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Self-noise geoacoustic inversion involves the estimation of bottom parameters such as sound speeds
and densities by analyzing towed-array signals whose origin is the tow platform itself. As well as
forming inputs to more detailed assessments of seabed geology, these parameters enable
performance predictions for sonar systems operating in shallow-water environments. In this paper,
Gibbs sampling is used to obtain joint and marginal posterior probability distributions for seabed
parameters. The advantages of viewing parameter estimation problems from such a probabilistic
perspective include better quantified uncertainties for inverted parameters as well as the ability to
compute Bayesian evidence for a range of competing geoacoustic models in order to judge which
model explains the data most efficiently. ©2004 Acoustical Society of America.
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I. INTRODUCTION

In self-noise geoacoustic inversion, plant and hydro
namic noise generated by the tow ship as a by-product o
normal operation is used to interrogate the ocean envi
ment. Because of its inherent mobility, reduced complex
and low environmental impact, self-noise inversion using
towed array is a very promising modality of geoacous
exploration.1

In our previous paper,2 data acquired during the join
NATO/Marine Physical Laboratory experiment—
MAPEX2000—was analyzed using maximum-likelihoo
~ML ! methods to evaluate the feasibility of self-noise inv
sion from towed-array data. The major conclusion dra
from this preliminary work was that matched-field proce
ing ~MFP!, in conjunction with global search procedur
such as genetic algorithms~GA!, was sufficiently sensitive in
the near field to permit robust first-order inversion of para
eters such asp-wave velocity for a range-independent bo
tom environment known to be reasonably well characteri
as a fluid half-space. This was despite low to moder
signal-to-noise ratios~SNR! during the experiment and con
siderable uncertainty in relation to several important geom
ric parameters, such as water depth, source range, and
shape.

In this paper, we again direct our attention to the ne
field inversion problem using towed-array data, applying
different paradigm to its solution and addressing two imp
tant questions: First, can we better quantify the sensitiv
limits of near-field inversion? Second, is there a consist
way of ranking our success in modeling an unknown en
ronment using multiple parametrizations? To address the

a!Now with the Ocean Engineering Dept., Massachusetts Institute of T
nology, Cambridge, MA. Electronic mail: dbattle@mit.edu
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question, we focus on characterizing the posterior probab
densities ~PPDs! associated with ensembles of parame
samples generated by a procedure known as Gibbs samp
Assuming that the model is correct, the PPD then summ
rizes our complete state of knowledge about the estima
parameters including their mean~expected! values, maxi-
muma posteriori~MAP! values, and variances. In answer
the second question, we find as a consequence of know
the PPD that Bayesian probability theory embodies a nat
ranking for competing models, known asevidence. In Sec. II,
we briefly reiterate a few salient aspects of Bayesian pr
ability theory relevant to the current analysis. For comple
ness, we restate Bayes’ rule and underline the interpreta
of likelihoods, priors, and evidence in the context of inver
problems. In Sec. III, we describe in some detail our imp
mentation of the Gibbs sampler used to obtain the result
later sections. While our development parallels that
Dosso3–5 as recently applied to the analysis of synthetic a
experimental geoacoustic data, we offer our own insig
into the workings of the algorithm and some further sugg
tions for improving its efficiency. In Sec. IV we revisit th
MAPEX2000 experiment and various aspects of the sig
processing and modeling requirements of near-field inv
sion. Whereas in Ref. 2 we concentrated on demonstra
inversion consistency throughout an extensive portion of
dataset, in Sec. V we focus on themethodologyof Bayesian
model selection—analyzing a single 10-s frame and deriv
PPDs corresponding to a variety of geoacoustic models w
increasing levels of complexity. In addition to presenti
marginal distributions for the inverted parameters, we eva
ate the Bayesian evidence for each model using both ana
Gaussian approximations and a more accurate me
known as reverse importance sampling. Our conclusions
given in Sec. VI.

h-
2043)/2043/14/$20.00 © 2004 Acoustical Society of America
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II. BAYESIAN INFERENCE

The single aspect that most popularly distinguish
Bayesian probability and its application in inver
problems—Bayesianinference—from its so-calledorthodox
or frequentistalternatives is the use of prior~before-data!
probabilities to modulate posterior~after-data! probabilities
according to Bayes’ rule

p~mud,Mk!5
p~dum,Mk!p~muMk!

p~duMk!
, ~1!

wherem is a vector of model parametersmi ( i 51,...,P), d is
a vector of measured datadn (n51,...,N), and themodels
Mk (k51,...,M ) embody various parametrizations cons
ered plausible in explainingd. p(aub) denotes conditiona
probability, meaning the probability of some outcomea
given a previous outcomeb. In words, Eq.~1! reads

posterior5
likelihood3prior

evidence
.

Specializing to the geoacoustic problem at hand, we
gard themi as representing acoustic quantities that we w
to infer from datadf acquired at discrete frequenciesv f ( f
51,...,F) from an array ofN hydrophones. The likelihood
p(dum,Mk) quantifies the error in matching thedf with rep-
lica fields generated by a continuous wave~cw! propagation
model, while the priorp(muMk) defines and weights plau
sible ranges for the parametersmi . The evidence appearin
in the denominator can, at first, be thought of as an ove
normalization for the PPD, which is independent of the p
rameter vectorm.

A. First level of inference

As defined by MacKay,6 the first of the two levels of
Bayesian inference is concerned with parameter estima
problems in which each proposed model is assumed to
correct, i.e., all conceivable possibilities are encompas
within its prior parameter space. This assumption is resp
sible for the aforementioned normalization

E p~mud,Mk!dm51. ~2!

Aside from this technicality, it is theshapeof the PPD, and
hence only the likelihood and prior terms, that influence
first level of inference.

It is often a criticism of Bayesian probability that, a
though it offers clear guidance on how to use prior probab
ties through Eq.~1!, it is neutral as to how they are derived
the first place. As is the case with inference in general, pr
have an inescapable subjective element, which highlights
fact that all inference is subjective to a point. In this wo
flat priors have been assumed for all parameters, with lo
bounds l i and upper boundsui , such that the normalized
prior density for each parametermi is given by

p~mi uMk!5
1

~ui2 l i !
5

1

wi
. ~3!

