

Kalman and Particle Filtering for Geoacoustic Parameter Tracking

Caglar Yardim, Peter Gerstoft, and William S. Hodgkiss

11 February 2009

ONR Shallow Water 06 Workshop, UT Austin

IntroductionGeoacoustic Inversion vs. Tracking

II. Tracking Filter Theory Extended (EKF), Unscented Kalman (UKF), Particle (PF) Filters

III. Geoacoustic Parameter Tracking

Yardim C., P. Gerstoft, and W. S. Hodgkiss, "Tracking of geoacoustic parameters using Kalman and particle filters", JASA, 125(2), pp.746-760, 2009.

IV. Source Tracking

Yardim C., P. Gerstoft, and W. S. Hodgkiss, "Source tracking in changing geoacoustic environments", JASA, to be submitted, 2009.

V. Results

VI. Conclusions

Introduction

What is geoacoustic tracking? What is a tracking filter?

- Geoacoustic tracking is the estimation of the evolution of geoacoustic parameters sequentially, temporal and/or spatial. (estimates and underlying posterior densities)
- A tracking filter is a recursive Bayesian estimator.

Why do it?

Efficient way of doing sequential estimation. A framework that handles both the previous values of the parameters and the sequential data at each index *k*.

How to do it?

- Kalman Framework, the optimal recursive Bayesian estimator for linear/Gaussian.
- Sequential Monte Carlo Techniques.

Inversion vs. Tracking

Geoacoustic Inversion

$$\mathbf{d}^{obs} = h(\mathbf{m}) + \mathbf{e}$$

Forward model

: state vector

dobs: measurement vector ←

: measurement noise vector

$p(\mathbf{m} \mathbf{l} \mathbf{d})$ PPD:

