @04 Acoustical Society of America.
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I. INTRODUCTION question, we focus on characterizing the posterior probability
densities(PPDsg associated with ensembles of parameter
In self-noise geoacoustic inversion, plant and hydrody-samples generated by a procedure known as Gibbs sampling.
namic noise generated by the tow ship as a by-product of itAssuming that the model is correct, the PPD then summa-
normal operation is used to interrogate the ocean environyzes our complete state of knowledge about the estimated
ment. Because of its inherent mobility, reduced compIexity,parameterS including their meaiexpected values, maxi-
and low environmental impact, self-noise inversion using dmuma posteriori(MAP) values, and variances. In answer to
towed array s a very promising modality of geoacoustiCy,e second question, we find as a consequence of knowing
exploration- . _ ) .. the PPD that Bayesian probability theory embodies a natural
In our previous pqpér,data acquired during the joint ranking for competing models, known egidenceln Sec. Il,
NATO/Marine Physical Labc_)ratory . eXpeT'm‘?”‘— we briefly reiterate a few salient aspects of Bayesian prob-
MAPEX2000—was analyzed using maximum-likelihood ability theory relevant to the current analysis. For complete-

(ML) methods to evaluate the feasibility of self-noise inver- , . . )
: . . ness, we restate Bayes’ rule and underline the interpretation
sion from towed-array data. The major conclusion drawn

. . : of likelihoods, priors, and evidence in the context of inverse
from this preliminary work was that matched-field process- L . .
. . ) . . problems. In Sec. lll, we describe in some detail our imple-
ing (MFP), in conjunction with global search procedures

such as genetic algorithmi&A), was sufficiently sensitive in mentatlon_of the Glpbs sampler used to obtain the results in
later sections. While our development parallels that of

the near field to permit robust first-order inversion of param—D G5 | lied to th vsis of hetic and
eters such ap-wave velocity for a range-independent bot- 0sso “as recently applied to the analysis of synthetic an

tom environment known to be reasonably well characterizecﬁ’Xpe”mental_ geoacoustic dgta, we offer our own insights
as a fluid half-space. This was despite low to moderatdnt0 the workings of the algorithm and some further sugges-

signal-to-noise ratioéSNR) during the experiment and con- tions for improving .its efficiency. !n Sec. IV we revisit t.he
siderable uncertainty in relation to several important geometMAPEX2000 experiment and various aspects of the signal

ric parameters, such as water depth, source range, and ari@{pcessing and modeling requirements of near-field inver-
shape. sion. Whereas in Ref. 2 we concentrated on demonstrating

In this paper, we again direct our attention to the neardnversion consistency throughout an extensive portion of the
field inversion problem using towed-array data, applying adataset, in Sec. V we focus on theethodologyof Bayesian
different paradigm to its solution and addressing two impor-nodel selection—analyzing a single 10-s frame and deriving
tant questions: First, can we better quantify the sensitivity?PDs corresponding to a variety of geoacoustic models with
limits of near-field inversion? Second, is there a consistenincreasing levels of complexity. In addition to presenting
way of ranking our success in modeling an unknown envi-marginal distributions for the inverted parameters, we evalu-
ronment using multiple parametrizations? To address the firsite the Bayesian evidence for each model using both analytic

Gaussian approximations and a more accurate method
@Now with the Ocean Engineering Dept., Massachusetts Institute of Techl-(nOWn as reverse importance sampling. Our conclusions are
nology, Cambridge, MA. Electronic mail: dbattle@mit.edu given in Sec. VI.
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Il. BAYESIAN INFERENCE diffuseand does not significantly influence the shape of the
PPD. Even diffuse priors, however, can impact takative

The single aspect that most popularly distinguishes, spapiiities of proposed models, thus influencing the second
Bayesian probability and its application in inverse ol of inference. as described next.
problems—Bayesiaimference—from its so-calledorthodox ’

or frequentistalternatives is the use of pridbefore-data
probabilities to modulate posteridafter-data probabilities
according to Bayes’ rule

Whereas at the first level of inference only the likelihood
p(d|m,Mk)p(m|Mk), (1) and (usually to a lesser extenthe prior are important, the

p(d| My second level involves the denominator, evidenceterm,

wherem is a vector of model parameters (i=1,...P), dis  which is the normalizing constant for the PPz.
a vector of measured dath, (n=1,...N), and themodels

B. Second level of inference

p(m|d, M,)=

My (k=1,..M) embody various parametrizations consid- p(dIMk)zf p(djm, M) p(m|M,)dm. (4)
ered plausible in explainind. p(alb) denotes conditional

probability, meaning the probability of some outcorae At the second level of inference, the intention is to rank
given a previous outcomie. In words, Eq.(1) reads each modelM, in terms of its ability to explain the data. As

is well known, such a ranking cannot be based solely on the
: _ likelihood, as arbitrarily complex models can match the data
evidence arbitrarily closely. Paralleling Eq1), a posterior probability
Specializing to the geoacoustic problem at hand, we re€an also be attributed to ead¥l, , independent of its param-

gard them, as representing acoustic quantities that we wisHf!€rs: However, in this case, normalization is not meaningful,
to infer from datad; acquired at discrete frequencies (f  €aving the proportionality

=1,..F) from an array ofN hydrophone_s. The Ii_kelihood p(My]d) o p(d| M) p(My). (5
p(d|m, M,) quantifies the error in matching tfag with rep-
lica fields generated by a continuous wde®) propagation

del, while the pri defi d weights plau- .
model, while the priop(m|.M,) defines and weights plau ally, the best that can be done is to enumeMtmodels for

sible ranges for the parametars. The evidence appearing : d . itial ¢ h
in the denominator can, at first, be thought of as an overaft°MParson, and—assuming no initial preterence—ine re-
sulting prior probabilities are given by

normalization for the PPD, which is independent of the pa-
rameter vectom. p(My)=1/M. (6)

_likelihoodX prior
posterioF ——————

The reason that Ed5) cannot be normalized is simply that
the universe of modeld, is subjective and infinite. Usu-

A. First level of inference It then follows, for the purposes of model comparison, that
the posterior probability of each model is simply propor-

As defined by MacKa$, the first of the two levels of . | to it id hich f that will b
Bayesian inference is concerned with parameter estimatiofiona! to its evidence, which Ior reasons thal Wil become
parent later in this section is sometimes referred to as the

roblems in which each proposed model is assumed to b@"
P ! brop I . q:arginal or integrated likelihood. According to Bayesian
t

correct, i.e., all conceivable possibilities are encompasse h dol iated with the hiahest ical evi
within its prior parameter space. This assumption is respon- eory, the model associated wi € highest numerical evi-

sible for the aforementioned normalization dence as given by E(ﬂ.4) Is tq be preferred.
What may not be immediately apparent from the preced-

ing discussion is how Bayesian evidence automatically dis-
criminates against models that are overly complex, thereby

Aside from this technicality, it is thehapeof the PPD, and expressing a preference fpar5|momouspara}metrlzatloné.
This preference is also known as Occam’s rizmd be-

hence only the likelihood and prior terms, that influence the . . . .
' . comes more visible after assuminchgpotheticalGaussian
first level of inference.