In such cases, provided the bulk of the posterior probab
is bounded within the assumedwi , the prior is said to be
2044 J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
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diffuseand does not significantly influence the shape of
PPD. Even diffuse priors, however, can impact therelative
probabilities of proposed models, thus influencing the sec
level of inference, as described next.

B. Second level of inference

Whereas at the first level of inference only the likeliho
and ~usually to a lesser extent! the prior are important, the
second level involves the denominator, orevidenceterm,
which is the normalizing constant for the PPD,viz.

p~duMk!5E p~dum,Mk!p~muMk!dm. ~4!

At the second level of inference, the intention is to ra
each modelMk in terms of its ability to explain the data. A
is well known, such a ranking cannot be based solely on
likelihood, as arbitrarily complex models can match the d
arbitrarily closely. Paralleling Eq.~1!, a posterior probability
can also be attributed to eachMk , independent of its param
eters. However, in this case, normalization is not meaning
leaving the proportionality

p~Mkud!}p~duMk!p~Mk!. ~5!

The reason that Eq.~5! cannot be normalized is simply tha
the universe of modelsMk is subjective and infinite. Usu
ally, the best that can be done is to enumerateM models for
comparison, and—assuming no initial preference—the
sulting prior probabilities are given by

p~Mk!51/M . ~6!

It then follows, for the purposes of model comparison, th
the posterior probability of each model is simply propo
tional to its evidence, which for reasons that will becom
apparent later in this section is sometimes referred to as
marginal or integrated likelihood. According to Bayesia
theory, the model associated with the highest numerical
dence as given by Eq.~4! is to be preferred.

What may not be immediately apparent from the prec
ing discussion is how Bayesian evidence automatically d
criminates against models that are overly complex, ther
expressing a preference forparsimoniousparametrizations.7

This preference is also known as Occam’s razor6 and be-
comes more visible after assuming ahypotheticalGaussian
form for the parameter likelihood around the maximum lik
lihood ~ML ! point m̂ @with an ML valuep(dum̂,Mk) and a
parameter covariance matrixCm]

p~dum,Mk!5p~dum̂,Mk!expS 2
DmTCm

21Dm

2 D . ~7!

In Secs. V B and V C, it will be shown that Eq.~7! is often
not a good approximation to real likelihood functions, whic
require numerical integration~Sec. III F!. However, such ap-
proximations are common in probability theory,8,6 princi-
pally because the integral orhypervolumeof a Gaussian like-
lihood function inP dimensions has the analytic form

E p~dum,Mk!dm5p~dum̂,Mk!~2p!P/2AdetCm. ~8!
Battle et al.: Bayesian model selection
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Making the further simplifying assumptions that the prior
flat and that the integral in Eq.~4! is not strongly affected by
including the tails ofp(dum,Mk) which lie outside the prior
rangesui and l i , Eq. ~4! can be rewritten

~9!

from which it can be seen that the maximum likeliho
achieved by a particular model does, as expected, w
positively toward its ranking. Weighing against the like
hood, however, is the so-calledOccam factor,6,7,9 which can
be interpreted as an integral of the prior probability dens
weighted according to the distribution of the likelihood.
other words, the Occam factor is a measure of the conc
tration of prior probability within the high-likelihood region
of a parameter space, and it displays the following gen
properties:6–9

~i! The Occam factor penalizes models that incorpor
large numbers of free parameters through the gro
of the prior hypervolumeP i 51

P wi .
~ii ! For the same reason, the Occam factor penalizes m

els with widea priori parameter boundswi .
~iii ! The Occam factor penalizes models that have to

finely tuned to fit the data, as these have concentra
PPDs and correspondingly small posterior volume

In geophysical theory, the first to describe Bayesian e
dence in model selection was Jeffreys in 1939.10 Only very
recently, however, new applications have been reported.7,9,11

The reasons for this no doubt stem from the complexity
real-world problems and the difficulties in deriving and m
nipulating the necessary probability distributions. Althou
Eq. ~4! is a simple prescription, such integrations requ
specialized numerical methods that have only recently
come practical.

Whereas alternative concepts such as minimum desc
tive lengths~MDL !, Akaike information criteria~AIC!, and
likelihood ratio tests have also been applied to mo
selection,12 proponents of Bayesian inference point to t
fact that the concept of evidence flows naturally and con
tently from the basicdesiderataof probability theory. In fact,
most other methods can be viewed as being closely rel
to, or approximations of the full Bayesian framework d
scribed here.6 Recent analyses have indicated that Bayes
model selection, which has higher computational dema
than other approximate methods, is capable of superior
formance, particularly in cases of low SNR and/or sm
amounts of data.13

C. Marginal inference

As discussed above, the calculation of~usually nonana-
lytic! PPDs is central to numerical applications of the fi
and second levels of Bayesian inference. When summari
a posteriori knowledge of parameter values, however, it
J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
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desirable to treat eachmi ~or perhaps pairs ofmi in the 2D
marginal probability distribution case! separately, while inte-
grating over the range of influence of the other parame
miÞ j , giving marginal probability distributions of the form

p~mj ud,Mk!5E p~mj ,miÞ j ud,Mk!dmiÞ j . ~10!

Parameter estimation based on the properties of m
ginal distributions is known as marginal inference, and w
be applied extensively in Sec. V, in which both one- a
two-dimensional marginal distributions are computed fro
samples drawn from the joint parameter PPD.

III. GIBBS SAMPLING

The basic inputs to Bayesian analysis are probabi
distributions, and in practice, these can be difficult to e
mate given the dimensionality of real-world problems. Gib
sampling is an iterative Markov chain Monte Carlo~MCMC!
procedure designed to sample from joint posterior distri
tions using only samples from conditional distributions.
the case of large-scale problems with many parameters
sessing unknown correlations, joint distributions are usua
not available, whereas conditional distributions often are

The origins of the Gibbs sampler date back to Hasting14

in statistical analysis and subsequently Geman and Gem15

who applied the idea to large-scale image reconstruc
problems. Comprehensive accounts of the theory and ap
cation of Gibbs sampling to inverse problems—particula
those in geophysics—as well as references to the orig
literature include Gelfand and Smith,16 Smith and Roberts,17

Sen and Stoffa,18 and Mosegaard and Sambridge.11 In rela-
tion to ocean-acoustic problems of the type of interest he
Dosso3–5 recently analyzed synthetic and experimental d
and concluded that Gibbs sampling is a powerful and rob
means of estimating geoacoustic parameters and their a
ciated errors.