Geoacoustic Tracking

Environmental evolution model

$$\mathbf{x}_k = f_{k-1}(\mathbf{x}_{k-1}, \mathbf{v}_k)$$
 state equation

$$\mathbf{y}_k = h_k(\mathbf{x}_k, \mathbf{w}_k)$$
 measurement equation

Forward model

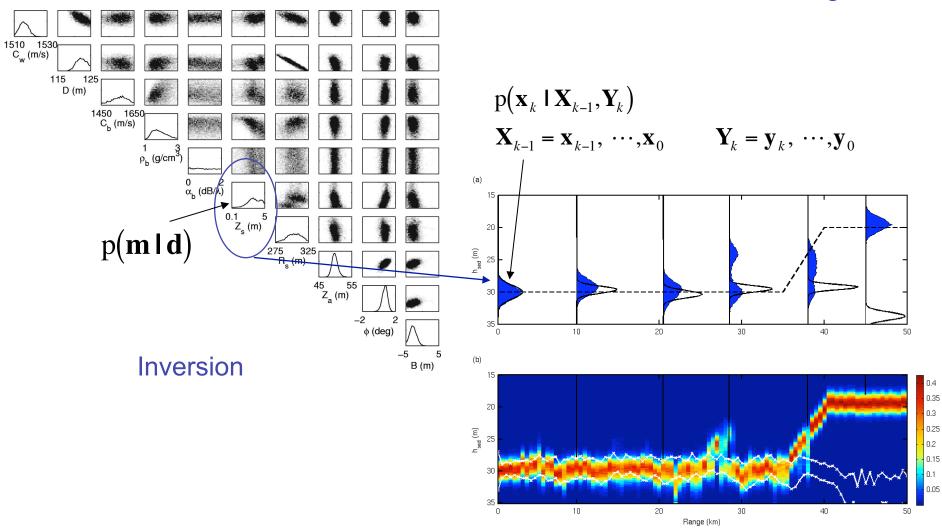
x_k: state vector

 \mathbf{y}_k : measurement vector

V_k: process/state noise vector

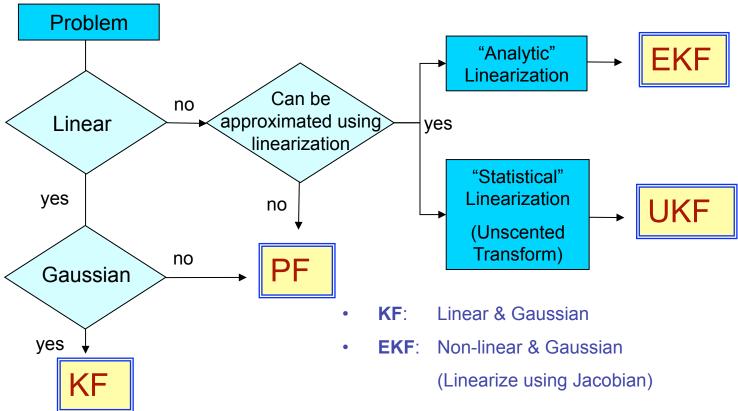
w_k: measurement noise vector

$$\mathbf{X}_{k-1} = \mathbf{X}_{k-1}, \dots, \mathbf{X}_0 \qquad \mathbf{Y}_k = \mathbf{y}_k, \dots, \mathbf{y}_0$$


$$\mathbf{Y}_k = \mathbf{y}_k, \cdots, \mathbf{y}_0$$

ABORATOR

Inversion vs. Tracking

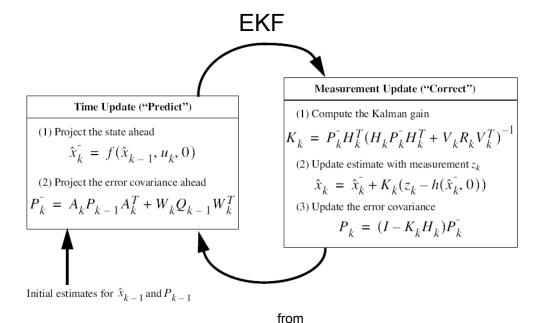

Yardim et al. 11 Feb, 2009

Tracking

A quick guide to filter selection 11 Feb, 2009

UKF: Non-linear & Gaussian(Assume Gaussian input – Gaussian output)

• PF: Non-linear & Non-Gaussian


EKF and PF

$$\mathbf{x}_{k} = f_{k-1}(\mathbf{x}_{k-1}, \mathbf{v}_{k})$$
$$\mathbf{y}_{k} = h_{k}(\mathbf{x}_{k}, \mathbf{w}_{k})$$

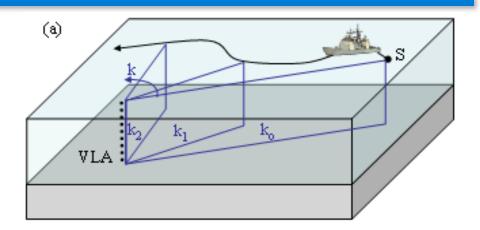
f, h: nonlinear

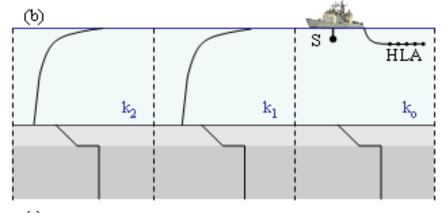
 \mathbf{x}_k , \mathbf{y}_k , \mathbf{v}_k , \mathbf{w}_k : non-Gaussian

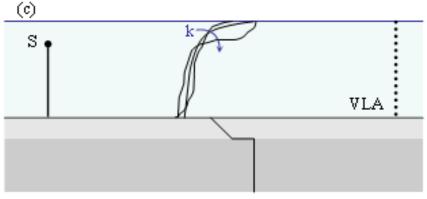
Greg Welch Gary Bishop PF

$$p(\mathbf{x}_{o}) \sim \left\{ \chi_{o}^{i} \right\}_{i=1}^{N_{p}}$$

$$p(\mathbf{x}_{k} \mid \mathbf{y}_{k-1}) \sim \left\{ \chi_{k|k-1}^{i} \right\}_{i=1}^{N_{p}}$$


$$p(\mathbf{x}_{k} \mid \mathbf{y}_{k}) \sim \left\{ \chi_{k|k}^{i} \right\}_{i=1}^{N_{p}}$$