It is often a criticism of Bayesian probability that, al- form for the parameter likelihood around the maximum like-
though it offers clear guidance on how to use prior probabili-IIhOOd (ML) point m [with an ML valuep(d|m, M) and a

ties through Eq(1), it is neutral as to how they are derived in parameter covariance matrGy|

the first place. As is the case with inference in general, priors . AmTCrglAm

have an inescapable subjective element, which highlights the ~ P(dIm,. M) = p(dlm,/\/lk)exp( - f) @)
fact that all inference is subjective to a point. In this work, o )

flat priors have been assumed for all parameters, with lowel? Secs. VB and VC, it will be shown that E(7) is often
bounds!, and upper bounds;, such that the normalized nota_ good approm_matlon _to real likelihood functions, which
prior density for each parametat is given by require n.umerlcal mtegrauo@ec. "npP. .I-.|owever, suqh ap-
proximations are common in probability the&r§,princi-

1 i 3) pally because the integral bypervolumenf a Gaussian like-
(u—1) w’ lihood function inP dimensions has the analytic form

f p(m|d, M )dm=1. (2

p(mi| M) =

In such cases, provided the bulk of the posterior probability

— = P/2_|
is bounded within the assumed , the prior is said to be f p(d[m, Mi)dm=p(d[m, M) (2m)"*VdetCp.  (8)

2044 J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004 Battle et al.: Bayesian model selection



Making the further simplifying assumptions that the prior is desirable to treat eaatm; (or perhaps pairs ai; in the 2D
flat and that the integral in E@4) is not strongly affected by marginal probability distribution cagseparately, while inte-
including the tails ofp(d|m, M,) which lie outside the prior grating over the range of influence of the other parameters

rangesu; andl;, Eq. (4) can be rewritten m;.;, giving marginal probability distributions of the form
p(dMy)=p(d|m, M) (27)""det C,,p(m| M) p(mj|d,Mk):f p(m;,m;j|d, M)dm;. (10
P
_ s PR Ao ' Parameter estimation based on the properties of mar-
p(d|m’Mk)J(27T) det G, ,:Hl W”J ginal distributions is known as marginal inference, and will

) — be applied extensively in Sec. V, in which both one- and
evidence=likelihood X Occam factor (9 two-dimensional marginal distributions are computed from

from which it can be seen that the maximum likelihood samples drawn from the joint parameter PPD.

achieved by a particular model does, as expected, weigh

positively toward its ranking. Weighing against the likeli-

hood, however, is the so-call@ccam factof?which can || GIBBS SAMPLING

be interpreted as an integral of the prior probability density

weighted according to the distribution of the likelihood. In The basic inputs to Bayesian analysis are probability

other words, the Occam factor is a measure of the concertistributions, and in practice, these can be difficult to esti-

tration of prior probability within the high-likelihood region mate given the dimensionality of real-world problems. Gibbs

of a parameter space, and it displays the following generatampling is an iterative Markov chain Monte Ca(MCMC)

propertie° procedure designed to sample from joint posterior distribu-

tions using only samples from conditional distributions. In

large numbers of free parameters through the growtﬁhe case of large-scale pr_oblemslwith_ many parameters pos-

: P sessing unknown correlations, joint distributions are usually

of the prior hypervolumdl;_,w; ilable, whereas conditional distributions often are

(i)  For the same reason, the Occam factor penalizes mo flot availa ! ; g

The origins of the Gibbs sampler date back to Hastifhgs

els with widea priori parameter bounds; . . . .
(i) The Occam faftor pgnalizes models thlat have to bén statistical analysis and subsequently Geman and Gétan,

finely tuned to fit the data, as these have concentrate\cqlho applied the idea .to large-scale image reconstruction
PPDs and correspondingiy small posterior volumes, problems. Comprehensive accounts of the theory and appli-

cation of Gibbs sampling to inverse problems—particularly
those in geophysics—as well as references to the original
literature include Gelfand and SmithSmith and Robertd’
Sen and Stoffd® and Mosegaard and Sambridddn rela-

(i) The Occam factor penalizes models that incorporat

In geophysical theory, the first to describe Bayesian evi
dence in model selection was Jeffreys in 183@nly very

recently, however, new applications have been repdrtéd. < _ )
The reasons for this no doubt stem from the complexity ofiion to ocean-acoustic problems of the type of interest here,

real-world problems and the difficulties in deriving and ma- Dossd™° recently analyzed synthetic and experimental data
nipulating the necessary probability distributions. Although@nd concluded that Gibbs sampling is a powerful and robust
Eq. (4) is a simple prescription, such integrations require™eans of estimating geoacoustic parameters and their asso-

specialized numerical methods that have only recently beiated errors. _ _ .
come practical, In this section, we briefly discuss issues relevant to the

Whereas alternative concepts such as minimum descridqtegrat'on of high-dimensional PPDs in geoacoustic inver-

tive lengths(MDL), Akaike information criterialAIC), and sion. These inc;lude the, .Metropolis—Hastir?gs approach to
likelihood ratio tests have also been applied to modefsample generation, definition of a matched-field energy func-
selection? proponents of Bayesian inference point to thetion, Gibbs sampler initialization, coordinate rotation, con-
fact that the concept of evidence flows naturally and consisYérgence criteria, and finally, one approach to the numerical
tently from the basiclesiderateof probability theory. In fact, €Stimation of Bayesian evidence.

most other methods can be viewed as being closely related. Sample generation

to, or approximations of the full Bayesian framework de- | Gibb i ists of i
scribed herd.Recent analyses have indicated that Bayesian n essence, LIbbs sampling consists of generating suc-
model selection, which has higher computational demand%ess've samples fl’OIﬁﬁCOﬂd.ltIOI’]a.J distributions, such that at
than other approximate methods, is capable of superior peP-e completion of theqth iteration, the parameter vector