In this section, we briefly discuss issues relevant to
integration of high-dimensional PPDs in geoacoustic inv
sion. These include the Metropolis–Hastings approach
sample generation, definition of a matched-field energy fu
tion, Gibbs sampler initialization, coordinate rotation, co
vergence criteria, and finally, one approach to the numer
estimation of Bayesian evidence.

A. Sample generation

In essence, Gibbs sampling consists of generating s
cessive samples fromP conditional distributions, such that a
the completion of theqth iteration, the parameter vecto
(m1

q ,m2
q ,m3

q ,...,mP21
q ,mP

q ) can be considered to have bee
drawn from the joint PPD. For clarity, it will be implicitly
assumed that posterior probabilities are conditional on
datad and modelMk from this point. Starting with the ini-
tial parameter vector (m1

0,m2
0,m3

0,...,mP21
0 ,mP

0 ) and denot-
ing the conditional distribution of parameterm1 with respect
to parameters m2→P in the first iteration as
p(m1um2

0,m3
0,...,mP21

0 ,mP
0 ), the sampling proceeds with

each successive conditional distribution immediately inc
2045Battle et al.: Bayesian model selection
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porating the previously selected parameter value. Using
‘‘ ←’’ symbol to denote the drawing of a sample, the fir
iteration can be illustrated as8

m1
1←p~m1um2

0,m3
0,...,mP21

0 ,mP
0 !

m2
1←p~m2um3

0,m4
0,...,mP

0 ,m1
1!

m3
1←p~m3um4

0,m5
0,...,m1

1,m2
1!

] ] ]

mP
1←p~mPum1

1,m2
1,...,mP22

1 ,mP21
1 !,

with the qth iteration given by

m1
q←p~m1um2

q21,m3
q21,...,mP21

q21 ,mP
q21!

m2
q←p~m2um3

q21,m4
q21,...,mP

q21,m1
q!

m3
q←p~m3um4

q21,m5
q21,...,m1

q ,m2
q!

] ] ]

mP
q←p~mPum1

q ,m2
q ,...,mP22

q ,mP21
q !.

In the Metropolis–Hastings variant of the Gibbs samp
used here, samples are drawn from each conditional distr
tion according to the Metropolis rule, wherein uniformly di
tributed perturbations, resulting in modified parameter v
tors m8, are accepted with probability

paccept5H p~m8!

p~m!
for p~m8!<p~m!,

1 for p~m8!.p~m!.

~11!

As in Eq. ~1!, the p(m) are posterior probabilities which
given simplifying Gaussian assumptions regarding the no
and modeling errors, take the exponential form

p~m!5exp@2E~m!#, ~12!

whereE(m) is an energy functionto be discussed shortly
The above combination of sequential perturbation, acc
tance, and rejection establishes a Markov chain whose s
pling density can be shown to converge to the Gibb
Boltzmann distribution from thermodynamics11,18

p~m!5
1

Z
expF2

E~m!

T G , ~13!

with the normalization orpartition functionZ ignored, and a
particular choice of unity for the temperatureT. This is the
same equilibrium distribution associated with simulated
nealing~SA! algorithms, and hence Gibbs sampling has
interpretation of being SA conducted at a constant temp
ture of T51.19,20

When evaluating the multidimensional integrals@Eq.
~10!# with importance sampling, the variance of the integ
estimates is reduced if the generating distribution is prop
tional to the integrand, and this is actually obtained with
Gibbs sampler.3,8,18 Generally, when evaluating the multid
mensional integrals@Eq. ~10!# with importance sampling, the
sampling distribution should be concentrated in regions
the parameter space where the PPD is most significant.
ally, if the PPD is perfectly mirrored by the sampling dist
2046 J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
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bution, then the error in estimating the PPD and its ass
ated marginal integrals tends to zero—a situation ne
achieved in practice, but approximated with a given amo
of computation such that Gibbs sampling is usually far m
attractive than either less adaptive or more exhaustive s
pling techniques.3,8,18 While other methods of importanc
sampling have also been applied to PPD estimation, inc
ing, for example, GA in ocean acoustics,21–26 the great ad-
vantage of Gibbs sampling is that the sampling distribution
knownto be given by Eq.~13!. In the case of GA and relate
methods, the sampling distribution is usually not known a
consequently the results may be difficult to interpret.4

B. Energy function

In Ref. 2, parameter estimation was carried out by
rectly maximizing normalized Bartlett power objective fun
tions of the form

Bf~m!5Fwf
†~m!R̂fwf~m!

tr@R̂f #iwf~m!i2G , ~14!

where thewf were replica vectors calculated from a contin
ous wave acoustic propagation model and theR̂f ( f
51,...,F) were cross-spectral density matrices~CSDMs! av-
eraged fromNs snapshot vectorsdn, f of the array data at
frequenciesv f according to

R̂f5
1

Ns
(
n51

Ns

dn, fdn, f
† . ~15!

To formulate the energy functionE(m) required by Eq.
~12!, Eq. ~14! can be transformed into themismatchor error
function27

f f~m!512Bf~m!, ~16!

following which3,25

E~m!5(
f 51

F
f f~m!udf u2

ŝ f
2

, ~17!

whereudf u2 is the total power seen by the array in frequen
band f and ŝ f

2 is a corresponding estimate of the varian
associated with the combination of model mismatch, oce
and instrumental noise.

To estimateŝ f
2, two simplifying assumptions have bee

made here. First, considering the single frame of data to
discussed in Sec. IV, and the three frequencies selected
inversion, it is reasonable to take the SNR as approxima
constant across frequency. Second, the spatial distributio
noise along the array has been assumed constant despi
short range of the experiment which, in reality, would ha
resulted in higher SNRs at the end of the array nearer
source. Following the maximum-likelihood arguments
Gerstoft and Mecklenbra¨uker in relation to the noise varianc
expected after averagingNs snapshots, as in Eq.~15!, the
average variance can be estimated as3,25,27

ŝave
2 5

fave~m̂!udaveu2

Ne
, ~18!
Battle et al.: Bayesian model selection
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wherefave(m̂) is the average normalized Bartlett mismat
obtained using a global search~at the first level of inference!,
udaveu2 is the average measured power, andNe is an estimate
of the number of degrees of freedom associated with
noise.