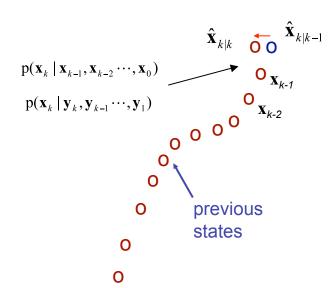

NARINE PHYSICAL


Scenarios and Possible Applications

- Towed source/fixed HLA, VLA
- Towed source/HLA platform
- Fixed hydrophone on the seafloor and a towed source
- Tow ship self noise data acquired via a towed HLA
- Passive fathometer from the ocean ambient noise field measured by drifting array
- Fixed source/receiver. Track sound speed evolution

SWARM95, SWAMI98, MAPEX2000, SCARAB98, ASCOT01, Boundary03, Yellow Shark94, MREA/BP07, SW06

UPDATE


Kalman Framework

Yardim et al. 11 Feb, 2009

A Single Kalman Iteration

$$\mathbf{x}_{k|k} \sim \mathcal{N}(\hat{\mathbf{x}}_{k|k}, \mathbf{P}_{k|k})$$

1. Predict the mean $\hat{\mathbf{x}}_{k|k-1}$ using previous history.

$$p(\mathbf{x}_k \mid \mathbf{x}_{k-1})$$

$$\hat{\mathbf{x}}_{k|k-1} = \mathbf{E}\left\{\mathbf{x}_k \mid \mathbf{x}_{k-1}\right\} = \int \mathbf{x}_k \ \mathbf{p}(\mathbf{x}_k \mid \mathbf{x}_{k-1}) d\mathbf{x}_k$$

2. Predict the covariance $P_{k|k-1}$ using previous history.

Correct/update the mean using new data y_k

$$p(\mathbf{x}_k \mid \mathbf{Y}_k)$$

$$\hat{\mathbf{x}}_{k|k} = \mathrm{E}\{\mathbf{x}_k \mid \mathbf{Y}_k\} = \int \mathbf{x}_k \, \mathrm{p}(\mathbf{x}_k \mid \mathbf{Y}_k) d\mathbf{x}_k$$

4. Correct/update the covariance $\mathbf{P}_{k|k}$ using \mathbf{y}_{k}

$$\cdots \Rightarrow p(\mathbf{x}_{k-1} \mid \mathbf{Y}_{k-1}) \Rightarrow p(\mathbf{x}_k \mid \mathbf{Y}_{k-1}) \Rightarrow p(\mathbf{x}_k \mid \mathbf{Y}_k) \Rightarrow \cdots$$