9 md md q q i
formance, particularly in cases of low SNR and/or small(ml'mz’m3""'mpi1'mP) can be C(_)n5|_derc_ed to _have_ l_)een
amounts of data? drawn from the joint PPD. For clarity, it will be implicitly

assumed that posterior probabilities are conditional on the
datad and modelM, from this point. Starting with the ini-
tial parameter vectorntd,m3,m3J,...,m3_,,m2) and denot-

As discussed above, the calculation(o$ually nonana- ing the conditional distribution of parameter; with respect
lytic) PPDs is central to numerical applications of the firstto parameters m, ., in the first iteration as
and second levels of Bayesian inference. When summarizing(m,|m9,m3,....m3_,,m%), the sampling proceeds with
a posteriori knowledge of parameter values, however, it iseach successive conditional distribution immediately incor-

C. Marginal inference
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porating the previously selected parameter value. Using thbution, then the error in estimating the PPD and its associ-
“«" symbol to denote the drawing of a sample, the firstated marginal integrals tends to zero—a situation never
iteration can be illustrated &s achieved in practice, but approximated with a given amount
of computation such that Gibbs sampling is usually far more

1 0 .,0 nr]0 TIO
n njm 1“' 1y —1 H H H B
1 P(my[ms, m p-1:Mp) attractive than either less adaptive or more exhaustive sam-

mb— p(m,|mS,mg,....m% mb) pling techniqueg:®8 While other methods of importance
sampling have also been applied to PPD estimation, includ-
m3«p(ms|md,mg,...,mi,m3) ing, for example, GA in ocean acoustfts?® the great ad-

vantage of Gibbs sampling is that the sampling distribution is
knownto be given by Eq(13). In the case of GA and related
mi—p(mp|mims,...m5_,mb ), methods, the sampling distribution is usually not known and

consequently the results may be difficult to interfret.
with the gth iteration given by

-1 1 1
mf—p(my[mJ~tmg~*,.. mi=E,mi )

_ _ _ B. Energy function

1 1 1
m3e—p(mg|mg™",m3~",....mg~",mf) . _ .
1o In Ref. 2, parameter estimation was carried out by di-
m3—p(mg|md~ " md~",....mi, m3) rectly maximizing normalized Bartlett power objective func-
tions of the form

L s
w: (M) Rew;(m)
md—p(mp/my,mJ,...m%_, ,md_). B,(m)= wi (m)Rywi(m)

S|

In the Metropolis—Hastings variant of the Gibbs sampler LR fwi ()]
used here, samples are drawn from each conditional distribyhere thew; were replica vectors calculated from a continu-
tion according to the Metropolis rule, wherein uniformly dis- ous wave acoustic propagation model and tRe (f
tributed perturbations, resulting in modified parameter vec=1,...F) were cross-spectral density matri¢g€SDMs av-
torsm’, are accepted with probability eraged fromNg snapshot vectors, ; of the array data at
frequencie&uf according to

(14)

p(m’) ,
——  for p(m’)<p(m),
Paccept™ p(m) (11 :_ E dn fdn . (15)
1 for p(m’)>p(m). Nsn=1
As in Eq. (1), the p(m) are posterior probabilities which, To formulate the energy functioB(m) required by Eq.
given simplifying Gaussian assumptions regarding the nois&L2), Eq. (14) can be transformed into theismatchor error
and modeling errors, take the exponential form functio
p(m)=exd —E(m)], (12 ¢i(m)=1—B¢(m), (16)
where E(m) is an energy functiorto be discussed shortly. following which®2°
The above combination of sequential perturbation, accep- be(m)|dy 2
tance, and rejection establishes a Markov chain whose sam- E(m)= Z Bkl ~ , (17)
pling density can be shown to converge to the Gibbs— O

Boltzmann distribution from thermodynamté¢s®

p(m)= lexp[— Em)

where|d;|? is the total power seen by the array in frequency

bandf and &fz is a corresponding estimate of the variance

: (13 associated with the combination of model mismatch, ocean,

and instrumental noise.

with the normalization opartition functionZ ignored, and a To estimates?, two simplifying assumptions have been

particular choice of unity for the temperatufe This is the  made here. First, considering the single frame of data to be

same equilibrium distribution associated with simulated andiscussed in Sec. IV, and the three frequencies selected for

nealing(SA) algorithms, and hence Gibbs sampling has theinversion, it is reasonable to take the SNR as approximately

interpretation of being SA conducted at a constant temperasonstant across frequency. Second, the spatial distribution of

ture of T=1.1920 noise along the array has been assumed constant despite the
When evaluating the multidimensional integrdBg.  short range of the experiment which, in reality, would have

(10)] with importance sampling, the variance of the integralresulted in higher SNRs at the end of the array nearer the

estimates is reduced if the generating distribution is proporsource. Following the maximum-likelihood arguments of

tional to the integrand, and this is actually obtained with aGerstoft and Mecklenbreer in relation to the noise variance

Gibbs samplet:®*® Generally, when evaluating the multidi- expected after averaginjs snapshots, as in Eq15), the

mensional integralfEq. (10)] with importance sampling, the average variance can be estimateti?a8’

sampling distribution should be concentrated in regions of - 5

the parameter space where the PPD is most significant. Ide- 52 M (18)

ally, if the PPD is perfectly mirrored by the sampling distri- Tave™ Ne ’

Z T
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Towship: NV Aliance Chase Boal: Manning stituting a genetic algorithmiGA) in place of SA ultimately

V\JJ\‘Lﬂ Ogean Stiface iy proved faster in locating the main concentrations of probabil-
\ i ity. This was probably due to the insensitivity of GA to pa-
Ty MdmpfoneAray < rameter correlations that can seriously affect the acceptance

™.

ratios obtained during conventional SA.

Sediment

D. Coordinate rotation

As noted by Collins and FishmaR algorithms that gen-
erate univariate parameter perturbations, such as SA and
Gibbs sampling, are particularly susceptible to poor accep-
FIG. 1. The configuration of theLLiance and themanning during the  tance ratios when sampling strongly correlated parameter
MAPEX2000 self-noise experiment. spaces. In ocean acoustics, such parameter correlations are

frequently encounterelf, and coordinate rotation, whereby
pthe parameter covariance matfx or alternatively, a cova-
riance matrix computed from field derivativéss effectively
orthogonalized, is a standard solution that will not be dis-

gussed here in detail. Following Dossour Gibbs sampler

AT T

where ¢,,{ M) is the average normalized Bartlett mismatc
obtained using a global sear(t the first level of inferenge
|d.d? is the average measured power, &hdis an estimate
of the number of degrees of freedom associated with th
noise.