As discussed by Gerstoft and Mecklenbra¨uker25,27 and
Dosso,3,4 the selection of appropriate values forNe ~and
henceŝave

2 ) in geoacoustic inversion is problematic due
the fact that the structure of the true model and hence
that of the true signal are generally unknowable. Becaus
this, modelingerrors actually tend to dominate even at mo
erate SNR values—in most cases swamping the impac
noise completely. Faced with this difficulty, we adopted
heuristic approach and choseNe55 ~Refs. 28, 25, 3, 4! not-
ing that: ~1! This was approximately the number~six! of
independent snapshots used, and~2! from experience, accep
tance ratios~proportions of accepted Metropolis moves! on
the order of 25% to 50% are typically indicative of Gibb
sampler algorithms performing correctly.11,13 Too large an
estimate ofNe leads to artificially narrow PPDsrelative to
the prior boundsthrough the exponentiation in Eq.~12!, and
correspondingly poor acceptance ratios.

To summarize, the final energy function used in o
Gibbs sampler had the form

E~m!5S(
f 51

F

f f~m!, ~19!

with S5Ne /fave(m̂). Given that the highest average Bartle
power~correlation coefficient squared! obtained here was ap
proximately 0.8, the overall energy scaling factorS was

S5
Ne

fave~m̂!
'

5

0.2
525. ~20!

C. Initialization

As Gibbs samplers essentially sample around the mo
of PPDs, they must be correctly initialized to regions of hi
posterior probability. In many reported applications, an i
tialization orburn-in phase has preceded to the equilibriu
(T51) sampling phase such that an initial quenching fr
some high temperature takes place.8,3,4 In this work, we
found that SA initialization did perform satisfactorily pro
vided the starting temperature and annealing schedule w
correctly chosen—usually by trial and error. However, su

FIG. 1. The configuration of theALLIANCE and theMANNING during the
MAPEX2000 self-noise experiment.
J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
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stituting a genetic algorithm~GA! in place of SA ultimately
proved faster in locating the main concentrations of proba
ity. This was probably due to the insensitivity of GA to p
rameter correlations that can seriously affect the accepta
ratios obtained during conventional SA.

D. Coordinate rotation

As noted by Collins and Fishman,29 algorithms that gen-
erate univariate parameter perturbations, such as SA
Gibbs sampling, are particularly susceptible to poor acc
tance ratios when sampling strongly correlated param
spaces. In ocean acoustics, such parameter correlation
frequently encountered,30 and coordinate rotation, whereb
the parameter covariance matrixC, or alternatively, a cova-
riance matrix computed from field derivatives29 is effectively
orthogonalized, is a standard solution that will not be d
cussed here in detail. Following Dosso,3 our Gibbs sampler

FIG. 2. The tracks of the NRVALLIANCE and MANNING during the
MAPEX2000 self-noise experiment. All times are UTC. Each frame rep
sents a 30-s increment.
2047Battle et al.: Bayesian model selection
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originally included a covariance estimation phase conduc
at T51 following which the parameter covariance was es
mated from sampled vectorsm as

Cm'^mm†&2^m&^m&†. ~21!

Collins and Fishman29 originally suggested using the co
variance matrix of the derivatives of the field. Instead
sampling the covariance matrixCm , the Cramer–Rao lowe
bound matrixCCRLB which contains information about pa
rameter coupling, can be used to estimate the required
rameter rotations. In this work the Cramer–Rao formulat
due to Baggeroeret al.extended to the multifrequency case31

is used

FIG. 3. Normalized power spectral density computed from time-series
beamformed in the approximate direct-path direction of the support
MANNING. The three frequencies used for inversion were 131.47, 262.94,
306.88 Hz, as indicated by the top markers.

FIG. 4. Towed-array shape models.~a! Simple parabolic model with depth
bow and tilt. ~b! Cubic spline model fitting a variable number of dep
points—in this caseza1 , za2 , za3 , andza4 .
2048 J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
d
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f

a-
n

@CCRLB
21 # i j 5(

f 51

F

TrFK f
21 ]K f

]mj
K f

21 ]K f

]mi
G , ~22!

where theK f are outer products of replica fieldswf calcu-
lated at the ML pointm̂ and loaded uniformly on their di-
agonals to approximate the estimated SNR of the data. T
Eq. ~22! can be used in this wayindependently of the datais
less surprising when it is considered that coordinate rota
is simply another kind of importance sampling designed
concentrate samples in regions of high posterior probabi
While it is conceivable that a proposed ocean model mi
be sufficiently far from reality for Eq.~22! to fail as the basis
of such a sampling distribution, in all cases reported here
observed substantial improvements in Gibbs sampler ac
tance ratios whenC was estimated semianalytically usin
Eq. ~22! ~up to 50%! as opposed to Eq.~21! ~'25%!.

E. Convergence criteria

As we were mainly interested inmarginal PPDs, we
based our Gibbs sampler convergence criteria on the m
mum fractional change undergone by any 50-bin param
histogram in 100 cycles through the Gibbs sampler. Wh
not as rigorous as the dual-population convergence crit
used by others,3 we checked for convergence every 100 ste
and found that histogram changes below 10% were a relia
sign of convergence. All results presented in Sec.
achieved this criterion.

ta
ip
nd

FIG. 5. Six acoustic waveguide models with varying degrees of comple
and their associated parameters.~a! Iso-velocity water over half-space.~b!
Sound-speed gradient over half-space.~c! Iso-velocity water over sedimen
and half-space.~d! Sound-speed gradient over sediment and half-space~e!
Iso-velocity water over two-layer sediment and half-space.~f! Sound-speed
gradient over two-layer sediment and half-space. Note the distinct sur
and bottom water column velocitiesCw1 andCw2 in models~b!, ~d!, and~f!.
Also note that while the two sediment layer velocitiesCs1 and Cs1 are
distinct in models~e! and ~f!, the densities and attenuations of these lay
(rs andas) have been assumed equal for simplicity.
Battle et al.: Bayesian model selection
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F. Reverse importance sampling

In Sec. II B, Bayesian evidence was defined in terms
an integral that, given a Gaussian approximation to the
rameter likelihood and flat priors, had a simple analytic for
Unfortunately, as will be apparent in Sec. V, such appro
mations can result in errors of many orders of magnitude
sometimes compromise the outcome of Bayesian mode
lection. More accurate calculation of evidence calls fo
numerical integration approach.