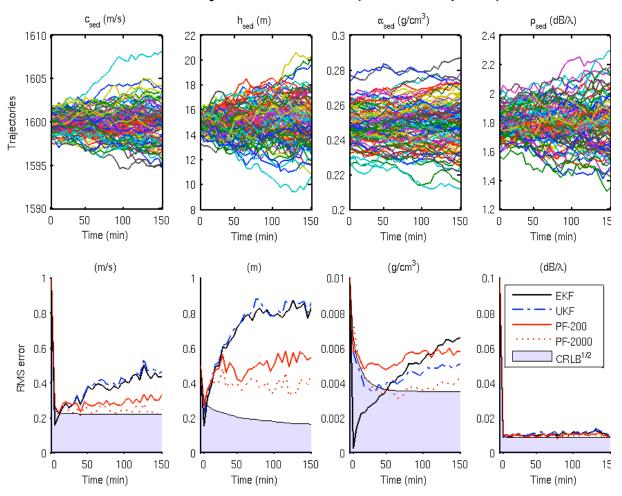
PREDICTOR-CORRECTOR

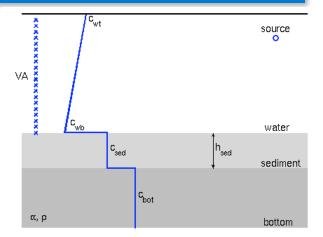
DENSITY PROPAGATOR

Geoacoustic Parameter Tracking

Yardim et al. 11 Feb, 2009

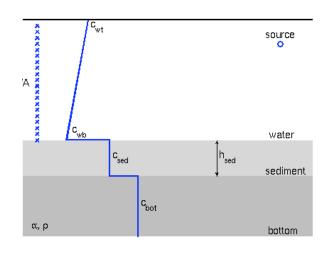
Full state equation

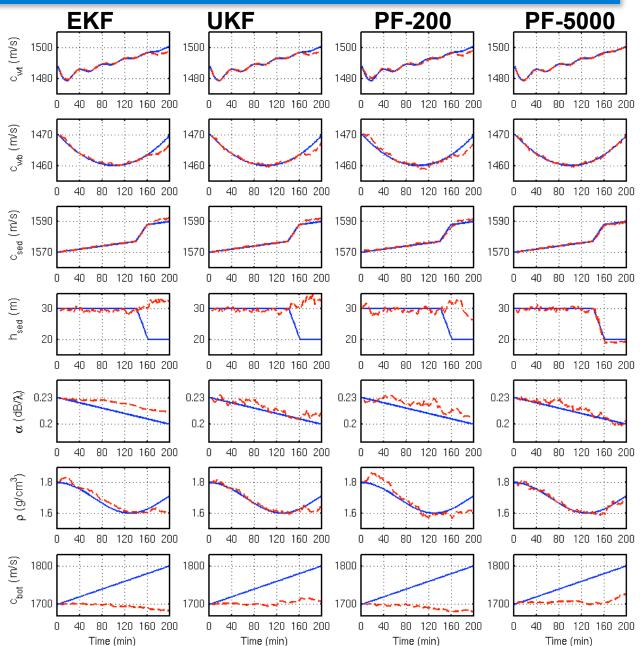

$$\mathbf{m}_k = \mathbf{F}_{k-1}^{\mathbf{m}} \mathbf{m}_{k-1} + \mathbf{B}_{k-1}^{\mathbf{m}} \mathbf{v}_{k-1}^{\mathbf{m}}$$


$$\mathbf{F_{k-1}^m} = \mathbf{I} \quad \mathbf{B_{k-1}^m} = \mathbf{I}$$

Filter Performance and PCRLB

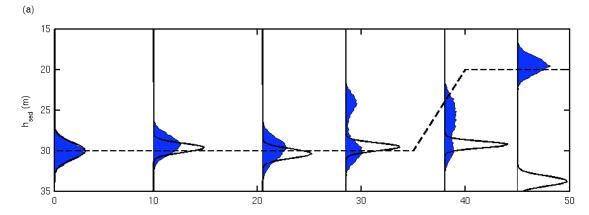
Yardim et al. 11 Feb, 2009

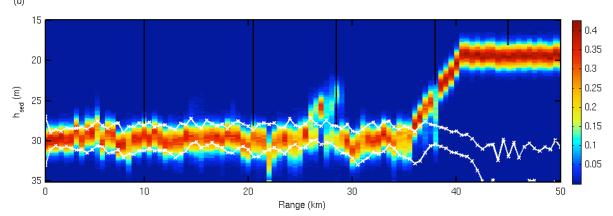

- 5 km range
- Performance of 100 tracks
- EKF, UKF, PF-200, PF-2000
- Posterior or Bayesian CRLB (MC sampled)



Tracking Example 2

- MARINE PHYSICAL
- Evolution of a 200 min track with jump in sediment, VLA 5km range
- True environment
- Tracked environment
- PF-5000 tracks sediment jump





Evolution of PPD

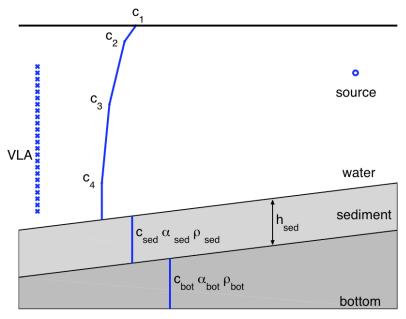
- PPD of sediment thickness
- Black curves: EKF (Gaussian)
- PF with 10k particles
- MCMC requires typically 100 k to 1 M particles
- PF requires less particles, because it is based on the history