As discussed by Gerstoft and Mecklenika>?’ and
Dosso>* the selection of appropriate values bk, (and
henced?,) in geoacoustic inversion is problematic due to
the fact that the structure of the true model and hence alsc
that of the true signal are generally unknowable. Because o
this, modelingerrors actually tend to dominate even at mod-
erate SNR values—in most cases swamping the impact o
noise completely. Faced with this difficulty, we adopted a
heuristic approach and chobk=5 (Refs. 28, 25, 3, ¥inot-
ing that: (1) This was approximately the numbésix) of
independent snapshots used, &Adrom experience, accep-
tance ratiogproportions of accepted Metropolis moyem
the order of 25% to 50% are typically indicative of Gibbs
sampler algorithms performing correctiy'® Too large an
estimate ofN, leads to artificially narrow PPDeelative to
the prior boundghrough the exponentiation in E€L2), and
correspondingly poor acceptance ratios.

To summarize, the final energy function used in our P \

Gibbs sampler had the form NS o, s Ty e R

20’

,,..,m ,

o
&_ o,

o
<

ISR R B

)

>
i
<

40’

F
E<m>=sgl Bi(m), (19)

4361 b vor 5 wimer 8 8 Mgy s el s Em s e mw g p s e v e
' Alliance g i

with S=N./¢,,dM). Given that the highest average Bartlett : N ! _
power(correlation coefficient squargdbtained here was ap- . Tumos11: YFrame 107

. . 43°60° [ - SR EREE ) RS RE SERRRERE st RELE LA
proximately 0.8, the overall energy scaling fac®was ) :

N, 5

ST Gadi®) 02

25. (20 42597 oo ------------ ----------- ------------

C. Initialization 4258 o eoeeenen e [ O P

As Gibbs samplers essentially sample around the mode
of PPDs, they must be correctly initialized to regions of high
posterior probability. In many reported applications, an ini-
tialization orburn-in phase has preceded to the equilibrium : Start 07:17:30X Frame 1
(T=1) sampling phase such that an initial quenching from ¢ 9o ey o e
some high temperature takes pl4cé€ In this work, we (b)
found that SA initialization did perform satisfactorily pro- _
vided the starting temperature and annealing schedule wefi: %, T, ke of e NRvAwice and e dung e
correctly chosen—usually by trial and error. However, sub-ents a 30-s increment.

42°57° [--vren e R R jofs momse i o o = o ot i oo
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Ky oK,
-1 -1
Ky Jm; Ky &mi}' (22)

F
[Ccaualii :121 Tr
’ : : : : where theK; are outer products of replica fields calcu-
lated at the ML pointm and loaded uniformly on their di-
agonals to approximate the estimated SNR of the data. That
Eq. (22) can be used in this wapndependently of the daia
less surprising when it is considered that coordinate rotation
is simply another kind of importance sampling designed to
concentrate samples in regions of high posterior probability.
While it is conceivable that a proposed ocean model might
be sufficiently far from reality for Eq(22) to fail as the basis
of such a sampling distribution, in all cases reported here we
observed substantial improvements in Gibbs sampler accep-
; ; ; ; bl tance ratios wherC was estimated semianalytically using
= = e = Eq. (22) (up to 50% as opposed to Eq21) (~25%).
Frequency (Hz)

Normalized Power (dB)

FIG. 3. Normalized power spectral density computed from time-series dat&- Convergence criteria

beamformed in the approximate direct-path direction of the support ship A inlv int ted i inal PPD
MANNING. The three frequencies used for inversion were 131.47, 262.94, and S We were mainly interested imargina S, we

306.88 Hz, as indicated by the top markers. based our Gibbs sampler convergence criteria on the maxi-
mum fractional change undergone by any 50-bin parameter

. ) _ o histogram in 100 cycles through the Gibbs sampler. While
originally included a covariance estimation phase conductefly; o rigorous as the dual-population convergence criteria
atT=1 following which the parameter covariance was esti- ,caq by otherwe checked for convergence every 100 steps
mated from sampled vectors as and found that histogram changes below 10% were a reliable
Cm%<mm*>—<m><m>’r. (21 sign of convergence. All results presented in Sec. IV

. . . . achieved this criterion.
Collins and Fishmai? originally suggested using the co-

variance matrix of the derivatives of the field. Instead of , ,

. . ! Cwi/
sampling the covariance matri,,, the Cramer—Rao lower ; T |
bound matrixCeg g Which contains information about pa-

e e S ai%

2::%‘::

Cw1 ‘

3 He
|
e { & Cs1
) | —— c
52

s
X \
E %o Pb \\\ &
e . \
I3 (e)
: : : i FIG. 5. Six acoustic waveguide models with varying degrees of complexity
BAL .o e e e RER g and their associated parametei®. Iso-velocity water over half-spacéb)
55 : : - - - Sound-speed gradient over half-spa@s.Iso-velocity water over sediment
0 50 100 150 200 250 and half-space(d) Sound-speed gradient over sediment and half-sgage.
Distance along array (m) Iso-velocity water over two-layer sediment and half-sp&BeSound-speed
(b) gradient over two-layer sediment and half-space. Note the distinct surface

and bottom water column velociti€%,; andC,,, in models(b), (d), and(f).
FIG. 4. Towed-array shape modela) Simple parabolic model with depth, Also note that while the two sediment layer velociti€s; and Cg; are
bow and tilt. (b) Cubic spline model fitting a variable number of depth distinct in modelde) and (f), the densities and attenuations of these layers
points—in this cas&,;, Za», Za3, andz,,. (ps and as) have been assumed equal for simplicity.
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TABLE |. Parameters and inversion bounds for the first case involving aln the present case, these samples will have been generated
parabolic array and Pekeris environment. at the first level of inference, i.e., in estimating the PPD of
Parameter Symbol Unit Min Max  the parameters via Gibbs_ sampling. The task. then is.to in-
voke a Gaussian approximation, not for the integral itself,

wz:g ZZ:R? speed CDW "rzs 115113 115235? but to bereverse sampletly the existing ensemble, thereby
Bottom sound speed C m/s 1450 1650  calibrating the unknown evidence integral against that of the
Bottom density o glen? 1 3 Gaussian, which is known. Taking(m) as a normalized
Bottom attenuation a dB/\ 0 2 Gaussian