Ó Ruanaidh and Fitzgerald8 describe such an approac
that is closely related to the concept of importance sampl
but works in reverse to extract the probabilistic evidence o
model from samplesmq already available from its joint PPD

FIG. 6. Marginal PPD histograms for frame 90. Environment model~a!,
parabolic array andMANNING source.

TABLE I. Parameters and inversion bounds for the first case involvin
parabolic array and Pekeris environment.

Parameter Symbol Unit Min Max

Water sound speed Cw m/s 1510 1530
Water depth D m 115 125
Bottom sound speed Cb m/s 1450 1650
Bottom density rb g/cm3 1 3
Bottom attenuation ab dB/l 0 2
Source depth Zs m 0 5
Source range Rs m 275 325
Array depth Za m 45 55
Array tilt f degrees 22 2
Array bow B m 25 5
J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
f
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a

In the present case, these samples will have been gene
at the first level of inference, i.e., in estimating the PPD
the parameters via Gibbs sampling. The task then is to
voke a Gaussian approximation, not for the integral its
but to bereverse sampledby the existing ensemble, thereb
calibrating the unknown evidence integral against that of
Gaussian, which is known. Takingg(m) as a normalized
Gaussian

E g~m!dm51, ~23!

andE as the unknown evidence integral

E5E f ~m!dm, ~24!

E can be shown to be approximated by8

1

E '
1

Q (
q51

Q
g~mq!

f ~mq!
. ~25!

Calculating Bayesian evidence by reverse importa
sampling~RIS! is straightforward, requiring negligible fur
ther computation once the PPD samplesmq and their func-
tional valuesf (mq) have been generated by Gibbs samplin

IV. SELF-NOISE INVERSION

A. MAPEX2000

The 90-min experiment discussed here was conduc
by the NATO Undersea Research Center and the Ma
Physical Laboratory as part of MAPEX2000, which was sp
cifically directed at validating a range of array process
and geoacoustic inversion techniques. The data were
quired north of the island of Elba, off the Italian west coa
on the 29th of November, 2000 between the times
07:17:30 and 08:45:00 UTC.2 The array used consisted o
128 hydrophones evenly spaced at 2 m. Half-wavelen
sampling therefore occurred at approximately 375 Hz. De
control with this array proved less accurate than hoped,
though this turned out to be of little consequence, as
array shape was included in the vectorm along with the
other parameters to be optimized.

The self-noise inversion dataset comprised 175 fram
sampled at 30-s intervals. Only the first 10 s of each inter
or 60 000 samples at a sampling rate of 6000 samples
second, were recorded. One novel aspect of this self-n
experiment was that two research vessels were involv
From about frame 60 to frame 107, the NRVALLIANCE , with
its array towed approximately 330 m behind, was follow
by a smaller vessel, theMANNING, at a range of approxi-
mately 900 m. The horizontal distance of theMANNING from
the tail of the array was therefore approximately 300 m.

As in our earlier analysis,2 we have made the assump
tion here that the source ship was well approximated a
point source over the range of frequencies considered. W
realizing that this may not generally be the case with lar
vessels or at higher frequencies, the point-source assump
seems to have been borne out at least in the case of
MANNING by consistently sharp matched-field process
~MFP! peaks.

a

2049Battle et al.: Bayesian model selection
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At frame 107, ALLIANCE started a 45° turn, while
MANNING continued on track. Then, at frame 122,MANNING

left station and departed the area at increased speed wi
turning. In this analysis, we consider only the 10 s of d
acquired in frame 90, during which theMANNING was in
station approximately 300 m behind the Alliance, as illu
trated in Fig. 1. We do not consider theALLIANCE , which
posed much lower a source level for the purposes of relia
self-noise inversion.2

Figure 2 shows the track of the two ships during t
experiment, and gives an indication of the local bathyme
Over the entire track, the depth sounder recorded a ste
increase in depth from approximately 116 to 124 m. Expe
able bathy-thermograph casts showed an almost iso-velo
~winter! water column with a velocity of approximately 152
m/s. The speed of theALLIANCE was a steady 4 knots and th
prevailing sea state was 1.

In the area of the experiment, the seafloor has been fa
well characterized over the last 30 years,23,32,26,33 and is

TABLE II. Gibbs sampler inversion results for the first case involving
parabolic array and Pekeris environment.

Parameter Unit MAP Mean Std. dev.

Cw m/s 1515 1516 3
D m 121.5 122.1 1.5
Cb m/s 1620 1560 47
rb g/cm3 2.0 1.9 0.4
ab dB/l 2.0 1.0 0.6
Zs m 4.5 3.3 1.0
Rs m 295 303 7
Za m 50.2 49.9 0.9
f degrees 0.4 0.7 0.3
B m 22.3 22.8 1.0
2050 J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
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known to be flat and covered with a thin layer of clay a
sand–clay sediments. Below the thin sediment layer
known to exist a reasonable approximation to an acou
half-space with the approximate parameterscb'1600 m/s,
rb'1.8 g/cm3, andab'0.15 dB/l.26 At finer levels of de-
tail, Holland and Osler34 have noted the existence of som
randomly placed thin, high-speed layers within sedim
core samples.

In no results to date has there been evidence of sig
cant shear wave propagation in the seafloor in the North E
area, and hence only compressional wave parameters
considered here. In any case, the assumption of a shear-
velocity cs within the plausible range for the bottom type
question (cs!cw) would lead mainly to an increased botto
loss,35 to which the current near-field inversion techniq
would be relatively insensitive.