MARINE PHYSICAL

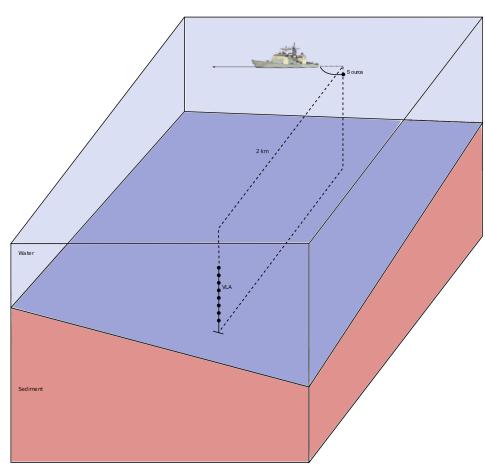
Source Tracking

Yardim et al. 11 Feb, 2009

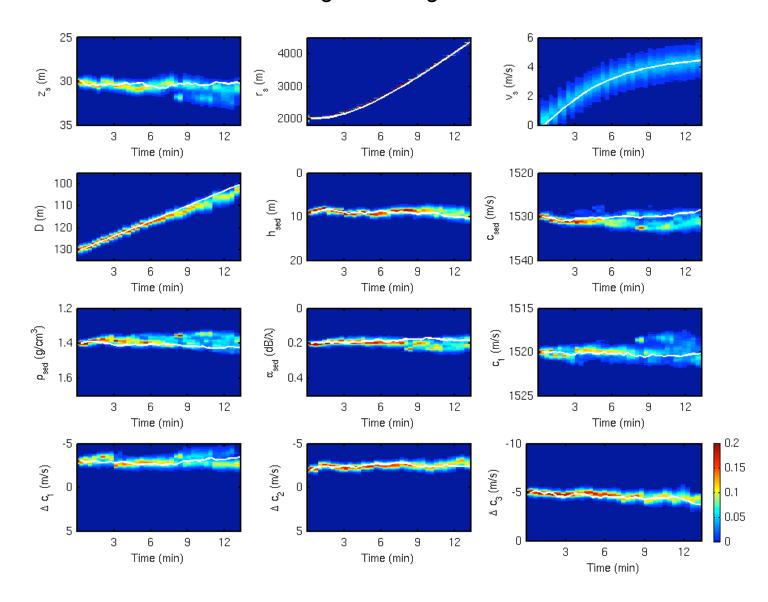
 $\mathbf{m}_k = \mathbf{F}_{k-1}^{\mathbf{m}} \mathbf{m}_{k-1} + \mathbf{B}_{k-1}^{\mathbf{m}} \mathbf{v}^{\mathbf{m}}_{k-1}$


$$\mathbf{F}_{k-1}^{\mathbf{m}} = \mathbf{I} \quad \mathbf{B}_{k-1}^{\mathbf{m}} = \mathbf{I}$$

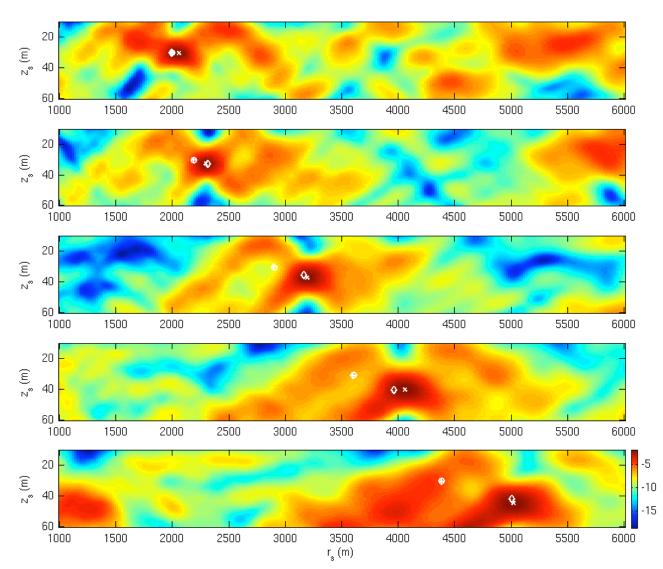
$$\mathbf{s}_k = \mathbf{F}_{k-1}^{\mathbf{s}} \mathbf{s}_{k-1} + \mathbf{B}_{k-1}^{\mathbf{s}} \mathbf{v^s}_{k-1}$$