Source depth Zg m 0 5

Source range R m 275 325 _

Array depth Z, m 45 55 f g(m)dm=1, (23)
Array tilt 1) degrees -2 2 . )

Array bow B m -5 5 and ¢ as the unknown evidence integral

5=f f(m)dm, (24)

F. Reverse importance sampling )
_ ) ) _ £ can be shown to be approximated®by
In Sec. Il B, Bayesian evidence was defined in terms of

an integral that, given a Gaussian approximation to the pa- lN 1 § g(mg)

rameter likelihood and flat priors, had a simple analytic form. & qul f(mg)
Unfortunately, as will be apparent in Sec. V, such approxi- . ) ) .
mations can result in errors of many orders of magnitude and  Calculating Bayesian evidence by reverse importance

sometimes compromise the outcome of Bayesian model s§2MPIING(RIS) is straightforward, requiring negligible fur-

lection. More accurate calculation of evidence calls for aln€’ computation once the PPD sampieg and their func-

numerical integration approach. tional valuesf(mg) have been generated by Gibbs sampling.
O Ruanaidh and Fitzgerdldiescribe such an approach

that is closely related to the concept of importance samplingV- SELF-NOISE INVERSION

but works in reverse to extract the probabilistic evidence of aa. MAPEX2000

model from samplem, already available from its joint PPD.

(25

The 90-min experiment discussed here was conducted
by the NATO Undersea Research Center and the Marine

e s E o 5 o Physical Laboratory as part of MAPEX2000, which was spe-
oaslo S P S TN I O S - cifically directed at validating a range of array processing
BEARING : 60 and geoacoustic inversion techniques. The data were ac-
SAMPLES: 630508 01 |-t o)t ) quired north of the island of Elba, off the Italian west coast
' : ; ; on the 29th of November, 2000 between the times of
FREQES): 1315z o5 o0s| i 07:17:30 and 08:45:00 UTEThe array used consisted of
z28 ke J‘ : : 128 hydrophones evenly spaced at 2 m. Half-wavelength
B0s9Hz Qe sa0 Ji5 120 1z5 ° 1500 1600 sampling therefore occurred at approximately 375 Hz. Depth
Culm) o m Co e} control with this array proved less accurate than hoped, al-
02 : 02 : 02— 02— though this turned out to be of little consequence, as the
: : P o array shape was included in the vector along with the
048]+ ern- - 048] oo — L RS I KT e S & other parameters to be optimized.
ﬁ ﬁ P oo The self-noise inversion dataset comprised 175 frames
X ERET f X1 P ......... 0o ...... S o0 ,,,,,,, ....... Sampled at 30-s intervals. Only the first 10 s of each interval,
ﬁ ﬁ L o or 60000 samples at a sampling rate of 6000 samples per
008| e - P — S o L L second, were recorded. One novel aspect of this self-noise
. L Om 0_‘1 ‘ experiment was that two research vessels were involved.
:

oo o) woEn o Zm Ym0 R From about frame 60 to frame 107, the NRM.IANCE, with

its array towed approximately 330 m behind, was followed
by a smaller vessel, th®IANNING, at a range of approxi-
mately 900 m. The horizontal distance of heNNING from
the tail of the array was therefore approximately 300 m.

As in our earlier analysiéwe have made the assump-
tion here that the source ship was well approximated as a
point source over the range of frequencies considered. While
: : realizing that this may not generally be the case with larger
- 0 S 0 : ; vessels or at higher frequencies, the point-source assumption
Zm ¢(deg) B(m) seems to have been borne out at least in the case of the

FIG. 6. Marginal PPD histograms for frame 90. Environment magdgl MANNING by ConS|Stently sharp matched-field processor
parabolic array anshANNING source. (MFP) peaks.

0.2 - 0.2 - 0.2

P Fns PP I e o5l R
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TABLE Il. Gibbs sampler inversion results for the first case involving a known to be flat and covered with a thin layer of clay and

parabolic array and Pekeris environment. sand—clay sediments. Below the thin sediment layer is
Parameter Unit MAP Mean Std. dev.  Known to exist a reasonable approximation to an acoustic
half-space with the approximate parametegs=1600 m/s,
Cu m/s 1515 1516 3 ~1.8glcn?, and ay~0.15 dBA .2 At finer levels of de-
D m 1215 122.1 15 pp== 1.6 gicnT, o7 ' .
C m/s 1620 1560 47 tail, Holland and Os!e°’f‘ hgve noted the emstt_anc;e of some
oo glen? 20 1.9 0.4 randomly placed thin, high-speed layers within sediment
ay dB/\ 2.0 1.0 0.6 core samples.
Zs m 4.5 3.3 10 In no results to date has there been evidence of signifi-
?S 2 223 ) 323 9 3)9 cant shear wave propagation in the seafloor in the North Elba
a . . . .
p degrees 04 0.7 03 area, and hence only compressional wave parameters were
B m —213 _28 1.0 considered here. In any case, the assumption of a shear-wave