B. Preprocessing

From each 60 000-point frame, 6 Kaiser–Bessel w
dowed, 16 384-point snapshots were averaged with 5
overlap in order to estimate both the power-spectral dens
~PSDs! and cross-spectral density matrices~CSDMs!. El-
ementary frequency tracking was used to follow small var
tions in the tonal frequencies emitted by theMANNING. The
three center frequencies selected for inversions were 131
262.94, and 306.88 Hz, as indicated by the markers at the
of the normalized PSD in Fig. 3, which was computed fro
time-series data beamformed in the approximate direct-p
direction of theMANNING. In this paper, all angles are give
with respect to the vertical down direction, with 90° pointin
toward the towshipALLIANCE and290° pointing toward the
support shipMANNING.
FIG. 7. 1D and 2D Marginal PPDs for
frame 90. Environment~a!, parabolic
array andMANNING source~PPDs be-
low the diagonal are symmetric with
those above!.
Battle et al.: Bayesian model selection
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Given the level of interference originating from near
shipping traffic, it was found useful to incorporate addition
spatial filtering of the snapshot data. Preprocessing there
entailed temporal windowing and 2D FFT transformation
each snapshot, frequency masking to exclude certain ra
of spatial frequencies, and then inverse 1D FFT transfor
tion back into phone-frequency space. In this analysis,
spatial frequency cutoff was set to include arrival ang
within 60° of endfire to capture most of the expected mu
path arrivals from theMANNING. To retain the normalization
of Eq. ~14!, identical filtering was applied to the replica ve
tors wf .

C. Propagation modeling

Accurately modeling the response of acoustic envir
ments is a principal aspect of geoacoustic inversion. In
present case of self-noise inversion, particular attention
required to aspects of short-range propagation that diffe
tiate it from long-range waveguide propagation—namely
leaky or virtual modesthat result from steep angles of bo
tom incidence.1 In view of this, two approaches to propag
tion modeling capable of accuracy in the near field w
used, the first of which—wave number integration—has
ready been detailed in Ref. 2. The second approach, base
the complex effective depth~CED! ideas of Zhang and
Tindle,36 was motivated by the modeling requirements
Gibbs sampling, which can easily run to the order of 15

models for a single inversion.
The first great advantage of CED models is that they

based on normal modes, which are characteristic of the
vironment and independent of source–receiver geometry

FIG. 8. Parameter correlation matrices for the Pekeris environment
parabolic array~parameter order as per Tables I and II!: ~a! Gibbs sampler
estimate;~b! Estimate via Eq.~22!; ~c! Estimate via Eq.~21! after sampling
in rotated coordinates. The parameter indices now relate to a new s
orthogonal coordinates.

TABLE III. Results for the array model selection. The three-point spline
seen to give the highest evidence. Note that the table displays log evid
and the probability of a model is based on just the evidence; thus, the s
differences for each model are important.

Model Min E

Log evidence

RIS Gaussian

Parabola 20.1 214.4 214.3
Spline 3 19.4 214.2 213.8
Spline 4 19.1 214.4 213.8
Spline 5 18.9 214.8 214.1
Spline 6 17.9 215.3 214.4
Spline 7 17.7 215.5 214.6
Spline 8 17.3 215.7 215.5
J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
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keeping environmental parameters at the beginning of
Gibbs chain, it is possible to improve efficiency by reusi
the mode functions to evaluate the array field for a w
variety of geometric variations. Second, by replacing
single-interface reflection coefficient of Zhang and Tind
with an invariant embedding scheme,37 the capability of our
CED code was extended to arbitrary bottom layering at li
additional cost. The disadvantage of our existing CED co
is that it cannot handle water column sound-speed gradie
which were instead modeled by wave number integration
this work. Modifications of our CED code along the line
described by Westwoodet al.38 are expected to remedy thi
problem, enabling Gibbs sampling to be applied efficiently
more complex environments for which wave number integ
tion is currently slower by a factor of about 20.

D. Array modeling

From the standpoint of real data analysis, it is importa
to allow for geometric distortion of the array from its ide
horizontal and straight configuration. Whereas in Ref. 2
modeled the array as a parabolic curve with bowB meters
and tilt f degrees, in this work we extended the descript
to a cubic spline passing through multiple equally spac
points. Each point has freedom in depth, allowing comp
cated array shapes to be modeled. Figure 4 is an illustra
of both models, as it is our intention in Sec. V to compa
each with respect to Bayesian evidence, thereby quantify
the level of complexity most appropriate.

V. RESULTS

In this section, we present inversion results obtained
frame 90 of the MAPEX2000 dataset using theMANNING as
a source, and a variety of geoacoustic and array param
zations. Strictly speaking, the selection of the array and
vironmental models should have been made concurren
however, we undertook these analyses separately on th
sumption that the array parameters were well determined
the data and hence hierarchically separable from the

nd

of

FIG. 9. Normalized probabilities for the towed-array models listed in Ta
III based on Bayesian evidence.

ce
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strongly determined environmental parameters. MacKay6 re-
marks that this approach can often emerge as a reason
approximation.

The structure of this section, then, is first in Sec. V A
revisit the baseline case of the parabolic array and Pek
waveguide environment. Second, in Sec. V B, the beha
of Bayesian evidence with respect to array model comple
is analyzed assuming the Pekeris environment. Finally
Sec. V C we fix the array model at the most probable c
figuration determined previously and compare the six en
ronmental models illustrated in Fig. 5 with respect to th
Bayesian evidence.

A. Parabolic array and Pekeris environment

The first result assumes the same simple Pekeris e
ronment and parabolic array model as previously emplo
in Ref. 2, except that in this case, we have retained the
tom densityrb and attenuationab parameters previously ne
glected due to their perceived insensitivity. Table I details
search bounds used in the first inversion, which conver
after 63 000 CED forward models~each at three frequencies!
in approximately 1 h.

In Fig. 6, histograms generated by Gibbs sampling p
portional to the marginal PPDs of the ten inverted parame
have been smoothly resolved into 50 bins, indicating go
convergence. Table II summarizes the results of the first
version in terms of MAP and mean parameter estimate
addition to standard deviations computed from the ensem

FIG. 10. Marginal PPD histograms for frame 90. Environment model~a!,
three-point array andMANNING source.
2052 J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
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of samples. In most respects, the results obtained here a
well with those obtained earlier using a GA global search.2 In
particular, the MAP estimate of the bottom velocityCp of
1580 m/s is identical to that obtained previously. In this ca
however, at least the relative parameter sensitivities
clearly evident from the widths and curvatures of the m
ginal PPDs.