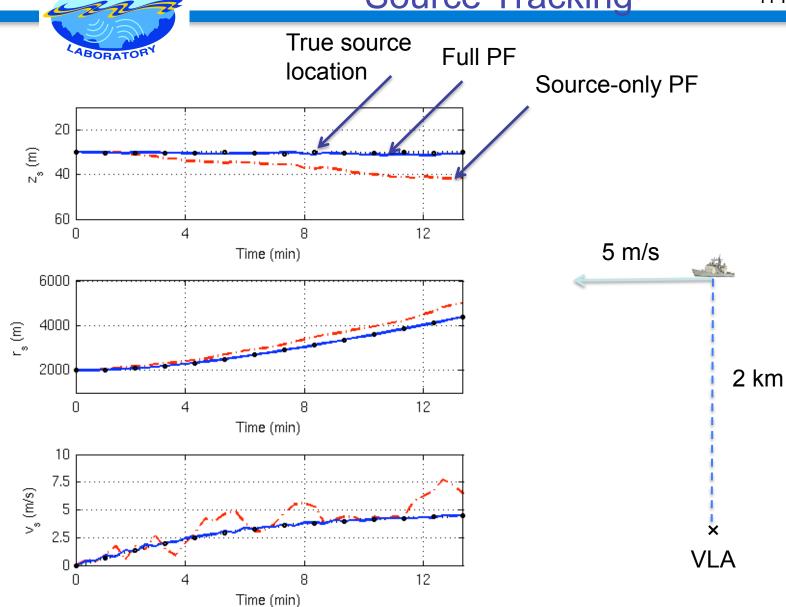

$$\left[egin{array}{c} z_s \ r_s \ v_s \end{array}
ight]_k = \left[egin{array}{ccc} 1 & 0 & 0 \ 0 & 1 & \Delta t \ 0 & 0 & 1 \end{array}
ight] \left[egin{array}{c} z_s \ r_s \ v_s \end{array}
ight]_{k-1} + \left[egin{array}{ccc} 1 & 0 \ 0 & rac{\Delta t^2}{2} \ 0 & \Delta t \end{array}
ight] \left[egin{array}{c} \mathbf{v}_{z_s} \ \mathbf{v}_{a_s} \end{array}
ight]_{k-1}$$

$$\frac{\mathbf{b}}{\mathbf{b}} = \begin{bmatrix} \mathbf{s} \\ \mathbf{m} \end{bmatrix}_{k} = \begin{bmatrix} \mathbf{F}_{k-1}^{\mathbf{s}} & 0 \\ 0 & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{s} \\ \mathbf{m} \end{bmatrix}_{k-1} + \begin{bmatrix} \mathbf{B}_{k-1}^{\mathbf{s}} & 0 \\ 0 & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{v}^{\mathbf{s}} \\ \mathbf{v}^{\mathbf{m}} \end{bmatrix}_{k-1}$$



Dosso, JASA, 2008




Evolving 1-D Marginal PDFs

- × Mismatched MFP
- True Source Location
- **+** Full PF
- Source-only PF

MARINE PHYSICA

Conclusions

Geoacoustic tracking can help improve the estimating the evolution of the environmental parameters and their associated uncertainties and can be a useful tool to complement classical geoacoustic inversion algorithms.

- EKF: Easy and fast but not for most geoacoustic tracking problems which can be highly nonlinear and non-Gaussian.
- UKF: Higher order nonlinearities, but still high nonlinearity and non Gaussian pdfs are problematic.
- > PF: No assumptions. for nonlinear, non-Gaussian problems.
- Can help to track source successfully in changing geoacoustic environment.