velocity ¢ within the plausible range for the bottom type in
guestion ¢s<c,,) would lead mainly to an increased bottom
At frame 107, ALLIANCE started a 45° turn, while loss®® to which the current near-field inversion technique
MANNING continued on track. Then, at frame 1224NNING would be relatively insensitive.
left station and departed the area at increased speed without
turning. In this analysis, we consider only the 10 s of dat
acquired in frame 90, during which th@ANNING was in
station approximately 300 m behind the Alliance, as illus- From each 60000-point frame, 6 Kaiser—Bessel win-
trated in Fig. 1. We do not consider theLIANCE, which  dowed, 16 384-point snapshots were averaged with 50%
posed much lower a source level for the purposes of reliableverlap in order to estimate both the power-spectral densities
self-noise inversioA. (PSDg and cross-spectral density matric6eSSDMs. EI-
Figure 2 shows the track of the two ships during theementary frequency tracking was used to follow small varia-
experiment, and gives an indication of the local bathymetrytions in the tonal frequencies emitted by theNNING. The
Over the entire track, the depth sounder recorded a steadiiree center frequencies selected for inversions were 131.47,
increase in depth from approximately 116 to 124 m. Expend262.94, and 306.88 Hz, as indicated by the markers at the top
able bathy-thermograph casts showed an almost iso-velociyf the normalized PSD in Fig. 3, which was computed from
(winter) water column with a velocity of approximately 1520 time-series data beamformed in the approximate direct-path
m/s. The speed of the LIANCE was a steady 4 knots and the direction of theMANNING. In this paper, all angles are given
prevailing sea state was 1. with respect to the vertical down direction, with 90° pointing
In the area of the experiment, the seafloor has been fairljoward the towshigLLIANCE and —90° pointing toward the
well characterized over the last 30 ye&ts??633and is  support ShipMANNING.
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keeping environmental parameters at the beginning of the
Gibbs chain, it is possible to improve efficiency by reusing
the mode functions to evaluate the array field for a wide
variety of geometric variations. Second, by replacing the
single-interface reflection coefficient of Zhang and Tindle
with an invariant embedding scherffethe capability of our
CED code was extended to arbitrary bottom layering at little
FIG. 8. Parameter correlation matrices for the Pekeris environment an&lddlthhal cost. The disadvantage of our existing CED (_:ode
parabolic array(parameter order as per Tables | and (&) Gibbs sampler IS that it cannot handle water column sound-speed gradients,
estimate|(b) Estimate via Eq(22); (c) Estimate via Eq(21) after sampling ~ which were instead modeled by wave number integration in
in rotated coordinates. The parameter indices now relate to a new set ¢his work. Modifications of our CED code along the lines
orthogonal coordinates. described by Westwooeit al3® are expected to remedy this
problem, enabling Gibbs sampling to be applied efficiently to
Given the level of interference originating from nearby more complex environments for which wave number integra-
shipping traffic, it was found useful to incorporate additionaltjon s currently slower by a factor of about 20.
spatial filtering of the snapshot data. Preprocessing therefore
entailed temporal windowing and 2D FFT transformation of
each snapshot, frequency masking to exclude certain ranggs
of spatial frequencies, and then inverse 1D FFT transforma- From the standpoint of real data analysis, it is important
tion back into phone-frequency space. In this analysis, théo allow for geometric distortion of the array from its ideal
spatial frequency cutoff was set to include arrival angleshorizontal and straight configuration. Whereas in Ref. 2 we
within 60° of endfire to capture most of the expected multi-modeled the array as a parabolic curve with bBuneters
path arrivals from the1ANNING. To retain the normalization and tilt ¢ degrees, in this work we extended the description
of Eq. (14), identical filtering was applied to the replica vec- to a cubic spline passing through multiple equally spaced
tors w; . points. Each point has freedom in depth, allowing compli-
cated array shapes to be modeled. Figure 4 is an illustration
of both models, as it is our intention in Sec. V to compare
each with respect to Bayesian evidence, thereby quantifying
Accurately modeling the response of acoustic environthe level of complexity most appropriate.
ments is a principal aspect of geoacoustic inversion. In the
present case of self-noise inversion, particular attention i§ pesyLTS
required to aspects of short-range propagation that differen-
tiate it from long-range waveguide propagation—namely the  In this section, we present inversion results obtained for
leaky orvirtual modesthat result from steep angles of bot- frame 90 of the MAPEX2000 dataset using theNNING as
tom incidencé. In view of this, two approaches to propaga- @ source, and a variety of geoacoustic and array parametri-
tion modeling capable of accuracy in the near field werezations. Strictly speaking, the selection of the array and en-
used, the first of which—wave number integration—has al-vironmental models should have been made concurrently;
ready been detailed in Ref. 2. The second approach, based Bawever, we undertook these analyses separately on the as-
the complex effective deptiCED) ideas of Zhang and Sumption that the array parameters were well determined by
Tindle,36 was motivated by the modeling requirements ofthe data and hence hierarchically separable from the less
Gibbs sampling, which can easily run to the order of 10
models for a single inversion. 04
The first great advantage of CED models is that they are
based on normal modes, which are characteristic of the en
vironment and independent of source—receiver geometry. By

Array modeling

C. Propagation modeling

0.35[
031

TABLE Ill. Results for the array model selection. The three-point spline is S 0257

seen to give the highest evidence. Note that the table displays log evidenc&
and the probability of a model is based on just the evidence; thus, the sma@ 0zl
differences for each model are important. o
o

Log evidence oer
Model Min E RIS Gaussian 04
Parabola 20.1 —14.4 —14.3 sk
Spline 3 194 -14.2 -13.8 ’
Spl!ne 4 19.1 —-14.4 —13.8 . 11—
Spline 5 18.9 —-14.8 -14.1 Parabola  Spline3  Spline4  Spline5  Spiine6  Spline7  Spline 8
Spline 6 17.9 -15.3 —-14.4 Array Model
Spline 7 17.7 -15.5 —14.6
Spline 8 17.3 —-15.7 —-15.5 FIG. 9. Normalized probabilities for the towed-array models listed in Table

11l based on Bayesian evidence.
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02 g 02 ; 02 g of samples. In most respects, the results obtained here agree
§ ; § § well with those obtained earlier using a GA global sedrtin.
BEARING: -90 R particular, the MAP estimate of the bottom veloci®y, of
: : : : 1580 m/s is identical to that obtained previously. In this case,

FRAME: 90

SAMPLES: 7.7e+03 0.1 - B I RN SRR [ 0.1 A B
; ; ; ; however, at least the relative parameter sensitivities are
FREQ(S): 1815Hz Lo oos| o oos] clearly evident from the widths and curvatures of the mar-
2629 Hz 5 . : ‘| ginal PPDs.
ooz oL o JSS o IS It is noteworthy that the bottom densify, in Fig. 6

C, (mis) o(m) Cy(ms) appears to have been well resolved. In fagt,appears as
well resolved here as the bottom velocfly, . As the bottom
reflected arrivals are relatively steep, the magnitude of these
arrivals is related to the impedance contrast at the bottom
boundary. Physically, the estimated density of1094 g/cn?
agrees well with the value of 1.8 g/émommonly assumed
for sediment densities in the North Elba afd4%32

Typifying the characteristics of a poorly resolved param-
eter, the variance of thp-wave bottom attenuation,, is a
large proportion of its prior range, and the marginal PPD is
correspondingly flat. This confirms earlier observations that
02 ; 02 ; 0z ; bottom attenuation is not a sensitive parameter in near-field

‘ : ’ inversion.