It is noteworthy that the bottom densityrb in Fig. 6
appears to have been well resolved. In fact,rb appears as
well resolved here as the bottom velocityCb . As the bottom
reflected arrivals are relatively steep, the magnitude of th
arrivals is related to the impedance contrast at the bot
boundary. Physically, the estimated density of 1.960.4 g/cm3

agrees well with the value of 1.8 g/cm3 commonly assumed
for sediment densities in the North Elba area.32,26,33

Typifying the characteristics of a poorly resolved para
eter, the variance of thep-wave bottom attenuationab is a
large proportion of its prior range, and the marginal PPD
correspondingly flat. This confirms earlier observations t
bottom attenuation is not a sensitive parameter in near-fi
inversion.

In Fig. 7, 1D and 2D marginal probability plots indica
relatively homogeneous PPDs for most parameter pairs,
cept in the case of water depthD and source rangeRs , which
shows a very strong positive correlation of the type co
monly found in shallow-water acoustics.21,30This correlation
is also apparent in the parameter covariance matrices,
mated via Eqs.~21! and ~22! and plotted ascorrelation ma-
tricesr i j in Figs. 8~a! and ~b!, respectively, such that

r i j 5Ci j /ACii Cj j . ~26!

As discussed in Sec. III D, the estimates obtained using
two methods should agree given sufficient samples and
accurate enough ML estimate. Visually, Figs. 8~a! and ~b!
bear a close resemblance, with high positive correlations
tween water depthD ~parameter 2! and source range~param-
eter 7!, and some negative correlations elsewhere. In sub
quent sampling, these correlations were effectively remo
through coordinate rotation as described previously, with
result being a more diagonally dominant correlation mat
for the orthogonalized parameter set, as illustrated in F
8~c!. EstimatingC using Eq.~21! typically required ten thou-
sand or so forward models to achieve 5% relative conv
gence, whereas using Eq.~22! took almost negligible time.

B. Array model selection

In this section, we isolate the issue of array select
from that of environment selection by holding the latter co
stant. Taking the simple Pekeris waveguide as a baseline
vironment, Table III summarizes the outcomes of Bayes
evidence calculations for seven array models, including
original parabolic array with three parameters, and six ad
tional cubic spline arrays with up to eight paramete
~equally spaced depth points!. The second column of the
table gives the minimum error energies achieved with e
array, illustrating the point in Sec. II B that arbitrarily com
plex models can achieve arbitrarily good fits to the data. T
third column gives the logarithms~to base 10! of the evi-
Battle et al.: Bayesian model selection



ng
v

ic
t

e

e
m
in

ins
i

in
om
a

ad
ab

r
wa

th
a

ou
s

the
ove.
se
lba

ght
ique.
mn,
city
ent,
eeds
.

of
rray
e of
in
the
pre-
e

es
ed

r

-
ef.

k

dence values as calculated by reverse importance sampli
the most accurate method used here. These log-evidence
ues can be compared with those in the fourth column, wh
were calculated by a fast approximate method based on
Gaussian assumption of Eq.~9!. As discussed in Sec. II B, in
the absence of prior preferences toward particular mod
that with the highest evidence~or log evidence! is preferred,
and the array model with the highest evidence in this cas
the three-point spline. While array models of higher co
plexity achieved lower energies, the Occam factor implicit
the evidence formulation automatically discriminated aga
them, leading to a monotonic decrease in probability, as
lustrated by the normalized probability plot of Fig. 9.

Interestingly, both the parabola and three-point spl
possess the same number of parameters, though the ge
ric mapping of these parameters into the misfit function w
different for each case. While an argument could be m
that the particular prior bounds used weighed unreason
against the parabolic array~or vice versa!, these bounds were
believed to be reasonably representative of the state of p
uncertainty. For this reason, the three-point spline array
selected here as the basis for subsequent inversions.

C. Environment model selection

Having established that the three-point spline had
highest Bayesian evidence of the seven array models ev
ated, we now turn to evaluating evidence values for vari
environmental models. Figure 5 depicts schematically the

FIG. 11. Marginal PPD histograms for frame 90. Environment model~b!,
three-point array andMANNING source.
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ocean-acoustic environments considered, including
simple Pekeris waveguide used as the baseline case ab
Again, the choice of models was subjective—in this ca
based on previous geoacoustic inversions in the North E
region23,32,26,33and also recent high-resolution surveys,34,39

which have indicated near-surface stratification that mi
reasonably be detected by the present self-noise techn
The addition of sound-speed gradients to the water colu
while seemingly unnecessary given the almost iso-velo
profile measured at sparse locations during the experim
was of interest here because the impact of such profiles n
to be better understood in relation to near-field inversion

Marginal PPDs generated by Gibbs sampling for each
the six environments—assuming the three-point spline a
previously selected—appear in Figs. 10 to 15. In the cas
model ~a! in Fig. 10, it can be observed that the change
array parametrization has not significantly affected either
shapes of the PPDs or the parameter estimates obtained
viously using a parabolic array. Similarly to Fig. 6, th
source depthZs is observed to be multimodal, but becom
less so following the addition of a water column sound-spe
gradient. For model~b! in Fig. 11, the velocity estimate fo
the lower water column was 151266 m/s relative to the sur-
face velocity estimate of 151864 m/s, suggesting a signifi
cant deviation from the iso-velocity assumption made in R
2.

Model ~c! is again an iso-velocity model, with the bul
water sound-speed estimateCw being 151663 m/s. How-

FIG. 12. Marginal PPD histograms for frame 90. Environment model~c!,
three-point array andMANNING source.
2053Battle et al.: Bayesian model selection
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c-
ever, in this case, the possibility of a sediment layer with
own density andp-wave velocity has been included. As
apparent in Fig. 12, the existence of such a sediment la
down to 2.361.0 m is suggested by the well-resolved peak
the sediment thickness PPD. This feature was subsequ
confirmed to be common to most of the MAPEX2000 data
between frames 90 and 117, and its estimated depth co
lates very well with bottom structures proposed by Ging
and Gerstoft26 for the North Elba seabed, as does the e
mated sediment density of 1.660.2 g/cm3. With the reintro-
duction of a water column sound-speed gradient, this p
remains unchanged; however, the sediment sound-spee
timate increases from 1565 to 1576 m/s while the sedim
density estimate decreases to 1.560.2 g/cm3. It should also
be noted that in comparison with the sediment paramet
those of the half-space below are poorly resolved, with
only meaningful observation being that the half-space d
sity is likely to be in excess of 2 g/cm3.

Figures 14 and 15 illustrate the effect of introducing s
further structure to the bottom acoustic model in the form
an additional iso-velocity fluid sediment layer. The pri
bound of 20 m for the thickness of this layer was intended
reflect what was believed to be the overall sensitivity limit
the MAPEX2000 inversion geometry over the frequen
range used—though this itself is a function of the act
bottom structure. Whereas the PPD of theH1 layer thickness
parameter becomes substantially flatter after adding a se
layer, theH2 PPD appears distinctly multimodal, with a se

FIG. 13. Marginal PPD histograms for frame 90. Environment model~d!,
three-point array andMANNING source.
2054 J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
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FIG. 14. Marginal PPD histograms for frame 90. Environment model~e!,
three-point array andMANNING source.

FIG. 15. Marginal PPD histograms for frame 90. Environment model~f!,
three-point array andMANNING source.
Battle et al.: Bayesian model selection
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ond peak at approximately 10 m. This is possibly on acco
of two actual sediment layers in the bottom, or also poss
just a resonant condition for the bottom interface reflectiv

As done in Sec. V B for array model selection, the qua
titative results of environment model selection are summ
rized in Table IV and Fig. 16. Unlike the previous case, it
difficult to rank competing environmental modelsa priori in
relation to their parametric complexity, and hence the e
dence does not behave monotonically either side of the
timal selection—model~d!. The MAP and mean paramete
estimates for this model, along with their associated stand
deviations, represent the final output of the two levels
Bayesian inference employed in this paper, and are sum
rized in Table V.

Also unlike the previous case, the environment mo
found to have the highest Bayesian evidence was also
which achieved the best overall fit. Given the hierarchi
relationship between models~d! and ~f!, it is at first surpris-
ing that the latter could not achieve a lower energy, thoug
is possible that the initial GA search simply failed to find t
globally optimal solution. This is testimony to why it is mor
desirable to characterize PPDs in inverse problems ra
than just search for the best fit. Further, it can be noted fr
Eq. ~25! that the reverse importance sampling proced
used for accurate evidence estimation—unlike the Gaus
approximation of Eq.~9!—does not depend on the maximu

TABLE IV. Results for environment model selection. Model~d! is seen to
give the highest evidence. Note that the table displays log evidence an
probability of a model is based on just the evidence; thus, the small di
ences for each model are important.

Model Min E

Log evidence

RIS Gaussian

~a! 19.4 214.2 213.8
~b! 19.1 214.1 213.7
~c! 19.7 215.2 214.7
~d! 14.7 213.6 212.7
~e! 15.0 213.9 213.1
~f! 14.9 213.7 213.1

FIG. 16. Normalized probabilities for the environment models listed
Table IV based on Bayesian evidence.
J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004
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likelihood estimatep(duMk). The evidence values in th
second column of Table IV, therefore, are unbiased by s
optimal ML solutions, unlike those in the third column—
although in any case, both methods identified model~d! as
the most probable.

In relation to Fig. 16, there appears to be a consist
demarcation between environments with iso-velocity wa
columns as opposed to sound-speed gradients—the left
right columns of Fig. 5. The latter are always more proba
than the former, with the difference between models~c! and
~d! being almost anomalous. This suggests that even at
short ranges necessary for self-noise inversion, it is wo
while modeling the water column as possessing at lea
first-order sound-speed gradient.

Finally, on the basis of histogram plots such as those
Figs. 10 to 15, it is not easy to see the reasons for partic
model preferences, but in numerous reruns, the essential
tern of Fig. 16 was fairly consistently reproduced. In a
case, we stated in the Introduction that the focus of this pa
was on themethodologyof Bayesian model selection rathe
than exhaustive demonstration, which would need con
tency checks across a more extensive portion of our data
than the single frame analyzed here, and also possib
wider range of realistic ocean models.

VI. CONCLUSIONS

A Bayesian approach to solving self-noise inversi
problems has been presented. This approach provides co
tent methods for both parameter estimation at the first le
of inference, and model selection at the second level of
ference.

To implement the calculations necessary—namely P
estimation, marginalization, and integration—we used
Metropolis–Hastings variant of the popular Gibbs samp
algorithm, which, combined with fast acoustic modelin
made the tasks of parameter estimation and model selec
tractable. Variations on conventional Gibbs sampler des
such as an initial fast GA optimization, and coordinate ro
tion according to semianalytic covariance estimates pro
successful in accelerating overall algorithm performance

TABLE V. Results of final geoacoustic inversion.

Parameter Unit MAP Mean Std. dev

Cw1 m/s 1518 1518 4
Cw2 m/s 1512 1511 5
D m 121 121 1.8
Cs m/s 1598 1577 45
H m 2.7 2.5 1
as dB/l 2.0 1.1 0.6
rs g/cm3 1.5 1.5 0.2
Cb m/s 1539 1540 51
rb g/cm3 2.5 2.2 0.5
ab dB/l 1.4 1.0 0.6
Zs m 2.0 2.5 1
Rs m 301 300 10
za1 m 49.6 49.7 0.9
za2 m 48.7 48.8 0.7
za3 m 53.8 53.4 1.0

the
r-
2055Battle et al.: Bayesian model selection
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The second level of inference is concerned with mo
selection, i.e., the problem of selecting a model that b
explains a data set at a given signal to noise ratio. Baye
model selection, as discussed here, is based on calcul
evidence, which is the integral of the product of likelihoo
and prior probability over all model parameters. This a
proach penalizes models that are more complex than w
ranted by the data by virtue of the Occam factor.
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