In Fig. 7, 1D and 2D marginal probability plots indicate
relatively homogeneous PPDs for most parameter pairs, ex-
cept in the case of water defdhand source rang®s, which
shows a very strong positive correlation of the type com-
monly found in shallow-water acousti¢s3°This correlation

L o is also apparent in the parameter covariance matrices, esti-
50 56 45 50 56 45 50 55 . R
Zy(m Z,(m) Z(m) mated via Eqs(21) and(22) and plotted agorrelation ma-
trices p;; in Figs. 8a) and (b), respectively, such that

02 - 02 - 02 - — 02~

P Fns PP I e o5l R

0
45

FIG. 10. Marginal PPD histograms for frame 90. Environment mddgel
three-point array anelANNING source. pii :Cij / /C“ij' (26)
. . As discussed in Sec. llI D, the estimates obtained using the
strongly determined environmental parameters. Maitay ) .
0 methods should agree given sufficient samples and an

. t
marks that this approach can often emerge as a reasonabYécurate enough ML estimate. Visually, Figga)8and (b)

S a
approximation. N " ; )
The structure of this section, then, is first in Sec. VA to bear a close resemblance, with high positive correlations be

revisit the baseline case of the parabolic array and Pekerltgv een water deptD (parameter and source ranggaram-

. . X . eter 7, and some negative correlations elsewhere. In subse-
waveguide environment. Second, in Sec. V B, the behavior L 9

of Bayesian evidence with respect to array model complexit quent sampling, these correlations were effectively removed

. ; . . ; .B{hrough coordinate rotation as described previously, with the
is analyzed assuming the Pekeris environment. Finally, in : : . . .
. result being a more diagonally dominant correlation matrix
Sec. V C we fix the array model at the most probable con; : . o
. . . . . for the orthogonalized parameter set, as illustrated in Fig.
figuration determined previously and compare the six enviy, o . : X
. o . . 8(c). EstimatingC using Eq.(21) typically required ten thou-
ronmental models illustrated in Fig. 5 with respect to their . )
. . sand or so forward models to achieve 5% relative conver-
Bayesian evidence. . - .
gence, whereas using E@2) took almost negligible time.

A. Parabolic array and Pekeris environment

The first result assumes the same simple Pekeris envj-
ronment and parabolic array model as previously employe
in Ref. 2, except that in this case, we have retained the bot- In this section, we isolate the issue of array selection
tom densityp, and attenuatiom,, parameters previously ne- from that of environment selection by holding the latter con-
glected due to their perceived insensitivity. Table | details thestant. Taking the simple Pekeris waveguide as a baseline en-
search bounds used in the first inversion, which convergedironment, Table Il summarizes the outcomes of Bayesian
after 63 000 CED forward mode(sach at three frequencjes evidence calculations for seven array models, including the
in approximately 1 h. original parabolic array with three parameters, and six addi-

In Fig. 6, histograms generated by Gibbs sampling protional cubic spline arrays with up to eight parameters
portional to the marginal PPDs of the ten inverted parameteréequally spaced depth pointsThe second column of the
have been smoothly resolved into 50 bins, indicating goodable gives the minimum error energies achieved with each
convergence. Table Il summarizes the results of the first inarray, illustrating the point in Sec. II B that arbitrarily com-
version in terms of MAP and mean parameter estimates iplex models can achieve arbitrarily good fits to the data. The
addition to standard deviations computed from the ensemblghird column gives the logarithmg&o base 1D of the evi-

. Array model selection
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FIG. 11. Marginal PPD histograms for frame 90. Environment makgl

three-point array angiANNING SOUICE. FIG. 12. Marginal PPD histograms for frame 90. Environment mddgel

three-point array anelANNING source.

dence values as calculated by reverse importance sampling—

. olcean—acoustic environments considered, including the
the most accurate method used here. These log-evidence val- . . .
Simple Pekeris waveguide used as the baseline case above.

ues can be compared with those in the fourth column, whict))\ . . L ) i
. gain, the choice of models was subjective—in this case
were calculated by a fast approximate method based on ttbe

. . . . . ased on previous geoacoustic inversions in the North Elba
Gaussian assumption of E@). As discussed in Sec. 1B, in regio b 9

the absence of prior preferences toward particular models rF2%225%and also recent high-resolution surve§s)
. ' P P! . pa Which have indicated near-surface stratification that might
that with the highest evidender log evidencgis preferred,

. . . R reasonably be detected by the present self-noise technique.
and the array modgl with the highest evidence n this case The additi>c/>n of sound—spe):ed grrfdients to the water colur?m
the three-point spline. While array models of higher COM- hile seemingly unnecessary given the almost iso-velocity

plexity achieved lower energies, the Occam factor implicit in . . . .
. . . . . _profile measured at sparse locations during the experiment,
the evidence formulation automatically discriminated agains . . .
was of interest here because the impact of such profiles needs

them, leading to a monotonic decrease in probability, as il- . ; P ;
. e . to be better understood in relation to near-field inversion.
lustrated by_ the normalized probability plot of Fig. 9 : Marginal PPDs generated by Gibbs sampling for each of
Interestingly, both the parabola and three-point Spllnethe six environments—assuming the three-point spline array
possess the same number of parameters, though the geomet-

ric mapping of these parameters into the misfit function wa: reviously selected—appear in Figs. 10 to 15. In the case of
pping P model (a) in Fig. 10, it can be observed that the change in

different for each case. While an argument could be made S Co .
. ; . rray parametrization has not significantly affected either the
that the particular prior bounds used weighed unreasonab@

. X ) h f the PPD h i i -
against the parabolic arrdgr vice versa these bounds were apes of the s or the parameter estimates obtained pre

. . . viousl| in rabolic array. Similarly to Fig. th
believed to be reasonably representative of the state of pr|orOusy using a parabolic array. Similarly to Fig. 6, the

uncertainty. For this reason, the three-point spline array w. gource deptiz is observed to be multimodal, but becomes
Y- o poInt Spiine Y Wagss so following the addition of a water column sound-speed
selected here as the basis for subsequent inversions.

gradient. For mode(b) in Fig. 11, the velocity estimate for

the lower water column was 1538 m/s relative to the sur-

face velocity estimate of 153 m/s, suggesting a signifi-
Having established that the three-point spline had theant deviation from the iso-velocity assumption made in Ref.

highest Bayesian evidence of the seven array models eval@-

ated, we now turn to evaluating evidence values for various  Model (c) is again an iso-velocity model, with the bulk

environmental models. Figure 5 depicts schematically the siwater sound-speed estimafg, being 1516:3 m/s. How-

C. Environment model selection
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FIG. 13. Marginal PPD histograms for frame 90. Environment magdgl
three-point array an@lANNING source.

ever, in this case, the possibility of a sediment layer with its
own density ando-wave velocity has been included. As is

apparent in Fig. 12, the existence of such a sediment laye
down to 2.3:1.0 m is suggested by the well-resolved peak in

FIG. 14. Marginal PPD histograms for frame 90. Environment mdegl

three-point array an&iANNING source.

the sediment thickness PPD. This feature was subsequent
confirmed to be common to most of the MAPEX2000 datase o.
between frames 90 and 117, and its estimated depth corr,
lates very well with bottom structures proposed by Gingras
and Gerstoff for the North Elba seabed, as does the esti-°
mated sediment density of 1.2 g/cnt. With the reintro-
duction of a water column sound-speed gradient, this pea

remains unchanged; however, the sediment sound-speed ¢ ‘5°°C‘5(?,?,, 1700 "0

timate increases from 1565 to 1576 m/s while the sedimer o
density estimate decreases to(2 g/cni. It should also .
be noted that in comparison with the sediment parameter:

those of the half-space below are poorly resolved, with the®'|

only meaningful observation being that the half-space dero.os|--

sity is likely to be in excess of 2 g/cin

0
Figures 14 and 15 illustrate the effect of introducing still oo crimy !

further structure to the bottom acoustic model in the form of o2
an additional iso-velocity fluid sediment layer. The prior .
bound of 20 m for the thickness of this layer was intended tc

reflect what was believed to be the overall sensitivity limit of ®

the MAPEX2000 inversion geometry over the frequencyoos| - |

range used—though this itself is a function of the actual |
bottom structure. Whereas the PPD of thelayer thickness
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parameter becomes SUbStar_]ti?”y flatter aﬁer addir_lg a Secols. 15, Marginal PPD histograms for frame 90. Environment mdbjel
layer, theH, PPD appears distinctly multimodal, with a sec- three-point array ansianniNG source.
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TABLE IV. Results for environment model selection. Modd) is seen to  TABLE V. Results of final geoacoustic inversion.
give the highest evidence. Note that the table displays log evidence and the
probability of a model is based on just the evidence; thus, the small differ-Parameter Unit MAP Mean Std. dev.
ences for each model are important.

Cu1 m/s 1518 1518 4
Log evidence Cu2 m/s 1512 1511 5
D m 121 121 1.8
Model Min E RIS Gaussian Cs m/s 1598 1577 45
H m 2.7 25 1
(@ 19.4 —14.2 —-13.8 o 4B/ 20 11 06
(b) 19.1 -14.1 -13.7 o glcm? 15 s 02
(© 19.7 —15.2 —lar Co m/s 1539 1540 51
(d) 14.7 -13.6 -12.7 o glcn? e 2 05
© 150 —13.9 131 ay dB/A 1.4 1.0 0.6
(f) 14.9 -13.7 -13.1 z. m 20 P 1
R, m 301 300 10
Za1 m 49.6 49.7 0.9
ond peak at approximately 10 m. This is possibly on account z,, m 48.7 48.8 0.7
of two actual sediment layers in the bottom, or also possibly Zas m 53.8 53.4 1.0

just a resonant condition for the bottom interface reflectivity.

As done in Sec. V B for array model selection, the quan-
titative results of environment model selection are summatikelihood estimatep(d|M,). The evidence values in the
rized in Table IV and Fig. 16. Unlike the previous case, it issecond column of Table IV, therefore, are unbiased by sub-
difficult to rank competing environmental modelgpriori in optimal ML solutions, unlike those in the third column—
relation to their parametric complexity, and hence the evi-although in any case, both methods identified madglas
dence does not behave monotonically either side of the oghe most probable.
timal selection—mode(d). The MAP and mean parameter In relation to Fig. 16, there appears to be a consistent
estimates for this model, along with their associated standardemarcation between environments with iso-velocity water
deviations, represent the final output of the two levels ofcolumns as opposed to sound-speed gradients—the left and
Bayesian inference employed in this paper, and are summaight columns of Fig. 5. The latter are always more probable
rized in Table V. than the former, with the difference between mode)sand

Also unlike the previous case, the environment modeld) being almost anomalous. This suggests that even at the
found to have the highest Bayesian evidence was also thghort ranges necessary for self-noise inversion, it is worth-
which achieved the best overall fit. Given the hierarchicalwhile modeling the water column as possessing at least a
relationship between mode{d) and(f), it is at first surpris-  first-order sound-speed gradient.
ing that the latter could not achieve a lower energy, though it Finally, on the basis of histogram plots such as those in
is possible that the initial GA search simply failed to find the Figs. 10 to 15, it is not easy to see the reasons for particular
globally optimal solution. This is testimony to why it is more model preferences, but in numerous reruns, the essential pat-
desirable to characterize PPDs in inverse problems ratheern of Fig. 16 was fairly consistently reproduced. In any
than just search for the best fit. Further, it can be noted frongase, we stated in the Introduction that the focus of this paper
Eq. (25 that the reverse importance sampling procedurevas on themethodologyf Bayesian model selection rather
used for accurate evidence estimation—unlike the Gaussiahan exhaustive demonstration, which would need consis-
approximation of Eq(9)—does not depend on the maximum tency checks across a more extensive portion of our data set

than the single frame analyzed here, and also possibly a

04 ' ' ; ' ' ' wider range of realistic ocean models.

0.35[

VI. CONCLUSIONS

0.3F

A Bayesian approach to solving self-noise inversion
problems has been presented. This approach provides consis-
0zk | tent methods for both parameter estimation at the first level
of inference, and model selection at the second level of in-
0.15F g ference.

To implement the calculations necessary—namely PPD
orr 1 estimation, marginalization, and integration—we used a
Metropolis—Hastings variant of the popular Gibbs sampler
algorithm, which, combined with fast acoustic modeling,
. — made the tasks of parameter estimation and model selection
@ © © @ © 0 tractable. Variations on conventional Gibbs sampler design,
Environment Model such as an initial fast GA optimization, and coordinate rota-
FIG. 16. Normalized probabilities for the environment models listed in iON @ccording to semianalytic covariance estimates proved
Table IV based on Bayesian evidence. successful in accelerating overall algorithm performance.

Probability

0.05F
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